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Abstract. Based on a fast and accurate method for the stationary random seismic response analysis for
discretized structures (Lin 1992, Lin, et al. 1992), a Ritz method for dealing with such responses of continuous
systems is developed. This method is studied quantitatively, using cantilever shear beams for simplicity and
clarity. The process can be naturally extended to deal with various boundary conditions as well as non
-uniform Bernoulli-Euler beams, or even Timoshenko beams. Algorithms for both proportionally and
non-proportionally damped responses are described. For all of such damping cases, it is not necessary to
solve for the natural vibrations of the beams. The solution procedure is very simple, and equally efficient
for a white or a non-white ground excitation spectrum. Two examples are given where various power spectral
density functions, variances, covariances and second spectral moments of displacement, internal force re-
sponses, and their derivatives are calculated and analysed. Some Ritz solutions are compared with “exact”
CQC solutions.
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1. Introduction

In seismic analysis, many engineering structures can be modeled as non-uniform beams.
Several publications(e.g. Crandall and Yildiz 1962, Gasparini, et al. 1981) describe the con-
ventional solution procedure, in which eigenmodes of the structure must be found before
the random response is calculated, so that considerable computational effort is generally re-
quired. A pseudo-excitation (or fast-CQC) method of structural stationary random seismic
response has been described for discretized linear structures (Lin 1992, Lin et al. 1992). This
paper shows that when the Ritz method combined with the pseudo-excitation algorithm is
applied to random seismic analysis of beams, the procedure is very simple and straightforward
and also allows various damping cases to be dealt with easily. Indeed it will be seen that
if damping is of the hysteretic, Rayleigh, or even non-proportional types, the random response
can be calculated without having to solve an eigenproblem. Two shear beams were analysed
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in detail, which show that satisfactory PSD (power spectral density) values and variances of
the beam displacements can be obtained by taking quite few (three or even two) Ritz functions.
However, as expected, reliable analysis of the PSD of the internal forces, especially their higher
order spectral moment, needs more Ritz functions.

2. Direct Ritz method for PSD analysis

Consider an earthquake excitation acting on a non-uniform shear beam, see Fig.1, for which
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Fig.1 Non-uniform Shear Beam

the motion equation is (Lin Y.K. 1967, Gasparini 1981):
pA()u+c(z) u—LGEAR ) = — pAz)x, ey

in which superscripts and represent the partial derivatives with respect to time ¢ and coordinate
z respectively; p is the density of the beam; G(z) and A4(z) are the shear modulus and the
sectional area of the beam, which are variable along the coordinate z; ¥ =u(z, ¢) is the transverse
displacement of the beam; x, =Xx,(t) is the ground acceleration for which the PSD S w) is
given; and the damping distribution ¢(z) can be either proportional or non-proportional, as
discussed later.

The direct Ritz method is based on the fast CQC, or pseudo excitation method (Lin 1992,
Lin, et al. 1992) which, in the case of stationary single excitation, can be described as follows:

A linear system is subjected to a stationary random excitation whose PSD S (@) has been
specified. If y(®) is an arbitrary response due to the pseudo harmonic excitation x(t) = /S .(we"”,
then y*y= | y(1) | * must be the PSD of the corresponding response due to the excitation S . (@).
And if z@t) is another arbitrary response due to this pseudo excitation x(#), then y*z and z*y
must be, respectively, the cross-PSD’s S,.(w) and S. (w. According to this pseudo excitation
principle, a pseudo sinusoidal ground acceleration can be established in virtue of the given

ground acceleration PSD S, (w) as
X, (O=vS.(we" @)

Substituting Eq. (2) into Eq. (1) produces the motion equation
pdu+cu—[GAu') = —pd /S o (@e™ 3
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This harmonic motion equation can be easily solved by means of the Ritz method(e.g.,
Warburton 1976), as follows. Let

u(zt) = ; v, @=[¢] {»} @)

where: ¢; (j=1....q) are the experience-based Ritz functions. Substituting Eq. (4) into Eq. (3),
and pre-multiplied by [@]’, gives

IMI{y+IC] {y}1=[R] Yl=—{dV/S ()™ (5
in which
[M]= f pdz) Lol [¢] dz (©)
[Cl= f cz) [o] [¢] dz (7)
[(R1=| [¢l" (G@) AG) [¢1) dz
_([CP]TG(Z) A Lol) | — f G(z) Az) [o]" 9] dz )
{&= f pAz) [¢]" dz )

Provided the shear beam has simple boundary conditions, ie. either the boundary displa-

cement =0 or the boundary shear force Q=GAu’'=0, then the first ittm on the RHS of
Eq. (8) must vanish so that only the second term, denoted as —[K], remains, where

(K= f G@) A@) [o]" [¢]' dz (10)

Hence, Eq. (5) becomes
[M] {y }+[C] {pH+ K] {yt=1ple™ (11)
{&/Sa(w) (12)

where [M] [C] and [K] are in general non-diagonal because there are no orthogonality
relations between the experience-based Ritz functions. Therefore Eq. (11) cannot be decoupled
directly. Alternative solutions to Eq. (11) are given below for different damping properties.

