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An efficient finite element modeling of dynamic
crack propagation using a moving
node element
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Abstract. The objective of this study was to develop a simple and efficient numerical modeling technique
for dynamic crack propagation using the finite element method. The study focused on the analysis
of a rapidly propagating crack in an elastic body. As already known. discrete crack tip advance with
the stationary node procedure results in spurious oscillation in the calculated energy terms. To
reduce the spurious oscillation, a simple and efficient moving node procedure is proposed. The procedure
does require neither remeshing the discretization nor distorting the original mesh. Two different central
difference schemes are also evaluated and compared for a dynamic crack propagation problem.
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1. Introduction

Inherent flaws in engineering materials can lead to a catastrophic failure due to unstable
crack propagation. By eliminating the conditions and/or manufacturing defects. catastrophic fai-
lure can be prevented. In many structural components absolute prevention of crack can not
be guaranteed. For such structures, catastrophic failure can be minimized by a crack arrest
system. To ensure the proper incorporation of a crack arrest system, the effects of a propagating
crack must be understood. These effects can be understood through the study of dynamic fracture
mechanics. Dynamic fracture mechanics can be applied to problems involving bodies containing
cracks in which inertia forces play an important role. Dynamic crack propagation can be divided
into two categories: crack initiation and crack propagation. A third category sometimes used
is crack arrest, which can be included in the crack propagation phase (Kanninen 1977).

Dynamic fracture mechanics problems have dealt with bodies that contain rapidly moving
cracks. Many numerical dynamic fracture analyses for rapid crack propagations have been studied.
For example, Kobayashi, et al. (1976) analyzed two fracturing Homalite-100 plates by dynamic
finite element and dynamic photoelastic analyses. These analyses used the process of discrete
crack-tip advances with a fixed mesh. The restraining nodal force was suddenly released when
the crack-tip reached the next adjacent node. As indicated by Malluck and King (1978), the
above procedure has inherent problems. The sudden release of a node induces an unwanted
high-frequency of dynamic motion and the crack tip location within the nodal spacing can

t Associate Professor
¥ Graduate Assistant



174 Y. W. Kwon and C. Christy

)
®
<
1

?

T
1

NN~ NN RN PZAN N\

x©
(=23

1.0 0.0 1‘0* ®

1.0

L

(b)

0

Fig. 1 (a) Modeling of a propagating crack using a stationary node element;
(b) An eight noded regular isoparametric element.

not be determined. To overcome this problem Malluck and King incorporated a mechanism
for energy release in their finite element analysis. The nodal reaction force of the crack tip
was gradually reduced until the crack tip propagated from one node to the next node. Kobayashi,
et al. (1977) also incorporated a nodal force release mechanism to depict a more gradual transit
of the crack tip between adjacent nodes. However, the assumed nodal release force was a somehow
arbitrary choice. As indicated in Nishioka and Atluri (1986), computational procedures for crack
propagation problems can be grouped into two types; stationary mesh procedure and moving
mesh procedure. The above analyses may be categorized as a stationary mesh procedure. To
predict the continuing propagation of a crack in a discrete model closely, moving mesh procedures
were introduced. Nishioka and Atluri (1980) analyzed the propagating crack using a moving
singular element. The singular element is larger than surrounding regular element. As a result,
it is necessary to remesh the neighborhood of the crack tip after the crack tip moves beyond
the singular element. Kwon and Akin (1989) developed a procedure for modeling the crack
propagation problem using a node moving along the edge of the element. In this procedure
the element is not distorted: therefore, remeshing is not required. A modification of the latter
procedure was incorporated into this study.

The main objective of this study is to examine different numerical modeling techniques for
studying dynamic crack propagation. The main emphasis is placed on reducing the spurious
oscillation in the calculated energy terms which resulted from the stationary node procedure
(Fig. 1(a)). An eight noded regular element (Fig. 1(b)) was used in the procedure. To reduce the
spurious oscillation a moving node procedure (Fig.2(a)) using a moving node (Fig 2(b)) was
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Fig. 2 (a) Modeling of a propagating crack using a moving node element:
(b) An eight noded isoparametric element with a moving mid-node.

incorporated into the finite element model.

