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Geometrically non-linear dynamic analysis of plates by
an improved finite element-transfer matrix
method on a microcomputer
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Abstract. An improved finite element-transfer matrix method is applied to the transient analysis of
plates with large displacement under various excitations. In the present method, the transfer of state
vectors from left to right in a combined finite element-transfer matrix method is changed into the transfer
of generally incremental stiffness equations of every section from left to right. Furthermore, in this method,
the propagation of round-off errors occurring in recursive multiplications of transfer and point matrices
is avoided. The Newmark-f method is employed for time integration and the modified Newton-Raphson
method for equilibrium iteration in each time step. An ITNONDL-W program based on this method
using the IBM-PC/AT microcomputer is developed. Finally numerical examples are presented to demonst-
rate the accuracy as well as the potential of the proposed method for dynamic large deflection analysis
of plates with random boundaries under various excitations.
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1. Introduction

In numerical analysis of engineering structures, the microcomputer is playing an increasingly
important role in China. The most powerful and most widely used numerical method in structural
analysis is the finite element method (FEM). The disadvantage of FEM, however, is that, in
the case of complex structures, a large number of nodes must be used, with the result that
large amounts of microcomputer computation time are needed. Such disadvantages become rather
serious, especially in the transient analysis of the geometrically non-linear structures under various
excitations. This entails such direct integration methods as the Newmark-f (Newmark 1959)
method or the Wilson-8 (Bathe and Wilson 1976) method on the microcomputer.

The combined finite element-transfer matrix method (FETM) was proposed for the first time
by Dokainish (1972) for free plate vibration problems. This method has the advantage of reducing
stiffness matrix size to much smaller than that obtained with the FEM method and was suc-
cessfully applied to various linear and non-linear problems (McDaniel and Eversole 1977, Ghiatti
and Sestieri 1979, Ohga, er al. 1983, 1984, Ohga and Shigematsu 1987, 1988, Chen and Xue
1991). However in the FETM method, the submatrix [K,z]; must be a square matrix in order
to derive the inverse matrix of the submatrix [K;]; of the stiffness matrix (K, for strip i. Therefore
for strip i, the number of degrees of freedom on the left boundary must be the same as on
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the right. In addition to this, the transformation of state vectors is cmployed to avoid propagation
of round-off errors occuring in recursive multiplications of transfer and point matrices (Ohga
and Shigematsu 1987, Chen and Xue 1991). For these reasons, various techniques (Ghiatti and
Sestieri 1979, Muctno and Pavelic 1980, Sankar and Hoa 1980) for treating more complicated
structures are presented, even though research into this problem has been as yet insufficient.

The purpose of this paper is to present an improved finite element-transfer matrix (IFETM)
method for geometrically non-linear dynamic analysis of plates with random boundaries under
various excitations. In the present method, because the transfer of incremental state vectors from
left to right in the FETM method is transformed into the transfer of generally incremental
stiffness equations in every section from left to right, the inverse matrix of sub-matrix [Kx]
of the FETM method becomes the inverse matrix of sub-matrix [K;,] of the IFETM method.
It is well known that [K;,] is always a square matrix whether the structures are rectangular
plates or not. Since the numerical solution of a two point boundary value problem in the FETM
method is converted into the numerical solution of an initial value problem in the present
method, the propagation of round-off errors occuring in recursive multiplications of the transfer
and point matrices is avoided. The Newmark-# method is used for time integration, but other
integration methods, such as the Wilson-0 method and the Houbolt method. may be used. The
modified Newton-Raphson method is employed for equilibrium iteration in each time step. The
ITNONDL-W program based on this method using a microcomputer is developed.

Some numerical example of non-linear dynamic problems are also given and their results
compared with those obtained with the ordinary finite element method and other methods.

2. Direct integration method

Proceeding as in Chen and Xue (1991), which is concerned with transient analysis of geometri-
cally non-linear system. we obtain linearizing incremental equilibrium equations of strip 7 in
Fig. 1 from time ¢ to ¢+ Ar.

IMYAAU A+ LCTAAULA+ LKA AUL=1AR+1AN/, (1)

in which [M]; and [C]; are mass and damping matrices of strip 7, [K/], is the tangent stiffness
matrix of strip i at time ¢ defined in Zienkiewicz (1977), {AU },. {AU },-. {AU },- and {AR}, are respecti-
vely incremental acceleration, velocity, displacement and external load vectors in time interval
At from time ¢ to t+ Ar. {AN 3 represents the incremental internal force vectors in time interval
At from time ¢ to t+ Ar produced by adjacent strips on the left and right of strip i.