2.1. Case I. Proportional damping with given damping ratios

This is the commonest case for engineering applications. The solution vector {y | of Eq.
(11) should be decomposed according to the gxg eigenvector matrix [W] which satisfies the
following eigenproblem

[K] [W]=[M] [W] [A] (13)
Denoting
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9

yt= 2 vilw 1=l (14)
i1
then substituting Eq. (14) into Eq. (11) and pre-multiplying by [W]" gives the following motion
equation
v, +28 0+ 0ivi=p mi=—y/S.e (15)

in which v, and m,"* are the generalized displacement and generalized mass associated with
the j-th mode respectively, {; is the given j-th modal damping ratio, and

y,= o, )7 AG /=t Y AE Wb, M o, ) (16)
The solution to Eq. (15) is

v==—v,H;V/S.e" (17)
H,(i0)= (0} — & +2{, 0,0) ' (18)
The displacement and shear force can be expressed as
u(z, y=LpIWI{r} (19)
Qz. Y=G(z) Az) Le) WV} (20)

Thus, using the principle described above, the PSD functions of # and Q can be expressed
as

Sul o= lu@ 01’ Se o)=10c 0 I° 21)
The dimensionless forms of S..., Sgo and ® are respectively
SU:SMMC\‘A/(L‘tSlZ)Q SQ :SQQ/(szzAZSa)a Q)U:COL/CS (22)

where C,=1/G/p. In Egs. (21), the variable ¢ will naturally disappear when taking the two
norms. When the PSD of the responses (displacements, internal forces, etc.), denoted as S,
have been worked out, their spectral moments can then be calculated easily. Among them,
the most useful are the zeroth moments (i.e. the variance), and the second moments:

1 2
/1(1 res — Oy _2f Srm' da)
0

N 23
A'?. res :2J' wZSres dCO

2.2. Case /. Rayleigh, hysteretic and non-proportional damping
Eq. (11) is not necessarily decouplable as above. For such problems, the stable state solution
{y} of Eq. (11) can be decomposed into a real part {y,} and an imaginary part {y}:
= iy l=dal +ilbh e
Pl=—o’(at+ilb})

where {a} and {b} are two unknown real vectors. Substituting Egs. (24) into Eq. (11) and se
parating real and imaginary parts gives the following simultaneous egs.

(24)
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[Ea}+[D]{b}=1{p}
—[Dla}+EJb} =10}

Herein the expressions for [£] and [D] are listed in Table 1 for some typical damping cases.

(25)

Table 1 Expressions of [C], [E] and [D] for Various Damping Cases

Damping Property Damping Matrices [C] [E] (D]
Rayleigh Damping a [M]+p [K] (K]-w’[M] —o(a [M]+[K]
Hysteretic Damping ie [K] [K]—w’[M] —¢ [K]
Non-proportional [C] [K]—w’[M] ~w [C]

Vectors {a} and {b}, or {y.} and {y,}, are very easy to solve for. Thus u(z #) can be readily
obtained in virtue of £q. (4), and then the shear force can be worked out by the following
equation;

Q¢ H=G@) AR D] {y} (26)

Finally, all kinds of PSD functions and their moments can be calculated by means of
Egs. 21)—(23).

3. Examples

3.1. Example 1.

A uniform shear cantilever beam subjected to a stationary Gaussian random ground motion
with a given acceleration PSD S,(w)=S, (white spectrum) is taken as an example. Four sets

of Ritz functions are used as listed in Table 2 in which Case A takes 10 exact

Table2 Ritz Functions Used in Example 1

Case Ritz Functions(n=2/L) Remarks
A 10 CQC(Exact)
> a,Sin(G—0.5)m -
E =1 SRSS(Approximate)
B a1n+a2 nZ Ritz 1
C a,n+azn2+a3n3 Ritz 11
D a,2n—nH)+a,(3n2-2n°) Ritz III

eigenmodes as the Ritz functions and in fact produces the exact CQC solution, while case
E produces the corresponding SRSS solution by neglecting the cross—correlation items be-
tween the participant modes (Clough and Penzien 1975, Lin 1992). The responses associated
with case E, as a widely used approximation, have been worked out for comparison by means
of the traditional method (Clough and Penzien 1975) instead of the present Ritz method.
Cases B and C take the simplest power functions as the Ritz bases. The deflection curves
of the beam subjected to uniformly or triangularly distributed loadings are taken as the Ritz
functions for Case D. The PSD functions of the beam-top displacement U(L) and the beam
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-base shear force Q(0), as well as their variances and second spectral moments, are found
and compared for the case of proportional damping with given damping ratios.

