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Dynamic interaction analysis of vehicle-bridge system 
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Abstract. The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this
paper. The vehicle model is simplified as a spring-damping-mass system. By adopting the idea of
Newmark-β method, the partial differential equation of structure vibration is transformed into a differential
equation irrelevant to time. Then, this differential equation is solved by transfer matrix method. The
prospective application of this method in real engineering is finally demonstrated by several examples.
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1. Introduction

During the past century, a lot of important works about the dynamic interaction of vehicle-bridge
system have been done. The initial work on this subjected was pioneered by Inglis (1934). Then,
Hillerborg studied this problem by means of Fourier’s transformation method. In recent twenty
years, increasingly complex computational models of dynamic interaction of vehicle-bridge were
proposed. On the basis of those models, the dynamic responses of vehicle-bridge system are studied
and lots of useful conclusions are obtained (Sridharan and Mallik 1979, Wiriyachai et al. 1982,
Chompooming and Yener 1995, Michaltsos et al. 1996, Xia et al. 2003). Meantime, it also should
be noted that most of those complex models are essentially based on the early theory of Inglis and
Hillerborg.

Transfer matrix method is a semi-analytical algorithm, and can be efficiently used for periodic
one-dimensional structures. In general, most of large-scale structures are periodicity due to assembly
and construction. Once the transfer matrix of a representative element is obtained, the solution of
the whole structure can be obtained without requiring great computational effort (Pestel and Leckie
1993). In previous literatures, by adopting transfer matrix method, the stability and free vibration of
one-dimensional structures are studied comprehensively (Takahashi 1999, Li et al. 2004a,b).
Moreover, combining with other methods, transfer matrix method may have more extensively
application. Using transfer matrix method in combination with the FORM, the structural stochastic
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dynamic responses are studied by Fang (1995). Wang et al. (1999) studied the seismic response of
frame-shear wall structures through combining transfer matrix method with Runge-Kutta method.
Lee (2000) proposed an algorithm named as spectral transfer matrix method, which is a
combination of transfer matrix method and spectral element method, and this method is used in
dynamic response analysis in one-dimensional structures.

In this paper, the authors aim at applying transfer matrix method into the dynamic interaction
analysis of vehicle-bridge. Transfer matrix method can be conveniently used in the structural
dynamic response analysis in frequency domain. However, the works about applying transfer matrix
method into the structural dynamic response analysis in time domain is comparably rare. To study
the structural dynamic response in time domain, the transfer matrix method is combined with
Newmark-β method in this paper. By adopting the idea of Newmark-β method, the partial
differential equation of structure vibration is transformed into a differential equation irrelevant to
time. Then, this differential equation is solved by transfer matrix method. Through simplifying the
vehicle model as a spring-damping-mass system, the dynamic interaction of vehicle-bridge is
studied using the algorithm proposed by authors. Example studies demonstrate the prospective
application of this method in real engineering.

2. Formulation of the transfer matrix

2.1 The transfer matrix for beam element

For Euler-Bernoulli beam, the vibration equation can be written as (Paz 1991)

(1)

in which y is the vertical deflection of position x at time t,  is the mass per unit length, EI is the
flexural stiffness, and f (x, t) is the vertical load acting on the beam.

Eq. (1) can be written in the incremental form for time step i as

(2)

where

(3)

(4)

Using the idea of Newmark-β method (Newmark 1959), the incremental acceleration and velocity at
time step i can be given as

(5)

EI
∂4

y

∂x4
-------- m

∂2
y

∂t2
--------+ f x t,( )=

m

EI
∂4 yi∆
∂x

4
------------- m

∂2 yi∆
∂t

2
-------------+ fi∆=

yi∆ yi 1+ yi–=

fi∆ f x ti 1+,( ) f x ti,( )–=

∂2
yi∆

∂t2
-------------

yi∆
β t2∆
-----------

y· i

β t∆
--------–

y··i

2β
------–=



Dynamic interaction analysis of vehicle-bridge system using transfer matrix method 113

(6)

where   and  are the velocity and acceleration at time ti respectively. Newmark suggested that

the value of parameter β is in the range  (Newmark 1959). For  this method is uncon-

ditionally stable and it provides the satisfactory accuracy.
Substituting Eq. (5) into Eq. (2) yields

(7)

Thus, the incremental partial differential equation of beam vibration is transformed into a
differential equation. Adopting the transfer matrix, the incremental displacement ∆yi can be solved.
Then substituting ∆yi into Eqs. (5) and (6), the incremental acceleration and velocity at time step i
are obtained.