The study focused on the analysis of a rapidly propagating crack in a linearly elastic body.
Inertia force was formulated using a diagonal mass matrix and the numerical time integration
was accomplished using two different central difference techniques. Crack propagation was simu-
lated by the sequential movement (at prescribed time intervals) of the nodes along the edge
of the finite element model. Both stationary and moving node techniques were used to model
the crack tip movement. Crack opening displacement, work, strain energy, and kinetic energy
were calculated and a comparative analysis was conducted from the results. In addition. two
different central difference techniques are compared in view of the dynamic crack propagation
problem. The range of movement of the moving mid-node within the element is also studied.
Too close distance between the moving mid-node and a corner node causes unwanted oscillation
of high frequency and large magnitude.

2. Mathematical derivation

2.1. Spatial discretization

In the elastodynamic problem of a continuous body. the equation of motion is writteri as

(Mt +[CHit+ LK Hub = {F} ()
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with a finite element discretization. In this study eight noded isoparametric elements were used
for the finite element mesh of a two-dimensional body. The shape functions for the regular
eight noded isoparametric element (Fig. 1(b)) are given in many textbooks and they are not
repeated here. The shape functions for the eight noded isoparametric element with a moving
mid-node (Kwon and Akin 1989) are

1

H\= 4 (1‘9)(1'_7)'_ S — ~Hs— 3 5 Hy (2a)
Hy= 411—(1+3)(1-1)— 1o gy ;—Hﬁ (2b)
Hy= %—(H-s)(l e %Hﬁ— é—m 20)
He= ﬁ(l—sz)(l—t) 2¢)
Ho= ;—(1+s)(1—z2) 2f)
Hy= 2 (1=5)1+1) e
Ho= %{1—5)(14) (2h)

The shape functions in Eqgs. (2a)-(2h) become those for the regular eight noded isoparametric
clement if s, is set to zero. For a moving crack problem, s, is computered from the crack
tip location within the element. For example, let the distance between the two corner (nodes
1 and 2 in Fig.2(b)) be L, and the distance from node 1 in Fig 2(b) to the crack tip be L.
Then s, is (2L./L.)-1 and s, must be between —1 and 1. Because the moving mid-node travels
in both the physical and natural coordinate systems, the determinant of the Jacobian matrix
becomes constant as long as the element does not have any distortion.
The diagonalized mass matrix was used for computational efficiency. The diagonalized mass
matrix was obtained from the consistent mass matrix using the following procedure (Cook 1981).
(1) Compute the diagonal coefficients of the consistent mass matrix using eight noded shape
functions.
(2) Determine the total mass of the element, m.
(3) Add the diagonal coefficients associated with translational degrees of freedom only to
obtain a number, e=2Zm,.
(4) Multiply each diagonal coefficient, m,. by m/e.
(5) Set all the off-diagonal coefficients to zeros.

2.2. Direct time integration

This study used two different forms of the central difference techniques for time integration
of the equation of motion. The first method is summarized below (Bathe 1982)
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A. Initial calculations. . _
(1) Compute mass [M], damping [C], and stiffness matrices (X].

(2) Compute {a}’=[M]'[{R}’—[CI{v}’~[K]{d}"].

where {d}® and {v}® are the initial displacement and velocity vectors, respectively, and
{a}® is the initial acceleration vector.

(3) Compute the fictitious displacement vector {d} ~*'={d}"—(An{v}"+(Ar/2){a}".

@) Compute [M]1=(1/AAM]1+1/24)[C].

B. For each time increment, repeat the following steps:

(1) Compute {R}'={R}'—([K]—Q/ADMND{u}' —((1/AHM]—(124)[CHd} .

(2) Compute {d}""*=[M] '{R}"

(3) Compute {a}'=(1/AP)[{d}*¥—2{d}'+{d} %]

(4) Compute {v}'=(12A)[ {d}"*4—{d}'~4].

