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Abstract. This paper presents a new approach to predict the racking load-displacement response of
plasterboard clad walls found in Australian light-framed residential structures under monotonic racking
load. The method is based on a closed-form mathematical model, described herein as the ‘Modularised’
Closed-Form Mathematical model or MCFM model. The model considers the non-linear behaviour of the
connections between the plasterboard cladding and frame. Furthermore, the model is flexible as it enables
incorporation of different nailing patterns for the cladding. Another feature of this model is that the shape
of stud deformation is not assumed to be a specific function, but it is computed based on the strain
energy approach to take account of the actual load deformation characteristics of particular walls.
Verification of the model against the results obtained from a detailed Finite Element (FE) model is also
reported. Very good agreement between the closed form solution and that of the FE model was achieved.

Key words: light-framed structures; plasterboard; gypsum; timber construction; shear resistance;
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1. Introduction

In Australia, walls with nominally fixed plasterboard for non-bracing walls have been indirectly
used for lateral bracing. The recently superseded Australian National Timber Framing Standard
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(AS1684-1992) assumed that such plasterboard lined walls provide 40% and 20% of the lateral
bracing required for single and double storey houses, respectively. In 1999, the AS1684 was revised
and renamed the Residential Timber-Framed Construction Standard. The revised standard allows the
contribution of plasterboard lined walls to provide up to 50% of the lateral bracing required for both
single and double storey houses. In addition, this standard explicitly nominates a bracing
contribution of 0.45 kN/m for walls with nominally fixed plasterboard cladding on one side and
0.75 kN/m for walls with cladding on both sides. There is no provision in the current Australian and
New Zealand Gypsum Plasterboard Standard (AS/NZS2588-1998) for specific product testing to
quantify the bracing performance of plasterboard. As a result, plasterboard manufacturers frequently
conduct full-scale isolated wall racking tests to verify the bracing capacity of their newly developed
products and systems. Such testing is usually an expensive and time-consuming exercise. A new test
has been developed that is simple, cost effective and enables the assessment of the bracing
performance of plasterboard during manufacture on the production line. The development and
verification of this new test is reported in Liew et al. (2002). To further streamline the process to
control the bracing performance of plasterboard, a spreadsheet-based analytical model has been
developed. This model has the ability to translate the results of a fastener-to-sheathing connection
(shear connection) test, which is typically simple and repeatable, into full-scale isolated wall racking
test results. The focus of this paper is on the development and verification of this analytical model. 

Numerical models for predicting the load-displacement response of isolated racking walls have
been studied by researchers over the past five decades, e.g. Neisel and Guerrera (1956), Neisel
(1958) and Welsch (1963). The models developed by these researchers were empirical relationships
between the wall racking strength and the lateral nail resistance of individual fasteners obtained
from testing. Such an approach is limited to the adopted testing procedures and conditions, hence,
the models have significant limitations.

In the forty years since these initial empirical relationships were developed, a number of models
have been developed to describe the racking performance of walls in more detail, particularly the
load-displacement response. These models can be classified into two main categories, namely
mathematical models that allow for closed-form solutions and Finite Element (FE) models. Closed-
form mathematical models have been somewhat simplistic as they describe the overall response of a
wall of a given configuration without comprehensively analysing each component of the wall.
Indeed, the closed-form mathematical modelling approach was adopted by Tuomi and McCutcheon
(1978), Easley et al. (1982), Gupta and Kuo (1985), McCutcheon (1985), Patton-Mallory and
McCutcheon (1987), Murakami et al. (1999) and Salenikovich (2000) to model wood-based
sheathings (e.g. plywood and OSB) clad walls typically used in the United States. Contrary to
closed-form mathematical models, FE models are more complicated but versatile since they are
capable of producing detailed analysis of all wall components with different configurations, such as
different boundary conditions and nail spacing, provided that the components and connections of the
wall are defined appropriately. Researchers including as Foschi (1977), Itani and Cheung (1984),
Gutkowski and Castillo (1988), Dolan (1989), White (1995), Kasal et al. (1994) and Folz and
Filiatrault (2001, 2002) successfully developed racking wall models using FE formulations. These
models were essentially developed and verified for wood-based sheathing clad walls rather than for
plasterboard clad walls, typically used in Australian construction. Plasterboard clad walls exhibit
other failure modes which are not often observed in OSB or plywood clad walls as discussed in the
following section. 
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2. Knowledge gaps of available analytical models

It has been established from a review of the above mentioned literature that both types of
analytical modelling approaches have varied capabilities of predicting the racking performance of
isolated walls. Even though simple, given the correct assumptions on the deformation of the frame
and sheathing, closed-form mathematical models are able to predict the lateral load-displacement
response of walls with reasonable accuracy. In contrast, the formulation of FE models is
considerably more sophisticated than that of closed-form mathematical models and hence a higher
level of programming expertise and computational power are required. The FE models have the
ability to provide detailed information on the performance of various components of a wall along
with the overall load-displacement response.

