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Abstract. This paper presents the section model for analysis of RC circular tower structures based on
nonlinear material laws. The governing equations for normal strains due to the bending moment and the
normal force are derived in the case when openings are located symmetrically in respect to the bending
direction. In this approach the additional reinforcement at openings is also taken into account. The
mathematical model is expressed in the form of a set of nonlinear equations which are solved by means
of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-
Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box
constraints on variables. The model is verified on the set of data encountered in engineering practice. The
numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains
and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that
the additional reinforcement at the openings increases the resistance capacity of the section by several
percent. 
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1. Introduction

Determination of the normal strains and stresses in cross-sections of tower structures has been

analysed as a theoretical problem as well as a practical one. The ultimate load analysis of a shell

with the circular cross-section weakened by one opening is presented in the monograph by Pinfold

(1984). The similar approach is also used in Nieser and Engel (1986), DIN 1056 code (1984) and

CICIND code (1998). The generalized linear section model for analysis for RC chimneys weakened

by openings was proposed in Lechman and Lewinski (1994, 2001). Despite the generality of the

referred papers there are no appropriate analytical formulae describing elasto-plastic behaviour of

the circular tower structures and covering the majority of important problems encountered in
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engineering practice. In particular, the assumption of the central layout of steel reinforcement in the

wall of tower structures commonly used, may not be justified. Furthermore, the effect of the

additional steel bars at openings on the resistance capacity of the section, should be examined. In

this paper, the governing equations for the normal strains and stresses due to the bending moment

and the normal force are derived in the case when openings are located symmetrically in respect to

the bending direction. The normal tensile stresses in concrete are neglected, and the reinforcing steel

can be continuously spaced at l layers . The constitutive equations for both concrete and

steel are assumed to be nonlinear, while the concrete is described as an elasto-plastic material in

compression and brittle in tension. Furthermore, the strains are assumed to be small and their

distribution across the section to be linear. The numerical iterative technique is applied for the

solution of the obtained equations based on the modified BFGS and Hooke-Jeeves methods (see e.g.

Bazaraa et al. 1993, Bertsekas 1997, Fletcher 1970, 1987, Hooke and Jeeves 1961, Stachurski and

Wierzbicki 2001). 

2. Derivation of equations for the section with one or two openings

The annular cross-section, described by the outer radius − R and the inner radius − r, is assumed to

be weakened by one or two openings. The locations of the openings are determined by couples of

the angular coordinates . The reinforcing steel spaced in a general case

continuously at l layers can be replaced by a continuous ring of equivalent area located on the

reference circumference of radius rs. The section under consideration is subject to the normal force

l N∈( )

0 α1,( ) α2 π,( ) 0 α1 α2 π≤ ≤ ≤, ,

Fig. 1 The cross-section weakened by two openings Fig. 2 Distribution of strains ε, stresses in concrete
σb and in steel σs across the section 
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N and the bending moment M. The eccentricity of the normal force e is obtained as a resultant force

of the weight of the tower above the considered section and the wind pressure measured from the

geometrical center of the cross-section (Fig. 1, Fig. 2). 

In the present derivation the following assumptions are introduced: 

(i) distribution of strain across the section is plane, 

(ii) the tensile strength of concrete is ignored, 

(iii) the reinforcement in both the tension and compression zone is taken into account, 

(iv) the shell is thin compared with its diameter, 

(v) elasto-plastic stress/strain relationships for concrete and steel are used, 

(vi) the ultimate strain for concrete is defined as −0.0035 or −0.002, while for reinforcement as

0.005 (tension) and −0.005 (compression). 

The stress-strain relationships for concrete in compression are assumed as (Fig. 1 and Fig. 2): 

 (1)

                 (2)

where 

σb : compressive stress in concrete, 

εb : strain in concrete, expressed per mille, [‰],

fck : the characteristic strength of concrete in compression, 

γb : partial safety factor for concrete. 

The material law for steel in tension and compression is given by (Fig. 2): 

 (3)

 (4)

(5)

where: 

εs : strain in steel per mille, 

fyk : the yield stress of steel, 

γs : partial safety factor for steel, 

Es : modulus of elasticity of steel. 

Let us consider the section under combined compression and bending. Due to the Bernoulli

assumption we obtain: 

σb

fck

γb
-----εb 1 0.25εb+( )= for 2– εb 0≤ ≤

σb

fck

γb
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σs
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εss
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εss
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------= =
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fyk
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(6)

where: 

: the maximum compressive strain in concrete at the wall edge, 

α : the angle describing the location of the neutral axis , 

ϕ : angular coordinate, 

rm : mean radius of the ring (equals to the centroidal concrete radius rc), 

ρ : coefficient, , 

ρR : coefficient, . 