The second technique, called summed form, (Park 1977) is as follows:

A. For each time increment, repeat the following steps.

() {a}'=[M]"'{R}'~[CI{o}'—[K]{d}").

(2) {U}HA’/2:{D}'—A'/2+AI{G}’.

(3) {d}r+A1: {d}I+AI{U}’+AI/2.

Each technique has its own advantages and disadvantages. The diagonal mass matrix is essen-
tial for both techniques for efficient computation. However, the first technique can not take
advantage of the diagonalized mass matrix if a damping matrix exists, which is generally not
a diagonal matrix. The first technique does not require computing the velocity and acceleration
to obtain the displacement. When needed, the technique computes the displacement, velocity
and acceleration at the same time stage.

On the other hand, the second technique is simpler in coding and non-diagonal damping
matrix does not ruin its computational efficiency as long as the mass matrix is diagonal. However,
the technique requires computations of displacement, velocity and acceleration all the time. It
computes velocity at different time stages from displacement and acceleration. In order to compute
dynamic energy release rate, both displacement and velocity should be known at the same time
stage. As a result, an interpolation technique is used to obtain the velocity at the same time
stage as the displacement. The second technique does not have the self-consistent starting in
contrast to the first technique. The velocity at the fictitious time (t= — A#/2) is assumed to be
the same as the initial velocity. Both central difference schemes are conditionally stable. The
time step Ar must be controlled from the smallest period of the system.

2.3. Fracture dynamics aspects

A common criterion for determining the dynamic propagation of a crack is
G=R() A3)

where R is the energy dissipation rate required for crack growth and G is the dynamic energy
release rate given by

G=

ba\ ot o o

cot ot or

where U is the strain energy, T is the kinetic energy, W is the work done on the structure

1<dW U dT) @
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by external loads. a is the crack length, b is the plate thickness. ¢ is time, and superimposed
dot denotes the temporal derivative.
The dynamic energy release rate G and the dynamic stress intensity factor K, are connected

through Freund's formula:
Ko={ L9} 8

where E is Young's modulus. v is Poisson’s ratio, and A4 is the function that is dependent on

crack speed. 4 is given as
(o) (-&)
C; G

a> \ie a> \ie & \2 k (6)
TR T
o G Cs

where C, and C, are the longitudinal and shear wave speeds (Kanninen 1977).

Ala)=

3. Results and discussion

The example problem for dynamic crack propagation is Broberg’s problem (Broberg 1960).
The problem consists of a two-dimensional plate with a dynamically propagating central crack
from no crack condition. The material is isotropic with elastic modulus of 206.7 GPa, Poisson’s
ratio of 0.3, and mass density of 8000 Kg/m’. Because of symmetry, a quarter of the plate is
shown in Fig. 3. The plate is subjected to a uniform tensile traction of 689 MPa. The finite
element mesh is composed of a uniform mesh of eight noded isoparametric elements. The crack
speed is constant and 1/3 of the dilatational wave speed of the material.

Fig. 4 compares the crack opening displacements obtained using stationary mesh and moving
node techniques. The displacement at the center of the crack is compared in the figure. The
two techniques do not show much difference in their solutions of crack opening displacements.
However. the two techniques result in very different strain and kinetic energy calculations as
shown at the following paragraphs.

Fig. 5 shows the work done on the plate during crack propagation. There is a similar trend
between the stationary node and the moving node elements with the exception that there is
a slight increase in the work for the moving node element. The slight increase in the work
was caused by a slightly larger crack opening displacement for the moving node element than
for the stationary node element.

Fig. 6 shows the strain energy variation during crack growth. The stationary node element
produces spurious oscillation. The oscillation is caused by the instant release of the crack tip
during the process of discrete crack tip advance. As shown in Fig. 6(a), there is a rapid build
up in the strain energy until the node is released. Upon nodal release, there is a rapid reduction
in the strain energy followed by a rapid increase until the next nodal release. The oscillation
amplitude of the strain energy increases during crack propagation. Employing a moving node
element makes the crack tip movement more continuous. As a result, the oscillation of the
strain energy is greatly reduced (Fig 6(b)).