Commercially available FE packages used for structural analysis generally require users to
undertake special training in order to acquire competent modelling skills. Moreover, such FE
packages can be a significant expense for users. Closed-form mathematical models, however, can be
easily programmed using commonly available spreadsheet program such as Microsoft Excel,
fulfilling the demand for straightforward and cost effective computer programs to perform regular
design computations.

Although the closed-form mathematical models and FE models developed by past researchers are
able to predict the load-displacement response of walls subjected to lateral loading with acceptable
degree of accuracy, the majority of these models were developed and verified for use on walls clad
with plywood or wood-based materials. Furthermore, in these models, it was assumed that the
sheathings are fixed vertically with uniform nailing configurations. These models cannot be applied
to study the performance of plasterboard clad walls commonly found in light-framed residential
structures built in Australia because:

• unlike plywood and OSB sheathings, plasterboard exhibits a different failure mode and load-slip
characteristic at the connections located around the cut edges of plasterboard compared to those
within the board (field), presented in Fig. 1, (terminology of typical Australian plasterboard is

Fig. 1 Typical load-slip curves from shear connection tests
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defined in Fig. 2). Hence, existing models which assume the same load-slip characteristics for
all the fasteners regardless of their locations are unsuitable for accurate modelling.

• it is common in Australia to have more fasteners located along the vertical edges of plasterboard
compared with those in the field and along the top and bottom plates. Hence, any closed-form
mathematical model to be applicable in Australia must allow different fastener spacing for the
vertical edges, plates and intermediate studs (refer to Fig. 3). Most of the existing closed-form
mathematical models do not allow for this flexibility and cannot be easily modified.

• the available closed-form mathematical models assume different shapes of stud deformation such
as parallelograms assumed by Tuomi and McCutcheon (1978); sinusoidal shape (S-shape) by
Gupta and Kuo (1985); and vertical cantilevers by Salenikovich (2000). To date, the S-shape
stud deformation presented by Gupta and Kuo (1985) seems to be the most reasonable
assumption as it is observed in most full-scale isolated wall racking tests. However, the model
developed by Gupta and Kuo (1985) assumed the same deformation for all the studs in a wall.

Fig. 2 Typical plasterboard with recessed edges used in residential construction in Australia

Fig. 3 Components in a typical plasterboard clad wall
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This assumption is not applicable for plasterboard clad walls because the edge studs typically
undergo more deformations than that of the intermediate studs due to a different failure mode
(tear out) of plasterboard.

• in Australia, wall plasterboard is usually glued to ceiling plasterboard via ceiling cornices. The
ceiling cornices prevent the plasterboard from rotating but allow lateral (in-plane) movement.
This type of wall behaviour is not observed in isolated wall racking test since the cornices and
skirting boards are omitted. Furthermore, boundary restraints such as skirting board and cornice
provide significant additional racking resistance to the plasterboard clad walls as they prevent
out-of-plane buckling of plasterboard and also restrict the relative rotation between the
plasterboard and the frame (Reardon 1990 and Gad 1997). Hence, analytical models which are
based on the behaviour of isolated walls without such restraints would not be appropriate in
predicting the response of walls which are in use.

Based on the above mentioned unique features of plasterboard clad walls, it can be concluded that
a new closed-form mathematical model, which incorporates the effects of the cornices and skirting
boards, needs to be developed for plasterboard clad walls typically found in Australian residential
structures.

3. ‘Modularised’ Closed-Form Mathematical model

The capability of assigning different load-slip characteristics of shear connections and thus, the
effects of the fastener locations on the bracing performance of the walls into a predictive model is
important for walls clad with plasterboard. This is particularly the case where the shear connections
at the cut edges of plasterboard are substantially weaker than that of the recessed edges and field.
Furthermore, due to the weakness of the cut edges, the deformations of the studs at the vertical
edges of plasterboard clad walls would be different than those of the intermediate studs. Such
difference in stud deformations is also not considered by the closed-form mathematical models
currently available.