As described previously, the Newmark-8 method is used for time integration. We gain by
a series of operations

1 1

{AU}’.:B,AF{AU},-" 'E‘A_,{U,},-‘ 273{U,}, )
AU}= B—}’Z,{AU},-— g{aa—( j% — 1>Az{0,}f 3)

where § and y are parameters capable of obtaining integration accuracy and stability. When
p=1/6 and y=1/2, this method reduces to the linear acceleration method and when S=1/4
and y=1/2, to the constant average acceleration method.

Substituting Eq. (2) and Eqg. (3) into Eq. (1), we have

(H11AUL=1AG},+{AN/, (4)
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Fig. 1 Subdtivision of structure into strips and finite elements.
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Eq. (4) is an equation with unknown variables {AU} as well as {AN}, and can be solved by
the IFETM method described in the following. After the AU} of the total structure is solved,
the displacements, velocities and accelerations in time 7+ Ar are given as follows:

B At

U+ ahi=1AU UL 7
U+ ahi= E%,{Au},-+(1 - g){a},-+(1 —~ g;;)m{a},- ®)
10, sh= gl - Zzion+(1- & )iei o

It should be pointed out that the {AU} represents only approximate incremental displacements.

3. Improved finite element-transfer matrix method

Without losing generality. we consider the plate shown in Fig. 1 to be divided into m strips,
with each strip subdivided into a finite element. The vertical sides dividing or bordering the
strips are called sections. It is apparent that the right of section 7/ is the left of strip /.

Let {AU {AN}E and {AUIR {AN® be the left and right incremental displacement and force
vectors of section / from time 1 to 1+ Ar.

We assume that the generalized stiffness equations which relate the incremental force vectors
to the incremental displacement vectors on the left of section / are given by
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{ANE=[T) AU+ AE), >=2) (10)
3.1. Transfer at section i

The deflections are continuous across section i, so that we obtain
{auli={autt (11

Without losing generality, we suppose that there is no concentrated external load acting on
section i. Due to the continuity of force at section i, we obtain

{ANti= ~{aN} (12)
Substituting Eq. (11) and Eq. (12) into Eq. (10), we obtain
{antt= ~[T1{AUl—{AE}, (13)

Eq. (13) describes the relation between the incremental internal force vectors and the incremental
displacement vectors on the right of section i.

3.2. Transfer in strip i

Eq. (4) is rearranged and repartitioned. We obtain

[[HLLJ [HLRJ],{{AU}'E }:{{AN}'E }+{{AQ}} (14)
[Hw] (Heed | UAUYL S ™ UAN, S T LHAQH,
in which [Hy, ], [H.z), [Hr] and [Hgg] are the submatrices of matrix [H] in Eq. (5); {AQ}
and {AQ} are respectively the generalized incremental external force vectors on the left and
the right of strip i, obtained from {AG} in Eq. (6).

By expanding Eq. (14) and using a series of additional operations, we obtain

t

{AU= —((H, I+ T [HR AU+ ((HL I+ LT (AQH—{AED, (15)
and
(AN} = [T AU HAE (16)
where
(7%= [Hredi— [Hre J:(CHL I+ (T [HLRD, 17
{AE} =[Hr J/((HL ]+ [T]) (AQ —{AED—~{AQ), (18)

Eq. (16) represents the relationships for the incremental internal force vectors and the incremental
displacement vectors on the left of section i+ 1 in time interval As from time ¢ to ¢+ Ar.

3.3. Transfer of entire structure

Using Eq. (17) and Eq. (18), [T] and {AE} are transfered from the left of the second section
to the right of total structure. Hence we have
{AN}ll;H-l:[T]m+l{AU}rI;z+l+{AE}m+l (19)

By considering boundary conditions, the known incremental force or displacement variables
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on the right hand boundary of the total structure are substituted into Eq. (19) to determine
the unknown incremental force or displacement variables. After the incremental force and displa-
cement vectors on the right hand boundary of the total structure are solved, the incremental
force and displacement vectors at any section i/ are calculated by Eq. (15) and Eq. (13).

34. The method of determining [T}, and [AE/

For strip 1, by expanding Eq. (14), we have
[Hu1{AUY+ (H L AU ={aN i +{ah (20)
(HuJ AU+ (HReJ (AU ={aNT +H A 1)

It is obvious that {AU and {AN} may be determined by using the left hand boundary conditions
of the total structure.