Fig. 7 shows the calculated kinetic energy during crack growth. The delayed nodal release,
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Fig. 3 Geometry of a quarter of the plate for Broberg’s problem.
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Fig. 4 Crack opening displacement at the center of crack.
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Fig. 5 Work vs crack length: (a) Stationary node element; (b) Moving node element.
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Fig. 6 Strain energy vs crack length: (a) Stationary node element; (b) Moving node element.
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Fig. 7 Kinetic energy vs crack length: (a) Stationary node element; (b) Moving node element.

caused by the stationary node, results in a rapid decrease in the kinetic energy prior to the
release of the node. After that, an rapid increase follows by a rapid reduction until the next
nodal release. This trend is a reversal of that seen for strain energy. The oscillation amplitude
of the kinetic energy increases during crack growth as it does for the strain energy. Employing
a moving node element almost eliminates the oscillation because the moving node better represe-
nts a moving crack tip.

3.1. Numerical time integration

Based on the present study, it is noted that the first central difference method is very sensitive
to computational round off errors. As the time increment decreases, the central difference does
not converge while running the model in single precision. The model should be run at double
precision to achieve convergence. On the other hand, the second method, called “summed form”
converges during single precision runs. Comparison of the convergent results reveals no difference
between the two central difference techniques. The “summed form” simplifies the computation,
and as a result, it saves time and money.

3.2. Limit of travel distance of moving node

The distance the moving node can travel is limited by B. 8 is the fractional distance of
the element length. It represents the minimum distance the moving node should be away from
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Fig. 8 Minimum distance from the mid-node to a corner node.
Table 1 Fractional minimum distance the moving mid-node
from the end node
NSTEP* 10 25 50 100
B 1/5 1/10 1/10 1/10

*NSTEP is the number of time steps for the crack to advance
one half the element length.

a corner node (Fig 8). If the mid-node is located within the minimum distance from a corner
node, the numerical result shows a high frequency solution with similar magnitude in energy
terms (Fig. 9). If the mid-node is too close to a corner node, the stiffness terms associated with
the mid-node becomes so dominant that the numerical solution becomes very unstable. A nume-
rical solution of very high frequency and large amplitude is resulted as shown in Fig. 10.

The minimum distance f is relatively constant for various time step sizes which satisfy the
stability criterion as seen in Table 1. The mid-node can travel about 90 percent of the element
length for most time step sizes except for a relatively large time step size. As a result, the crack
tip stays at a corner node until it propagates beyound the minimum distance. Because the mini-
mum distance is small compared to the element size, oscillation caused by such a small jump
of the crack tip movement is negligible.

4, Conclusions

This study focused on the finite element modeling of a rapidly propagating crack. Two procedu-
res were employed in the study. The first procedure, adopting stationary node elements, resulted
in spurious oscillation of the energy terms as knowns. For this procedure the propagating crack
was represented by discrete jumps at given time intervals. To more closely approximate the
propagating crack, a moving node procedure was employed in the model. As shown in the
previous section, the moving node procedure significantly reduced or almost eliminated the spu-
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Fig. 10 Strain energy when the moving mid-node is too close to a corner node.

rious oscillation of the energy terms. Unlike the moving mesh procedure, remeshing was not
required for this procedure.

The present study also showed the following conclusions: The two forms of the central difference
techniques for time integration yielded almost the same results. However, the summed form
was less sensitive to computational round off errors. As a result, the summed form was preferred
due to its simplicity and efficiency in computational time. The range which the moving node,
representing the crack tip, could propagate along the edge of the element was a function of
the time step size for relatively large time step sizes. However, for reduced time step sizes, the
range was the same. The moving mid-node could travel about 90 percent of the distance between
two corner nodes.
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quantity of steel is reduced.

In recent years, increasing use of the ultimate strength design methods has allowed the structural
designer to effect savings of material over traditional elastic techniques. However, available experi-
mental data (Levi 1961) has shown that the determination of the effective flange width be of
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