Another limitation in most of the available closed-form mathematical models is that they have
very little flexibility for modifying the fastener spacing along the wall perimeter and the
intermediate studs. In addition, these available models assume a constant shape of stud deformation.
A more generic approach for determining the shape of stud deformations is thus required.

To overcome the above limitations, a ‘Modularised’ Closed-Form Mathematical (MCFM) model
has been developed in this study. The MCFM model employs the strain energy approach to model
the non-linear behaviour of plasterboard clad walls, similar to Gupta and Kuo (1985). However,
instead of solving all the unknowns such as force, stud deformation and sheathing deformation by
using a final expression (closed-form formulation), the MCFM model divides the formulation into
two modules as described below and presented in the flowcharts shown in Figs. 4 and 5.

The first module is designed to establish the deformations of the studs relative to the plasterboard
at each incremental displacement and the information obtained is then stored into a database. It is
important to note that this model does not have pre-assumed stud deflection profile. Instead, the
deformations of all the studs are generated using a simple sub-model which calculates the
deformation of each single stud according to the stiffness of the stud and the load-slip
characteristics of the shear connections on the stud.

In the second module, using the stud deformation information compiled in the database, the
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energy stored in each individual shear connection and the energy stored in each stud of the wall can
then be determined based on the load-slip characteristics of the shear connections and the assumed
elastic properties of timber, respectively. This enables the ‘modularised’ formulation to incorporate
the different load-slip characteristics of shear connections into the model. Next, the load-

Fig. 4 Flowchart showing Module 1 of the MCFM Model
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displacement response of the wall model due to frame deformation and nail slip is determined
through an iterative procedure. Finally, the additional racking displacement caused by shear in the
plasterboard is added to the frame deformation and the nail slip obtained previously in order to
calculate the actual displacement. The details of these two modules are discussed in the following
sections.

Fig. 5 Flowchart showing Module 2 of the MCFM Model
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4. Assumptions for MCFM model

Incorporation of the effects of the cornices and skirting boards in the developed MCFM model
reflects common practice for Australian residential structures. This enhancement makes verification
of the model more complex as experimental results of full-scale isolated wall racking tests cannot
be directly compared with the results from the MCFM model because it is almost universal that
full-scale isolated wall racking tests do not include such components. Thus, in order to validate the
results from the MCFM model, a verified FE model was used. The FE model was validated against
the experimental results and later modified by incorporating the boundary conditions, in which the

Fig. 6 Displacements of frame, plasterboard and nails when plasterboard clad wall is subjected to racking load
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effects of the cornice, that prevent the plasterboard from rotating relative to the frame, and the
skirting board, that prevent the out-of-plane buckling of the plasterboard at the bottom, were
included. The modified FE model was then used to validate the MCFM model. This FE model was
previously verified against experimental results by Gad et al. (1999).

In order to develop an accurate model using the strain energy approach, the ability to quantify the
deformation of a wall is vital. The results from the FE model identified that the total displacement
of a plasterboard clad wall under racking load is attributed to:

a) displacements due to frame deformation and nail slip
b) translation of plasterboard, and
c) shearing of plasterboard.

These attributes are illustrated in Fig. 6. When a racking load is applied to the wall, the studs
deform in symmetrical S-shape and cause the nail to slip relative to the plasterboard. At the same
time, the racking load which is transferred through the shear connections initiates the translation and
shear deformation of the plasterboard. The MCFM model has taken these contributions into account
when deriving the total displacement of plasterboard clad walls.

Another important finding obtained from the FE analysis was that the studs of the plasterboard
clad wall deformed symmetrically about the mid height, while the plasterboard translated at half the
maximum deformations of the studs. This finding allowed the MCFM model to be simplified by
determining the bending strain energy and the strain energy due to slip in the shear connections of
each stud at half the height of the wall. By doubling the amount of these strain energy and adding
the strain energy due to slip in the shear connections on both the top and bottom plates, the total
strain energy of the wall can then be found.

The following are the additional assumptions were adopted for the development of the MCFM
model:

• Noggings are not included in the MCFM model as no shear connections are normally located at
the noggings of plasterboard clad wall.