For convenience, Eq. (7) is rewritten as

(8)

where

(9)

The solution of Eq. (8) is given as

 (10)

in which

(11)

c1~c4 is a set of coefficients.  is the special solution of Eq. (8), and by adopting the

method of variation of parameters Dj(x) can be determined (Zill and Cullen 2001). The analytical
expressions of Dj (x) when ∆Fi is a concentrated load or a linear varying distributing load are given
in appendix.
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From Eq. (10), and considering , the analytical

expressions of incremental rotation ∆θi, incremental moment ∆Mi, and incremental shear force ∆Qi are
obtained

(12)

 

(13)

(14)

Defining the state vector and coefficient vector as

(15)

(16)

Then, Eqs. (10), (12), (13), and (14) can be expressed in the matrix form as

 (17)

For a given element, assuming that the coordinates of left and right end are 0 and L, substituting
x = 0 and x = L into Eq. (17) yields
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in which matrix [T] is the transfer matrix, and the analytical expressions of its’ non-zero elements
are given as

(21)

2.2 The point transfer matrix for support

For a continuous beam shown in Fig. 1, the relationship between the state vector of the left and
right side of the pth support can be written as

(22)

where  is the support reaction of the pth support.
The state vector of the left side of the pth support can be expressed in terms of the state vector of
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Fig. 1 Continuous beam
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(23)

From Eqs. (22) and (23), the point transfer matrix of the pth support is obtained

(24)

3. Dynamic interaction of vehicle-bridge

As shown in Fig. 2, the vehicle model is simplified as a spring-damping-mass system. Using
D’Alembert’s principle, the motion equations of the beam, the bogie, and the vehicle body are
obtained

(25)

(26)

(27)

where y, yb, and yt are the displacement of the beam, the bogie, and the vehicle body respectively.
mb and mt are the mass of the bogie and the vehicle body. v is the velocity of the vehicle.
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Fig. 2 The interaction model of vehicle-bridge system
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Following the same procedure adopted in Eqs. (2)-(7), Eqs. (25)-(27) can be expressed as

(28)

(29)

(30)

Using the transfer matrix method developed above, Eq. (28) can be solved. Then, from Eqs. (29)
and (30), the incremental displacement of bogie and vehicle body are obtained. Substituting
incremental displacement into Eqs. (5) and (6), the incremental acceleration and velocity can be
finally determined.

4. Example studies

4.1 Dynamic interaction of vehicle and simply supported beam

A simply supported beam is taken as numerical example. Its’ span length is 16 m, the flexural
stiffness is 2.05 × 1010 N · m2, and the mass per unit length is 9.36 × 103 kN/m. The parameters of
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Fig. 3 Response of mid-span deflection to the vehicle position
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vehicle model are taken as: mt = 8660 kg, mb = 38500 kg, Ka = 8.56 × 106 N/m, Kb = 5.07 × 106 N/m,
ca = 1.96 × 105 kg/s, and cb = 3.82 × 105 kg/s. The response of the mid-span deflection to the vehicle
position as the vehicle moves with various velocities along the beam is given in Fig. 3. The
relationship between the maximum mid-span dynamic deflection and the vehicle velocity is plotted
in Fig. 4. To investigate the dynamic response of vehicle, the acceleration history of vehicle body is
shown in Fig. 5.

From Fig. 3, it can be found that the fluctuation of dynamic deflection response of the beam
decreases gradually with the vehicle speed, and the maximum deflection occurs when the vehicle is
located adjacent to mid-span. The problem is also analyzed by Ruge-Kutta method in Xiao and
Shen (2004), and the result comparison shown in Fig. 4 demonstrates the accuracy of the method
proposed by authors. Moreover, from Fig. 4, it can be concluded that the maximum deflection of
beam doesn’t increase linearly with the vehicle speed, and the maximum deflection increases
quickly when the vehicle speed exceeds 200 km/h. As shown in Fig. 5, with the increment of
vehicle speed, although the fluctuation of vehicle body acceleration decreases, the maximum vehicle
body acceleration increases enormously.

Fig. 4 Response of maximum mid-span deflection to the vehicle velocity

Fig. 5 Acceleration history of vehicle body
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Fig. 6 Response of mid-span deflection to the vehicle position

Fig. 7 Response of maximum mid-span deflection to the vehicle velocity

Fig. 8 Acceleration history of vehicle body
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4.2 Dynamic interaction of vehicle and continuous beam

To study this problem more deeply, the dynamic interaction of vehicle and a two-span continuous
beam is studied. The length of each span is 16 m. The other parameters used in calculation are the
same as those in example 4.1. The dynamic response of the beam and the acceleration history of
vehicle body are also plotted in Figs. 6-8.

It can be found from Figs. 6-8 that due to improvement of structure stiffness, the dynamic
responses of beam and vehicle body are smaller than those of simply supported beam.

5. Conclusions and acknowledgements

From the numerical results presented above, it can be concluded that the method used in this
paper is accuracy, and able to deal with the dynamic interaction of vehicle-bridge effectively.
Moreover, although a comparably simply vehicle model is adopted, it should be noted that the
method can be extended to spatial dynamic interaction of vehicle-bridge where the complicated
vehicle model is usually used. In the following studies, the authors will deal with this topic more
extensively. The work of this paper is financially supported by Science and Technology Foundation
of Southwest Jiaotong University (2003A14).
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