There exist eight possible forms of the stress distribution in the section: 

(i) elastic phase of the concrete and steel 

(ii) plastic phase of the concrete, elastic phase of the steel 

(iii) plastic phase of the concrete and the compressive steel, elastic phase of the tensile steel 

(iv) plastic phase of the concrete and the tensile steel, elastic phase of the compressive steel 

(v) elastic phase of the concrete and the compressive steel, plastic phase of the tensile steel 

(vi) elastic phase of the concrete and the tensile steel, plastic phase of the compressive steel 

(vii) elastic phase of the concrete, plastic phase of the compressive and tensile steel 

(viii)plastic phase of the concrete and steel. 

Let us consider the case (viii). The equilibrium equation of the normal forces in the cross-section

weakened by one or two openings takes the following form 

 (7)

where: 

αb : the angle determining the depth of the plastifying zone of the concrete, 

αs1 : the angle determining the depth of the plastifying zone of the compressive steel, 

αs2 : the angle determining the depth of the plastifying zone of the tensile steel, 

Fad1 : the area of the additional reinforcement at the opening specified by α1, 

Fad2 : the area of the additional reinforcement at the opening specified by α2, 

: the stress function of the concrete in the plastic range given by (2), 

: the stress function of the concrete in the elastic range given by (1), 

: the stress function of the steel in the plastic range given by (4) or (5), 

: the stress function of the steel in the elastic range given by (3), 

dAb : the element of the concrete area, 

dAs : the element of the steel area. 
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Taking into account the relationships (1-6) and the equation , after integration

and rearrangement of (7) we obtain 

 (8)

where: 

 

(9)

t : the thickness of the cross-section t = R − r, 

µ : the ratio of areas, steel to concrete, 

dϕ : the element of the angle measured from the axis in the compressive zone. 

The equilibrium equation of the bending moments in the section under consideration takes in turn

the following form 

(10)

 

Taking into account the relationships (1-6), integrating and rearranging (10) yields 

(11)
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where: 

(12)

In all other cases (i)-(vii) the general form of the equilibrium equations is similar to (8) and (11).

However, terms  and  occurring in Eq. (8) and cosα1 and 

Fad2cosα2 occurring in Eq. (11) take appropriate modified forms, when the additional reinforce-

ment at one or two openings is in the elastic state. The conditions of the strain continuity for the

concrete and the compressive and tensile steels are expressed, respectively: 

(13)

 (14)

(15)

Thus, the problem is described by the set of the five nonlinear equations given in the form (8),

(11), (13)-(15) with the unknown variables . For the cases (i)-(vii), conditions (13)

-(15) take modified forms. In order to solve them effectively numerical methods are used. In a

similar way one can analyze the section wholly in compression. 

The presented model may be generalized for the cross-section weakened by more than two

openings located symmetrically. Let us consider the annular cross-section weakened by m openings

situated symmetrically with respect to the bending direction. By this assumption, the locations of

the openings are determined by couples of the angular coordinates ,

, . Using the principle of mathematical induction

one can obtain the analogous set of equations for each interval  that takes similar form

as (8)-(12). 

3. The ultimate limit state

The resistance capacity of the cross-section is reached when either ultimate strain in concrete εbu
or in steel εsu is reached anywhere in that section. The problem under consideration is
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mathematically described by the following set of equations resulting from those derived above 

 (16)

where  denotes the normalized ultimate normal force. 

(17)

where  denotes the normalized ultimate bending moment. 

The conditions of the ultimate limit state are expressed by 

 (18)

 (19)

Additionally, the continuity conditions (13)-(15) remain valid. 

The resulting set of seven equations (in case (viii)) can be easily solved analytically. The

unknowns are: α, , αb, αa1, αa2, nu and mu.

4. Description of the optimization algorithm used for solving the sets of the

derived equations

4.1 Formulation of the problem

The set of the derived nonlinear equations takes the general form 

 (20)
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The number of equations is equal to the number of unknown variables in any problem considered

in this paper and depends on the states of the steel and the concrete. 

Formulating the optimization problem the authors have decided to use the least squares approach,

i.e., to minimize the sum of the second powers of the Fi functions. The resulting optimization

problem is as follows 

(21)

s.t.

Box constraints in the problem follow from the mechanical interpretation of the unknowns.