• The top plate is modelled as a rigid beam. Hence, when load or displacement is applied to the
top plate, all the shear connections at the top plate would move at the same displacement. In
addition, although the tip of the five studs would move at the same displacement as that of the
top plate, each stud is assumed to deform independently based on the spacing of fasteners
between the cladding and stud and also the shear capacity of these fasteners (note, edge
fasteners are weaker as described in Section 2).

5. Module 1: Establish database for stud deformation and bending energy

The steps employed in Module 1 for predicting the shape of stud deformations and stud bending
strain energy with different fastener spacing configurations as well as different types of plasterboard
are presented in detail in the following two steps.

5.1 Step 1: Fitted curves for load-slip characteristics of shear connections

In general, two types of shear connection can be found in plasterboard clad walls, namely
connections in the middle of the wall (field connections) and connections at the left and right edge
of the wall (edge connections). These two types of connections have very different load-slip
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characteristics and hence fitted using different functions. Typical fitted curves for filed and edge
connections are shown in Figs. 7 and 8, respectively. Note that fitting of field connection is done in
two sections.

As depicted in Fig. 7, a typical load-slip curve of field shear connections can be fitted using a
least squares regression analysis up to the peak load based on the exponential function proposed by
Foshi (1974):

(1)

where Fsc = Shear connection force
∆f = Displacement due to slip in shear connection
∆max = Displacement at peak load
A, B and C are the variables obtained through fitting the data using a least squares regression
method. The physical meanings of these variables correspond to that of the parameters
described in Foshi (1974) as p0, p1 and k, respectively.

The descending slope after the peak load can be expressed by a simple linear function:

(2)

where Fsc = Shear connection force
∆f = Displacement due to slip in shear connection
M and N are the variables obtained through fitting the data using a linear regression method.

In situation where the linear approximation of the negative stiffness is not appropriate, non-linear
function can be used. A fourth order polynomial function as shown in Eq. (3) is found to be suitable:

(3)

where Fsc = Shear connection force
∆f = Displacement due to slip in shear connection

Fsc A B∆f+( ) 1 exp
C
A
----∆f– 
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Fig. 7 An example of fitted load-slip curve for a field shear connection



‘Modularised’ Closed-Form Mathematical model for predicting the bracing performance 55

V, W, X, Y and Z are the variables obtained through fitting the data using a least squares
regression method.

As depicted in Fig. 8, a typical load-slip curve of edge shear connections can be fitted using the
following exponential function:

(4)

where Fsc = Shear connection force
∆f = Displacement due to slip in shear connection
A and B are the variables obtained through fitting the data using a least squares regression
method.

5.2 Step 2: Obtain single stud deformation

Each single stud in a wall is assumed to have the ability to deform independently and the strain
energy for each stud is additive to the overall strain energy of the wall, refer Section 4. Hence, a
single stud model with the shear connections represented by springs, depicted in Fig. 9, can be used
to establish a database for the deformations and bending energy of studs with different fastener
spacing configurations as well as different types of plasterboard. Further, as shown previously in
Fig. 6, studs in plasterboard clad walls deform symmetrically about mid height and plasterboard
translate at half the stud deformation, only the top half of the stud was therefore considered in this
single stud model and the hinge at mid height was represented by pin. Displacements caused by
plasterboard translation, at this stage have also been included into the model.

To simplify the mathematical presentation, the following formulation is presented by temporarily
assuming that the load-slip characteristics of the shear connections (springs) are linear elastic.

The total strain energy of the springs (Ωf) on one stud can be written as:

(5)

Fsc A∆f exp B∆f–( )=

Ωf
1
2
---kfi

∆fi

i 1=

n

∑=

Fig. 8 An example of fitted load-slip curve for an edge shear connection
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where n = Number of springs on the stud
= Stiffness of the spring i

 = Displacement due to slip in spring i
The bending strain energy (Ωb) for a single stud can then be expressed in the following form

using finite difference approximation:

(6)

where n = Number of springs on the stud
∆ = Fastener spacing
E = Elastic modulus of the stud
I = Second moment of area of stud

= Displacement due to slip in spring i
The total strain energy associated with a single stud thus becomes:

(7)

The work done by the external force (W) is calculated as:

 (8)

where Fst = Force applied to the tip of the stud
= Displacement of first spring (where the force is applied)
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Fig. 9 Model of a single stud with shear connections represented by springs
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As a result, the total potential energy in the system is given by:

