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Abstract. The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this
paper. The vehicle modd is simplified as a spring-damping-mass system. By adopting the idea of
Newmark- method, the partial differential equation of structure vibration is transformed into a differential
equation irrdlevant to time. Then, this differential equation is solved by transfer matrix method. The
prospective application of this method in real engineering is finally demonstrated by several examples.
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1. Introduction

During the past century, a lot of important works about the dynamic interaction of vehicle-bridge
system have been done. The initial work on this subjected was pioneered by Inglis (1934). Then,
Hillerborg studied this problem by means of Fourier's transformation method. In recent twenty
years, increasingly complex computational models of dynamic interaction of vehicle-bridge were
proposed. On the basis of those models, the dynamic responses of vehicle-bridge system are studied
and lots of useful conclusions are obtained (Sridharan and Mallik 1979, Wiriyacha et al. 1982,
Chompooming and Yener 1995, Michaltsos et al. 1996, Xia et al. 2003). Meantime, it aso should
be noted that most of those complex models are essentially based on the early theory of Inglis and
Hillerborg.

Transfer matrix method is a semi-anaytical agorithm, and can be efficiently used for periodic
one-dimensional structures. In general, most of large-scale structures are periodicity due to assembly
and construction. Once the transfer matrix of a representative element is obtained, the solution of
the whole structure can be obtained without requiring great computational effort (Pestel and Leckie
1993). In previous literatures, by adopting transfer matrix method, the stability and free vibration of
one-dimensional gtructures are studied comprehensively (Takahashi 1999, Li et al. 2004ab).
Moreover, combining with other methods, transfer matrix method may have more extensively
application. Using transfer matrix method in combination with the FORM, the structural stochastic
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dynamic responses are studied by Fang (1995). Wang et al. (1999) studied the seismic response of
frame-shear wall structures through combining transfer matrix method with Runge-Kutta method.
Lee (2000) proposed an agorithm named as spectra transfer matrix method, which is a
combination of transfer matrix method and spectral element method, and this method is used in
dynamic response analysis in one-dimensional structures.

In this paper, the authors aim at applying transfer matrix method into the dynamic interaction
anaysis of vehicle-bridge. Transfer matrix method can be conveniently used in the structurd
dynamic response analysis in frequency domain. However, the works about applying transfer matrix
method into the structural dynamic response anaysis in time domain is comparably rare. To study
the structural dynamic response in time domain, the transfer matrix method is combined with
Newmark-B method in this paper. By adopting the idea of Newmark-B method, the partia
differential equation of structure vibration is transformed into a differential equation irrelevant to
time. Then, this differential equation is solved by transfer matrix method. Through simplifying the
vehicle model as a spring-damping-mass system, the dynamic interaction of vehicle-bridge is
studied using the agorithm proposed by authors. Example studies demonstrate the prospective
application of this method in real engineering.

2. Formulation of the transfer matrix
2.1 The transfer matrix for beam element

For Euler-Bernoulli beamn, the vibration equation can be written as (Paz 1991)

EI§;%+ ﬁ1§¥ = f(x t) (1)

in which y is the vertical deflection of position x at time t, m is the mass per unit length, El is the
flexural stiffness, and f (x, t) is the vertical load acting on the beam.
Eq. (1) can be written in the incremental form for time step i as

dny.  _Fhy
EI—ZI + m—y'

S P = Af, 2

where
AY; = Vi1V 3
Af, = (X t,1) —f(X, 1) 4)

Using the idea of Newmark- method (Newmark 1959), the incremental acceleration and velocity at
time step i can be given as

R
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oby; _ Ay, 1n
a 2,8At_ st ii- 2p P ©)

where y; and y; are the velocity and acceleration at time t; respectively. Newmark suggested that
the value of parameter Bisin the range %s B< % (Newmark 1959). For B = %1 this method is uncon-

ditionally stable and it provides the satisfactory accuracy.
Substituting Eq. (5) into Eq. (2) yields

d Ayl r_n yl
El—2 + LAy = Af, + mEE- + —‘3

Thus, the incremental partial differential equation of beam vibration is transformed into a
differential equation. Adopting the transfer matrix, the incremental displacement Ay; can be solved.
Then substituting Ay; into Egs. (5) and (6), the incremental acceleration and velocity at time step i
are obtained.