Functions Fi are nonlinear and therefore the optimization problem is also nonlinear. The problem

has some unpleasant numerical properties. The minimized functions are very flat in the major part

of the feasible region. This feature makes the numerical estimation of the gradient unreliable in

some situations. 

The authors have used two solvers developed by themselves in the standard ANSI C language.

The first solver implements the local BFGS quasi-Newton minimizer with the numerical gradient

estimation and the second the Hooke-Jeeves direct search method (see e.g. Bazaraa et al. 1993,

Bertsekas 1997, Fletcher 1970, 1987, Hooke and Jeeves 1961, Stachurski and Wierzbicki 2001).

The BFGS and Hooke-Jeeves methods are the unconstrained optimization methods. However, in

this implementation box constraints have been introduced on the parameters and the algorithm rules

have been modified appropriately to ensure feasibility. The BFGS method reaches only a certain

level of accuracy (perhaps due to the numerical gradient estimation). For this reason, the

nongradient routine has been prepared in order to overcome this difficulty and to have a tool for

comparison purposes. 

5. Numerical examples

The set of nonlinear equations given in the form (8)-(15) has been reformulated as an

optimization problem. In fact, the sum of the second powers of their residuals is minimized. The

resulting optimization problems have been solved by means of the modified BFGS quasi-Newton

and/or Hooke-Jeeves direct search methods. 

The presented approach enables the determination of strains and stresses in the sections under

consideration by the interactive analysis. For presentation of the proposed Eqs. (8)-(15) one

particular design with a single opening was chosen. Figs. 3-8 show the numerically calculated

strains and stresses in the concrete and in the steel for the following values of the basic parameters:

fck = 20 MPa, fyk = 410 MPa,  and . The values of the

strains εb and stresses σb in the concrete as well as in the compressive steel εs1 and σs1 and in the

tensile one εs2 and σs2 are plotted directly as a function of the eccentricity ratio e/R and size of the

opening 2α1. 

The curves presented in Figs. 2-6 indicate that the obtained relationships are strongly nonlinear

after the yield stress in the steel has been reached. As it is apparent in Figs. 1-4 a single opening

can result in increasing the strains and stresses in the concrete and compressive steel by more than
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100%. The effect of the additional lumped reinforcement at openings was examined under the

assumption that the area of the additional steel bars at the sides of the openings is equal to that

which would have passed through the openings. The results of calculations collected in Table 1

show that the additional reinforcement (Add.+) at a single opening reduces the strains and stresses

in the concrete and steel in the plastic state by about 7-8% (RD-relative difference), whereas, its

influence in the elastic case is negligible. 

As a rule the calculations have been initiated with case (i), assuming elastic state of both

materials. Then, they were proceeded in an interactive way. If the solution does not satisfy the task

requirements, the solution scheme is modified appropriately, until the satisfactory accuracy has been

reached. Solutions were accepted when the minimized sum of the second powers of the residua was

smaller than 10−4 and otherwise rejected. However, in many cases the solution accuracy was of

Fig. 3 Strains in concrete εb versus eccentricity ratio
e/R and size of opening 2α1 

Fig. 4 Stresses in concrete σb versus eccentricity
ratio e/R and size of opening 2α1 

Fig. 5 Strains in compressive steel εs1 versus eccen-
tricity ratio e/R and size of opening 2α1 

Fig. 6 Stresses in compressive steel σs1 versus eccen-
tricity ratio e/R and size of opening 2α1 
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several orders better (even 10−15). In extreme cases (large values of e/R), the resulting accuracy was

worse. For this reason the range of argument e/R was restricted for each curve in Figs. 1-6. In most

cases satisfactory results were obtained by means of the BFGS method. However, in some

situations, the Hook-Jeeves direct search algorithm found solutions with better accuracy. In the

authors’ opinion, it may result from the insufficient accuracy in the numerical gradient estimation. 

As the next problem the resistance capacity of the sections was analyzed. Using the derived

Eqs. (16)-(19) one can obtain the interaction curves with the designed values of the normalized,

cross-sectional forces nu and mu for the section weakened by one or two diametrically opposite

openings (Fig. 9, Fig. 10). The comparison presented in Table 2 indicates that the resistance

capacity of the section determined by the values of nu, mu increases due to the additional lumped

reinforcement at a single opening by more than 10% depending on the opening size and the

ultimate values εbu and εsu. 

In Table 3 the design values of the normalized, cross-sectional forces nu and mu obtained by the

authors and those given according to DIN 1056, are compared. The resulting differences do not

exceed 7%. In the authors’ opinion, the differences result from the inaccuracies of reading the DIN

diagrams. Furthermore, they may be attributed to the differences in the used models. 