3.4.1. Displacerment boundary condition

It is obvious that {AUJ is known to be in a displacement boundary condition, hence by
Eq. (21), we obtain

[T1=[HzeJ: 22)

{AE}zz (Hr i {AU}T’—{A—}I (23)

34.2. Force boundary condition

It is obvious that {AN}% is known to be in a force boundary condition, hence {AU}% is obtained
from Eq. (20). Substituting the {AU}¥ into Eq. (21), we have
[T]z: [HRRJI - [HRLJI [:HLL]TI [HLR:]I (24

{AE},=[Hy i [HL T (AN} +{AQh) —{AQh (25)
34.3 Mixture boundary condition

In mixture boundary condition, we suppose (AU} =[{AU'}? {AU"}¥]T and the corresponding
{ANPR=T{AN1R {AN"}R]T. If {AU'}R is unknown and {AU"}® is known, the corresponding {AN'}%
is known and {AN"}? is unknown. For strip 1, Eq. (14) is rearranged and repartitioned, so we

have
(D] [Di] D] |} {AUE AN} {ag},
[D:] (D] [Dx] Y 1AU =Y 1A}t ¢+ 1agh (26)
(D] [D:] [Dy] |UHAUts (AN} {agh
expanding Eq. (26) and solving relations for {AN}S and {AU}:, we obtain
(T1.=Ds]—- D 1Dy 17 D3] 27

{AE}L=[Dy 11D, ] AN 15+HAQ' 1) + (D HAU Y — (D5, 1 [D1 17 [P AU ~{AD)  (28)

_—y— 2

3.5. lterative procedure
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Fig. 2 Central displacement response for a simply supported square plate.

It should be pointed out that because the motion equation linearizing method referred to
in Chen and Xue (1991) was employed, the incremental displacement and force vectors solved
from the above are only approximations of accurate incremental displacement and force vectors.
Hence, a modified Newton-Raphson method is applied to iterate for dynamic equilibrium equa-
tions. The iterative scheme is the same as that in Chen and Xue (1991).

4. Numerical examples

To examine the accuracy and the computative efficiency of the IFETM method, we developed
the ITNONDL-W program based on this method using an IBM-AT microcomputer. Some nume-
rical results of the square and elliptical plates are compared with those obtained using the ordinary
finite element method and other methods.

(1) A simply supported square plate subjected to a suddenly applied uniform pressure is selected
for the sample problem. The plate chosen is 244X244X0.635 cm with a specific weight of 24.74
KN/m’, v=023, E=6.895X10* Mpa and is subjected to a uniform pressure of 479 N/m” In
the numerical calculation, a quarter of the plate is divided into 6 strips and each of them subdivi-
ded into 8 triangular plate elements as shown in Fig 2; time step Ar=0.00! sec is used. Fig.
2 shows a comparison between the IFETM solutions and the FE solutions by using the ADINA
program*, th FERTM solutions (Chen and Xue 1991) as well as Bayle's results (Bayles, er al.
1972), where the IFETM, FERTM and FE methods are applied to the same mesh pattern and
accuracy. A comparison indicates that very little difference exists among the three results. Conse-
quently the plots in Fig. 2 are not distinct and there is very good agreement between the IFETM
method solutions and Bayle’s results. Table | shows comparisons of average computation time
for each time step between the IFETM and FE methods in the square plate and elliptical plate
examples. It may be observed from Table 1 that computation time using the IFETM method
1s less than half that using the FE method.

(2) A clamped elliptical plate with half major axis #=150 cm, half minor axis a=100 cm,

*The ADINA program has been translated for use on a chinese microcomputer.
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Table 1 Comparision of average computation time for each time

step*
Method Computation time (sec)
by applying Square plate Elliptical plate
IFETM 82 205
FE 190 302

*Microcomputer AST-386 is used.
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Fig. 4 Central displacement response for a clamped elliptical plate.

thickness #=1 cm, modules of elasticity £=2.0X10° MPa and poison’s ratio v=0.3 is subjected
to a uniform pressure as shown in Fig. 3(a). It is shown in Fig 3(b) that a quarter of the
elliptical plate is divided into 5 substructures which are divided into many triangular plate
elements. Fig. 4 compares the dynamic deflection responses at the central point resulting from
the employment of both the IFETM and the FE methods, where time step Az=0.0025 sec is
used. The comparison indicates that results from using the IFETM method coincide completely
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with those obtained from using the FE method for the same mesh pattern, time step and accuracy.
A comparison of computation time shown in Table | indicates that a computation efficiency
of the IFETM method is higher than that of the FE method.

The two numerical examples described above demonstrate the accuracy and potential of the
present method for dynamic large deflection analysis of rectangular and non-rectangular plates
under various excitations.

5. Conclusions

In this paper, an improved finite element-transfer matrix method is applied to the transient
analysis of geometrically non-linear structures under various excitations. An [TNONDL-W micro-
computer program based on this method was developed. Some numerical examples presented
in this paper show that the proposed method can be successfully applied to the transient analysis
of large deformation plates with random boundaries under various excitations. Like the FETM
method, the present method has the same advantage of reducing matrix size to less than that
obtained using the ordinary finite element method. The present method, however, has potentially
wider application than the FETM method.
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