For convenience, EqQ. (7) is rewritten as

d Ay' +AK'DY, = AF, ®)
where
K = m
4B CEI
AF, [Af + mDy—' 1‘3} /EI 9)
The solution of Eqg. (8) is given as
4
Ay, = ¢, fi(X) + Cofo(X) + cafa(X) + Cafy(x) + z D;(x)f;(x) (10)
i1

in which
fi(xX) = chkx[toskx, f,(x) = chkx &Binkx
f3(x) = shkx [toskx, f,(x) = shkx[&Einkx (1)
4
C1~C4 is a set of coefficients. z D;(x)f;(x) is the special solution of Eq. (8), and by adopting the
i=1
method of variation of parameters Dj(x) can be determined (Zill and Cullen 2001). The analytical

expressions of D;(x) when AF; is a concentrated load or a linear varying distributing load are given
in appendix.
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4 4 4
From Eq. (10), and considering z Dy (x)f;(x) = z Dy/(x)f/ (x) = z D/ (x)f"(x) =0, the anaytical
i=1 =1 =1

expressions of incrementa rotation A8, incremental moment AM;, and incrementd shear force AQ, are
obtained

AG = % = CoK[f3(X) = f2(X)] + CoK[f4(X) + f1(x)] +
X (12)
CaK[f1(X) = 4(X)] + c,K[f5(X) +f3(X)] + ZDJ(X)f,-'(X)
i=
dZAYi 2 2
AM; = —E|? = 2¢, K CEI O,(x) — 2¢, [K* CEI [5(x) +
X
4 (13)
2¢, (K [EI () — 2¢, [K° CEI [F,(X) — El 3 Di(xf" ()
=1
d3Ayi
AQ, = -EI—2
Qi e
= 2¢, 0K [EI [ f(X) + f4(X)] = 2¢, Ok CEI [0f,(X) —f,(X)] +
26, 0 [EI [f,(x) + ()] —2¢, 06 TEI [1f5(X) — F,(X)] (14
EIS D, (x)f" (X)
j; I
Defining the state vector and coefficient vector as
{Z(x} = {dy; A6 AM; AQ 13T (15)
{G ={cicc0y 1}T (16)
Then, Egs. (10), (12), (13), and (14) can be expressed in the matrix form as
{Zz(x)} = [HH{ G 17)

For a given element, assuming that the coordinates of left and right end are 0 and L, substituting
x=0and x = L into Eq. (17) yields

{z(0} = [HOHG (18)

{Z(L)} = [HLHG (19)
From Egs. (18) and (19), it can be obtained that

{Z(L)} = [HLI[HO)]{Z(0} = [TI{Z(0} (20)
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in which matrix [T] is the transfer matrix, and the analytical expressions of its' non-zero elements
are given as

fo(L) +f5(L) fa(L)
Tll = fl L le = E— Tl3 = —
() 2k 2K? [E
f3(L) —f5(L) 4
Tl4=— T15= DLfL TZl:kaL_fZL
A Bl j; (L (L) [f3(L) —f(L)]
_ _ f(L) +1f5(L) _ o f,(L)
T22 - fl(L) T23 - = 2k EE' T24 - _2k2 EE|
Ty = z Dj('—)fj'(l-) Ty = 2Kk? CEI f,(L) Ta = KLEI[f,(L) —f3(L)]
=1
f, fy -
Tas = f,(L) Tay = % Tas = —El ZDJ(L)f,-"(L)
j:
Ta = 2K CEI[f(L) +f5(L)]  Tp = 2K [EI (L) Tas = K[fs(L) =fa(L)]
Ta = fu(L) T = —El iDj(L)fj'"(L) Tss = 1 (21)
i=