(9)

For the system to reach equilibrium when a force, Fst , or tip displacement, , is applied, the
stud will deform in such a way that minimum energy state is achieved. Thus, by differentiating P
with respect to each spring deformation, , the following equilibrium equations are obtained, for
example:

Stud with n springs (where n > 5):

(10)

where i = 4, 5, 6 ... n − 2
n = Number of springs on the stud

The non-linearity of load-slip spring characteristics can now be reintroduced into Eq. (10) by
replacing kf ∆f  terms with the load-slip equations derived in Step 1 of this module (Module 1).
Eq. (10) can be solved simultaneously through an iterative procedure to obtain the relationship
between the deformation of the top spring (i = 1) and the deformation of each subsequent spring in
the stud as well as the deformation of the stud. Concurrently, strain energy due to stud bending can
be calculated using Eq. (6). As aresult, by utilising Eq. (5) to Eq. (10), a database, which comprises
stud-spring deformations and stud bending energy that correspond to the top spring deformation for
different fastener spacing configurations as well as for different types of plasterboard, is established.
The database is then input into Module 2 of the MCFM model, which is described in detail in the
next section. A comparison between the middle stud deformations at 5 mm intervals predicted by
this single stud model and those obtained from the FE model is presented in Fig. 10. It can be seen
from this figure that the single stud model predicts the stud deformations of Walls A and C with an
excellent degree of accuracy.

It is important to point out that the MCFM model is far superior to the available closed-form
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mathematical models which assume a certain function for stud deformations (e.g. sinusoidal
function for S-shape stud deformations). The MCFM model generates the shape of the stud
deformation based on the load-slip characteristics of shear connections and properties of studs (i.e.
material and geometry of stud sections). Furthermore, the shape of the stud deformation is not
constant as the relative stiffness between the stud bending and the shear connections varies due to
non-linearity of their load-slip characteristics. Hence, unlike other closed-form mathematical models,
users do not need to artificially constrain the stud deformations into a specific function.

6. Module 2: Solving for wall load-displacement response

This section presents a detailed description of the steps developed in this module for predicting
the load-displacement response of plasterboard clad walls.

6.1 Step 1: Load-displacement response due to frame deformation and nail slip

In this step, the principle of conservation of energy is employed to obtain the load-displacement

Fig. 10 Comparison between stud deformations obtained from the single stud model and the FE model
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response of a wall due to frame deformation and nail slip. By utilising this principle where external
work done (energy) is equal to internal strain energy, the total strain energy of the wall model at
each specific frame displacement, ∆F, is calculated and subsequently this energy is converted to the
wall racking load, Fw. This process is displacement controlled where lateral displacement is applied
at constant increments to the wall top plate.

The following lists the components which contribute to the internal strain energy of the wall
model:

• Stud bending strain energy – This includes all the studs in the wall. The bending strain energy
in each stud is assumed to be unique depending on the spacing of the fasteners and the location
of the stud. Since all the studs in the wall are assumed to be connected by a rigid top plate, the
deformation at the tip of each stud would be the same. The bending strain energy at each
specific displacement can then be obtained from the database created in Module 1.

• Strain energy of shear connections on the top and bottom plates – Since these plates are
assumed to be rigid, the slip of all the shear connections on each plate is equal to the applied
frame displacement, ∆F. In addition, due to the symmetry of the stud deformation, the shear
connections at the top and bottom plates have the same deformation. Using numerical integration
(e.g. Rectangular or Trapezoid Approximation and Simpson’s Rule), the strain energy of the
shear connections can then be calculated.

• Strain energy of shear connections on the studs – The slip of each shear connection can be
acquired from the database created in Module 1. The strain energy of these shear connections
can be calculated using numerical integration.

Next, the wall racking load (Fw) is calculated by converting the total strain energy of the wall into
a rectangular area with its width equalling the incremental unit of the frame displacement (∆F) at
each iteration and its height representing the corresponding racking load (Fw). Hence, the load-
displacement response due to frame deformation and nail slip for the MCFM model can be derived
through an iterative procedure.