The PSD curves of the top displacement U(L) for damping ratios {=0.05 and 0.20 are shown
in Figs. 2-3. It is seen that even the simplest Ritz set, Case B, gives excellent PSD curves.
The PSD curve for the SRSS approximation with {=0.20 is herein the poorest, but is still
quite acceptable.

8.0 A-E

4.0

We

0.0
0.000 1571 3.142 4712 6.283 7.854

FREQUENCY
Fig.2 PSD of Beam-top Displacement({=0.05)
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Fig.3 PSD of Beam-top Displacement({=0.20)

Figs. 4 and 5 show that better and/or more Ritz functions are required for the computations
of good shear-force PSD curves.

Table 3 lists the variances of U(L). Clearly the three Ritz cases all give satisfactory resu-
Its, such that even the simplest Ritz basis(Case B) results in a maximum error of only 3.7%
(when ¢=0.01), with the errors for cases C and D always being lower than 1%. However for
the variances of Q(0) the errors are much bigger, about 20~30% for case B and 6~13% for
cases C and D, see Table 4.

The second moments of U(L) and Q(0) are listed in Tables 5 and 6, respectively. Table
5 shows that the Ritz approximations of the second moments of U(L) are reasonably good
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Fig. 5 PSD of Beam-base Shear Force({=0.20)

with errors within about 5%, except for the heavily damped analyses ({ =0.20), for which the
errors are within 8%. This reasonably good accuracy is a consequence of the closeness of
the Ritz and the exact displacement PSD values shown in Figs. 2 and 3. Unfortunately, the

Table 3 Variances of Displacement U(L)to be multiplied by(L/C)?S )

case A B C D E
¢ cQcC Ritz(1) Ritz(2) Ritz(3) SRSS
0.01 71.922 69.271 72.041 72.548 71.923
0.05 13.180 13.414 13.204 13.296 13.191
0.10 6.570 6.691 6.582 6.630 6.591

0.20 3253 3319 3.256 3.284 3291
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Table4 Variances of Shear Force Q(0Xto be multiplied by p’A*LC,S.,)

case A B C D E
' CQC Ritz(1) Ritz(2) Ritz(3) SRSS
0.01 184.78 232.52 204.11 207.87 184.73
0.05 34.23 45.08 37.85 38.59 34.00
0.10 17.40 22.58 19.05 19.49 1699
0.20 9.14 11.38 9.77 10.11 848

Table 5 Second Moment of U(L) (to be multiplied by LS,/C,)

case A B C D E
' CQC Ritz(1) Ritz(2) Ritz(3) SRSS
0.01 184.60 181.86 190.70 184.40 184.50
0.05 3377 3221 35.15 33.78 33.77
0.10 16.63 17.49 17.48 16.74 16.76
0.20 799 8.52 8.55 8.12 825

Table 6 Second Moment of Q(0) (to be multiplied by p*4°L " 'C}S.)

case A B C D E
e CcQC Ritz(1) Ritz(2) Ritz(3) SRSS
0.01 724.55 64394 1071.11 959.32 748.05
0.05 12661 124.04 205.63 181.49 139.94
0.10 64.05 61.48 101.56 8997 68.50
0.20 36.83 30.66 49.04 45.55 3294

Ritz approximations of the second spectral moments of the shear force Q(0) are quite di-
sappointing, see Table 6; and so a Ritz basis better than Cases C and D is required for such
higher order spectral moments of internal force(s).