2.2 The point transfer matrix for support

For a continuous beam shown in Fig. 1, the relationship between the state vector of the left and
right side of the pth support can be written as

3°8 B ° H

EAGP% . e ]

%Mpﬁ:E AM, E (22)
L 1

s b+ o

0110 O 1 0

where AQ, is the support reaction of the pth support.
The state vector of the left side of the pth support can be expressed in terms of the state vector of
the first support as

sV V0
1 p N
Fig. 1 Continuous beam
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E 0 E Tll T12 Tl3 T14 TlSE 0 E T12 T14 T15
L 1
0860 [Ty T T Ta TuDAGD [Ty T, Ty |DAGO
LA = = 23
UAMGE = 1Ty T Too Tar TaH 0 07 [Ty Tay T |HAQ (@)
L 1
HAQH  |Ta T T Ta Tus|gAQH [T Tu T W 1D
o110 |o o o o 1810 Jo o 1 |
From Egs. (22) and (23), the point transfer matrix of the pth support is obtained
oDo0o | 0 0 0 |
0 0
EAepRE T22_T12T24/ Tl4 O T25_T15T24/ Tl4 EAB;E
OAMGE = | Top=TioToa/ Tag 0 Tag = TisTau/ Ty [AQ (24)
9AQE (T~ TiTa/ Ty 1 Tus=TisTa/ Ty O 1 0
010 0 0 1

3. Dynamic interaction of vehicle-bridge

As shown in Fig. 2, the vehicle modd is simplified as a spring-damping-mass system. Using
D’Alembert’s principle, the motion equations of the beam, the bogie, and the vehicle body are
obtained

oy _o* d’y, d’y
El +m = m. + -_mM——-Mm— [BX—Vt 25
rmS = | (M myg-my—2-me 2 B(x-v) )
mdzyb+deYt+Cd_)/t+Ky :Ky(vt)+cd vt (26)
“d2 g dt o MtT he odt
2
mbd yb+ [%_d_yl‘]*'Kb(Yb_Yt) =0 (27)

diz2  PUdt  dtD

where y, y,, and y; are the displacement of the beam, the bogie, and the vehicle body respectively.
m, and m, are the mass of the bogie and the vehicle body. v is the velocity of the vehicle.

Fig. 2 The interaction model of vehicle-bridge system
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Following the same procedure adopted in Egs. (2)-(7), Egs. (25)-(27) can be expressed as

El d'ay,, i
dx*

+ =N

BAt

i = [(my+ m)g—m, Y

[(my + mM)g —mpYei —

mbA

mELLY

+

4
st P Cpag ZBAI

Dyﬂ
EJBAt

2 BAt

I:ybl

OMe
DﬁAt2

yb|
TNl

+ KDY — s

23

m Y] B(x—vt)) +m

—mYul B(X—=Vti, 1) —

Wi .
EBAt

2,8D

KDY = Koy (VL 1) + CoAyi(VE )

M yt|

EBAt

EQBAt

Atybi} —C

[Yn

yt|
azﬁ

Ky = my

23

-

Atyti
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Woi
EBAt

Atyn}
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(28)

(29)

(30)

Using the transfer matrix method developed above, Eg. (28) can be solved. Then, from Egs. (29)
and (30), the incremental displacement of bogie and vehicle body are obtained. Substituting
incremental displacement into Egs. (5) and (6), the incremental acceleration and velocity can be

finally determined.