6.2 Step 2: Additional displacement due to shearing of plasterboard

Similar to the procedure proposed by McCutcheon (1985), this step is designed to obtain the
additional displacement caused by the shear deformation, ∆sh, of the plasterboard. This displacement
is then added to the incremental displacements applied in Step 1 to obtain the actual wall
displacement, ∆w. The shear deformation, ∆sh, is calculated by assuming that the fasteners and the
sheathings act in ‘series’ in resisting the racking load and the full racking force is transmitted
through the fasteners into the plasterboard. As a result, the shear deformation of the plasterboard,
∆sh, can be approximated by using the equation for the shear deformation of a thin, edge-loaded
plate:

(11)

where Fw = Racking load on wall
H = Height of the Wall
L = Length of the Wall
t = Thickness of plasterboard
G = Shear modulus of plasterboard

∆sh

FwH
GtL
-----------=



60 Y. L. Liew, E. F. Gad and C. F. Duffield

7. Computational algorithm

The database approach used in the MCFM modelling gives users the flexibility to extend the
model to include different nailing patterns and load-slip characteristics of fastener connections as
well as various types of plasterboard and timber cross-sections. Spreadsheets programs, such as
Microsoft Excel which allows for automation in the computing process through the use of macro,
suit well to the iterative nature of the algorithm of the MCFM model. The computation time for the
final output (excluding creation of database in Module 1) takes several minutes for any reasonable
number of deformation increments. The output includes an entire load-deformation curve and if
necessary the characteristics parameters such as ultimate load and corresponding deflection can also
be generated. Furthermore, other information such as secant or tangent stiffness at any point can be
calculated.

8. Verification and applicability of MCFM model

Based on the formulation developed in the previous sections, the MCFM model was programmed
into Microsoft Excel using Visual Basic. The model was then used to predict the load-displacement
responses of Walls A to D as modelled using the FE model. The wall configurations are
summarised in Table 1 and Fig. 11.

Note:
• All nails at the perimeter were fixed 15 mm away from the board edges.
• No nails were fixed on the noggings (standard practice in Australia)

Fig. 11 Nailing patterns of Walls S to V 

Table 1 Details of Walls A to D

Plasterboard type
Nail spacing (mm)

Perimeter Intermediate

Wall A Normal density 150 300
Wall B Normal density 300 300
Wall C High density 150 300
Wall D High density 300 300
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Fig. 12 Summary of the resulting fitted load-slip curves for the field and edge shear connections
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The key inputs to the MCFM model are as follows:
• Similar to the FE model, the wall dimensions and framing profile adopted in the MCFM model

are the same as that of wall specimens tested in an experimental program. In other words, the
dimension of each modelled wall was 2.4 m in height and length and consisted of a top plate,
bottom plate and five studs with 600 mm centre to centre.

• For comparison purpose, the shear modulus (for plasterboard) and elastic modulus (for framing
members) adopted in the MCFM model were the same as those applied in the FE model, that is,
724 MPa and 20 GPa, respectively.

A total of four types of shear connections were tested based on the shear connection test setup
recommended by Liew et al. (2001) in order to represent the connections at the field and the edge
studs as well as two different types of plasterboard (Normal Density and High Density). The
original load-slip curves along with the fitted curves are presented in Fig. 12.

A comparison between the load-displacement responses of Walls A to D obtained from the
MCFM model and those from the FE model is presented in Fig. 13. It can be seen from this figure
that excellent agreement was achieved between the load-displacement curves predicted by the
MCFM model and those by the FE model. It should be noted that the excellent agreement between
the results of the MCFM and FE models is not limited only to overall wall the load-displacement
response but also to the deformations of the frame and plasterboard. This level of accuracy is
primarily attributed to the ‘modularised’ formulation described earlier. 

To further verify the MCFM model, four additional walls were modelled with different nail
spacing recommended by AS/NZS2589.1-1997 for adhesive/fastener fixing to timber framed walls
but replacing adhesive with nails. Two different framing member sections were also adopted in these
wall models. The dimensions of the studs and plates for the first wall (Wall E) and the second wall
(Wall F) were 70 mm × 35 mm whereas the third wall (Wall G) and the fourth wall (Wall H) were
90 mm × 35 mm. The former section dimensions are normally used for internal walls of light-
framed residential structures in Australia and the later is for external walls. Walls E to H were clad
with normal density plasterboard. The details of the nail spacing and the section dimensions of these
wall models are presented in Table 2.