Fig. 7 Strains in tensile steel εs2 versus eccentricity
ratio e/R and size of opening 2α1 

Fig. 8 Tensile stresses in steel versus eccentricity
ratio e/R and size of opening 2α1 

Table 1 Effect of the additional reinforcement at the opening on the strains and stresses in the concrete and in
the steel

e/R = 1.0 e/R = 2.0 e/R = 2.35

Add.+ RD [%] Add.+ RD [%] Add.+ RD [%]

εb [‰] −0.6141 −0.6143 0.027 −1.257 −1.305 3.8 −1.841 −1.986 7.9

σb [MPa] −6.93 −6.93 −11.50 −11.72 1.9 −13.25 −13.33 0.6

εs1 [‰] −0.583 −0584 0.022 −1.177 −1.221 3.8 −1.703 −1.836 7.8

σs1 [MPa] −122.50 −122.50 −247.16 −256.50 3.8 −356.52 −356.52

εs2 [‰] 0.5802 05803 0.021 1.876 1.925 2.6 3.531 3.826 8.3

σs2 [MPa] 121.84 121.86 0.02 356.52 356.52 356.52 356.52
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Fig. 9 Interaction diagram with the designed values
of the normalized cross-sectional forces nu
and mu for the section weakened by a single
opening: α1 = 0.192 (110), fck = 12 MPa, fyk =
220 MPa, Fad1 = Fad2 = 0

Fig. 10 The corresponding interaction diagram for
the section with two diametrically opposite
openings: α1 = 0.192 (110), α2 = 0.9496 (1690)

Table 2 Comparison of the capacity of the section with or without the additional reinforcement at the opening
(α1 = 22 o, fck = 20 MPa, fyk = 410 MPa, µ = 1%, γb = 1.5, γs = 1.15)

Without additional 
reinforcement

With additional 
reinforcement

[%] [%]nu mu nu mu

−2/5 0.0380 0.0803 0.0434 0.0828 114.2 103.1

−2/2 0.1578 0.0948 0.1632 0.0973 103.4 102.7

−2/0 0.4121 0.0563 0.4176 0.0588 101.3 102.9

Two openings of the equal size α1 = 33 o

−2/5 0.0477 0.0358 0.0546 0.0358 114.4 100.0

εbu εsu⁄

nu ad( )

nu

----------------
mu ad( )

mu

-----------------

Table 3 Comparison of the calculated values with those specified in the DIN code (fck = 10.5 MPa, fyk = 420
MPa, γb = 1.5, γs = 1.15)

Type of 
section

α

[o]

nu mu

DIN
Proposed 

model
RD
[%]

DIN
Proposed 

model
RD
[%]

closed 0.2 −2/2 0.260 0.2433 6.8 0.14 0.1342 4.3

1 op. 22 0.2 −2/1 0.305 0.2948 3.5 0.11 0.1065 3.3

1 op. 33 0.3 −2/1 0.30 0.2880 4.2 0.111 0.1106 0.4

2 ops. 22 0.15 −2/1 0.30 0.2883 4.1 0.10 0.0974 2.7

2 ops. 44 0.1 −2/4 0.100 0.1029 2.8 0.059 0.0576 2.4

µ
fyk
fck
----- εbu εsu⁄
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6. Conclusions

Based on this study the following conclusions can be drawn: 

1. General analytical formulae describing the model proved to be a successfull tool for

determination and elasto-plastic analysis of strains and stresses in the RC circular tower sections

with one or two openings or in the closed ones subjected to arbitrary cross-sectional forces N

and M. 

2. The authors’ implementations of the BFGS and Hooke-Jeeves optimization methods were

reliable in finding the numerical solutions with a sufficient accuracy. 

3. The presented model works well in most cases encountered in engineering practice. 

4. The proposed section model seems to have a wider application field than the previous ones due

to the assumptions of non-central layout of reinforcement, additional steel bars at openings and

wall edge strains. 

5. In the case of a single opening, the calculations indicate that the additional reinforcement

results in reducing the strains and the stresses in the concrete and the steel by about 7-8%. 

6. The resistance capacity of the section increases due to the additional reinforcement by more

than 10% depending on the opening size and the ultimate values εbu, εsu. 

7. The model serves for dimensioning the cross-sections and enables to design strenghtenings of

the RC circular tower structures by means of external reinforcement. 

8. The obtained equations can be generalized for the section weakened by an arbitrary number of

openings located symmetrically in respect to the bending direction. 
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