3.2. Example 2.

The soil dam shown in Fig.l is regarded as a shear beam. Its height is L=20m, and its
sectional area per unit width varies linearly along the vertical direction, 1.e. A(n)=A4,(I-bn),
in which n=z/L and 5=0.5 for this example. The other parameters of the dam are shear
modulus=8X10*kN/m?*, density=2.0 t/m’ and A, =15m". The PSD of the ground acce-
leration follows the widely used Kanai-Tajimi filtered-white-noise spectrum formula:

1+4¢ ()
S. (0) = £ — S, (27
e (=01 +46 (2’

1

in which @, =156sec ' and {,=0.6. A g-dimensional Ritz set is defined as R(g)=[n, n°,

3 q
N ool

In Table 7, the variances and second spectral moments of the top displacement and base
shear force are listed in the first four columns for g=2, 3, 4, 10. The integration interval was
o € [0, 8] sec”', and the step length used was Sw=0.01 sec '. Hysteretic damping was
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assumed with ¢ =0.1.
The solutions for ¢g=10 are regarded as the exact ones. Obviously, the two-dimensional
Ritz set is good enough for c the variance of displacement U(L), whereas the three-dime-

nsional Ritz set is required for satisfactory results for the second displacement spectral mo
ments A, , or for the shear force variances 6 . However, ¢ =4 is necessary if the second spectral
moment of the shear force, A, 4, is of interest.

In general, the computation of covariances is not required so often as that of variances.
When they are of interest, e.g. that of the ground acceleration and beam-top velocity, G % i
or that of the ground acceleration and the first derivative of the beam-base force CX & the
basic principles described above Eq. (2) enable them to be computed from the pseudo ex
citation X, () and the pseudo responses U(t) and Q(t) as follows

=iw U, Q=io Q (28)
Sio=XU. Sy ,=X70 (29)
CXg U :J’ SXg U((L))d(.t), CXg o :f SXg Q((,l))d(!) (3())

The processes are as simple as those needed to compute the variances. The imaginary parts
of Egs. (30) automatically vanish (Lin Y.K.1967). Some numerical results for different Ritz
dimensions were computed simultaneously with those associated with the auto-PSD moments,
see the fifth and sixth columns of Table 7. Finally,the seventh column of Table 7 lists the
total processing time for each Ritz set on a IBM/AT personal computer and shows that this
method is very efficient indeed.

Table 7 Variation of Spectral Moments with q

Ritz , ) i . . [BM/AT
o” U o b L o omputer
Dimen 4 >0 4 0 e U X2 0 Tlr%e
q=2 14.81 46.39 40.69 124.23 —4.110 —103] 11.0
q=3 14.39 44.25 27.92 91.13 —4.102 —1146 154
q=4 14.39 44.17 2741 8191 —4.221 —10.31 19.7
q=10 14.34 44.09 27.10 81.23 —4.285 —10.09 73.0

units - §,(L/C,)" S.(/C,) S,p*A’LC, S,p°ACYL S, S.p,CYL  sec

4. Conclusions

It can be seen from the above results that when the direct Ritz analysis is used:

(1) It is comparatively easy to achieve a satisfactory precision for those calculations as-
sociated with displacement, i.e. the PSD, the variances, the covariances, and even, to
a lower precision, the second moments. However, more and/or better Ritz functions are
needed when the PSD of internal forces and their spectral moments are required to
ensure their precision.

(2) Special care should be taken when using the Ritz analysis to find the higher order
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spectral moments.

For general non-uniform beams, application of the conventional CQC method, or even
of the SRSS methods, to random seismic response analysis is rather tedious, whereas the
present Ritz method is much less tedious. In fact, if eigenmodes are taken as the Ritz functions,
the present direct Ritz method will give various PSD and their moments which are exactly
identical to those given by conventional CQC method (Clough and Penzien 1975).In addition,
for various damping cases including those listed in Table 1, the direct Ritz method is also a
very convenient tool.

Selection of Ritz functions is a common concern when using any Ritz method. In the
method presented, if the analysis is being performed by hand with the help of a calculator,
the use of as few Ritz functions as possible may be preferred but the quality of such functions
should be good, e. g. those listed as case D in Table 2. However, when computers are being
used power functions, possibly with higher order than for case C of Table 2, are suggested
because such Ritz functions are very easy to deal with on computers and the increase in
computational effort is not severe, e. g. see the final column of Table 7.

It is seen from example 2 that all formulae in this paper apply not only to white noise
excitation, but also to filtered white noise or any other specified excitation. As a computer
~oriented method, all computations should be carried out over discrete @ points. Different
excitation spectra only result in different amplitudes of the pseudo harmonic excitations ex-
pressed by Eq. (2). Therefore, if the frequency intervals remain the same, the computational
effort required by any sort of excitation spectrum is almost exactly equal to that for the case
of white noise excitation. However, if a non-white excitation varies rapidly with @, a smaller
frequency interval will have to be taken and so the computational effort will increase ac-
cordingly.
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