Comparison between the resulting load-displacement curves of Walls E to F obtained from the
MCFM model and FE model is shown in Fig. 14. Again, the MCFM model predicted the load-
displacement curves of the walls with a very good degree of accuracy. Having performed the
verifications of the load-displacement curves of plasterboard clad walls predicted by the MCFM
model against those obtained from the FE model, the formulation of the MCFM model has proven
to be accurate and representative. The MCFM model has also proven to be flexible to accommodate
various nailing patterns and different framing member dimensions.

Table 2 Adopted framing member dimensions and nail spacing for Walls E, F, G and H

Wall Timber section 
dimensions (mm)

Nail spacing (mm)

Edge studs Plates Intermediate studs

E 70 × 35 150 600 300
F 70 × 35 300 600 300
G 90 × 35 150 600 300
H 90 × 35 300 600 300
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Fig. 13 Comparison between load-displacement curves obtained from the MCFM and the FE models, Walls A
to D
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Fig. 14 Comparison between load-displacement curves obtained from the MCFM and the FE models, Walls E
to H
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Figs. 13 and 14 also show the influence of the various nailing spacing on the bracing performance
of plasterboard clad walls. It can be seen from Fig. 14 that an increase in the framing member
sections by about 25% did not have a significant effect on either the ultimate load or the load-
displacement response of the wall. In addition, by comparing the results of Wall E and Wall F, a
100% increase in the nail spacing at the edge studs resulted in an approximately 20% decrease in
the wall ultimate load. On the other hand, the results of Wall A (Fig. 13) and Wall E (Fig. 14)
indicate that nail spacing at the top and bottom plates played a more significant role where a 100%
increase in nail spacing decreased the wall ultimate load by almost 100%. Hence, it can be
concluded that to attain higher bracing capacity for plasterboard clad walls, the most effective
nailing pattern would be achieved by reducing the nail spacing at the plates.

9. Conclusions

The predictions generated by the MCFM model have been verified against the results obtained
from the FE model and excellent agreement was reported. The MCFM model has also proven to be
flexible in accommodating various nailing patterns and different framing member dimensions.

In summary, the following conclusions can be drawn from this analytical study:
• Strain energy due to stud deformation is significant and must be included in modelling of the

plasterboard clad walls commonly found in light-framed residential structures in Australia.
• Deformation of each stud can be independent of the other studs in the wall and the strain energy

of each stud is additive to the total internal strain energy of the wall subjected to racking load.
• The results of load-displacement responses predicted by the MCFM model matched remarkably

well with that of the FE model.
• The MCFM model has the capability of assigning different load-slip characteristics for shear

connections to account for the effects of the fastener locations on the wall which are particularly
important for walls clad with plasterboard, where the shear connections at the cut edges of the
plasterboard are substantially weaker than those at fielding the middle of the board (field).

• The MCFM model has established the basis for developing a spreadsheet-based program to
analyse the load-displacement response for plasterboard clad walls. This fulfils the demand for
straightforward and cost effective computer programs to perform the day-to-day design and
calculation.

• The influence of the various nail spacing at the top and bottom plates is significant in providing
bracing capacity for plasterboard clad wall. Changes in the framing member dimensions
typically adopted in Australian light-framed structures, however, do not have much effect on the
bracing performance of plasterboard clad walls.

• The MCFM closed form model provides an accurate estimate of the lateral capacity of
plasterboard clad walls, typically constructed in Australia.
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Glossary

Plasterboard: Also known as gypsum board, gypsum wallboard, gypsum panel and gypsum
sheathing, the generic name for a family of sheet products consisting of non-combustible core
primarily of gypsum with paper surfacing.

Shear Connection: This term is used to represent the connection between cladding material and
frame via fastener. This is also commonly known as sheathing-to-framing connection.

Shear Connection Test: Also known as monotonic shear test and cladding-to-framing connection
test. The purpose of this test is to obtain the performance characteristics such as strength, stiffness
and load-deflection relationship of the cladding-to-framing connection.

Sheathing: There are several terminologies to describe the material used to cover wall studs in
domestic structures (e.g. cladding, sheathing and lining). In Australia, the term lining is generally
used to describe the material covering the interior side of the frames, while the term cladding is
often used for exterior side. In the literature it is often found that the term cladding and sheathing
are interchangeable. Cladding, sheathing and lining all perform essentially the same function, that
is providing enclosure and possibly lateral bracing to the wall frames. Since this paper is
concerned with lateral bracing of walls which can be due to cladding, sheathing or lining, these
three terms will be used interchangeably.