4. Example studies

4.1 Dynamic interaction of vehicle and simply supported beam

A simply supported beam is taken as numerical example. Its span length is 16 m, the flexura
gtiffness is 2.05 x 10° N - m?, and the mass per unit length is 9.36 x 10° kN/m. The parameters of
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Fig. 3 Response of mid-gpan deflection to the vehicle position
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Fig. 4 Response of maximum mid-span deflection to the vehicle velocity
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Fig. 5 Acceleration history of vehicle body

vehicle model are taken as. m = 8660 kg, m, = 38500 kg, K, = 8.56 x 10° N/m, Ky, = 5.07 x 10° N/m,
Ca=1.96 x 10° kg/s, and ¢, = 3.82 x 10° kg/s. The response of the mid-span deflection to the vehicle
position as the vehicle moves with various velocities aong the beam is given in Fig. 3. The
relaionship between the maximum mid-span dynamic deflection and the vehicle velocity is plotted
in Fig. 4. To investigate the dynamic response of vehicle, the acceleration history of vehicle body is
shown in Fig. 5.

From Fig. 3, it can be found that the fluctuation of dynamic deflection response of the beam
decreases gradually with the vehicle speed, and the maximum deflection occurs when the vehicle is
located adjacent to mid-span. The problem is also analyzed by Ruge-Kutta method in Xiao and
Shen (2004), and the result comparison shown in Fig. 4 demonstrates the accuracy of the method
proposed by authors. Moreover, from Fig. 4, it can be concluded that the maximum deflection of
beam doesn’t increase linearly with the vehicle speed, and the maximum deflection increases
quickly when the vehicle speed exceeds 200 km/h. As shown in Fig. 5, with the increment of
vehicle speed, although the fluctuation of vehicle body acceleration decreases, the maximum vehicle
body acceleration increases enormously.
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Fig. 6 Response of mid-span deflection to the vehicle position
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Fig. 7 Response of maximum mid-span deflection to the vehicle velocity
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4.2 Dynamic interaction of vehicle and continuous beam

To study this problem more deeply, the dynamic interaction of vehicle and a two-span continuous
beam is studied. The length of each span is 16 m. The other parameters used in calculation are the
same as those in example 4.1. The dynamic response of the beam and the acceleration history of
vehicle body are also plotted in Figs. 6-8.

It can be found from Figs. 6-8 that due to improvement of structure stiffness, the dynamic
responses of beam and vehicle body are smaller than those of simply supported beam.

5. Conclusions and acknowledgements

From the numerical results presented above, it can be concluded that the method used in this
paper is accuracy, and able to deal with the dynamic interaction of vehicle-bridge effectively.
Moreover, adthough a comparably simply vehicle modd is adopted, it should be noted that the
method can be extended to spatid dynamic interaction of vehicle-bridge where the complicated
vehicle model is usualy used. In the following studies, the authors will deal with this topic more
extensively. The work of this paper is financialy supported by Science and Technology Foundation
of Southwest Jiaotong University (2003A14).
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Appendix

When AF; = P [D(X—X,)

D.(x) = M D,(x) = M
4k aK
Ds(x) e D.(X) e

When AF; = Py+T [k

Di(x) = e>(1;3—!155)9[2Tkxcos(kx) + 2Tkxcos(kx)exp(—2kx) — Tcos(kx)
+ Tcos(kx)exp(—2kx) — Tsin(kx) — Tsin(kx)exp(—2kx)
+ 2Pykcos(kx) + 2Pykcos(kx)exp(—2kx) — 4Py exp(—2kx) ]
D,(x) = e’;—ﬂ%@[mxs n(kx) — Tsin(kx) + Tsin(kx)exp(=2kx)
+ Tcos(kx) + Tcos(kx)exp(—2kx) — 2Texp(—2kx)

+ 2Poksin(kx)exp(—2kx)]

Ds(x)

e’;—ﬂ%’g[—mxcos( kx) + 2Tkxcos(kx)exp(=2kx) + Tcos(kx)

+ Tcos(kx)exp(—2kx) + Tsin(kx) — 2Pykcos(kx)
+ 2P kcos(kx) exp(—2kx) — 2Texp(—kx)]
_ exp(kx . . .
D,(x) = 161 [—2Tkxsin(kx) — 2Pyksin(kx) + 2Tkxsin(kx)exp(—2kx)

+ Tsin(kx) + Tsin(kx)exp(—2kx) + Tcos(kx)exp(—2kx)
+ exp(—2kx)]





