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A concrete plasticity model with elliptic failure
surface and independent hardening/softening
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Abstract. A plasticity-based concrete model is proposed. The failure surface is elliptic in the ¢-r stress
space. Independent hardening as well as softening is assumed in tension, compression, and shear. The
nonlinear inelastic action initiates from the origin in the o-& (r-y) diagram. Several parameters are incorpo-
rated to control hardening/softening regions. The model is incorporated into a nonlinear finite element pro-
gram along with other classical models. Several examples are solved and the results are compared with exper-
imental data and other failure criteria. “Reasonable results” and stable solutions are obtained for different
types of reinforced concrete oriented structures.
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1. Introduction

Concrete behavior is undoubtedly complex, and its strength and characteristics are func-
tions of many variables. Among many factors, the concrete strength and response behavior de-
pend on the physical and mechanical properties of the matrix-aggregate mesostructure as well
as on the nature of loading. It is almost unimaginable to mathematically characterize its be-
havior under all possible loading conditions in a convenient form. This led to the develop-
ment of many different models and failure theories each with its own limitations and short-
comings. A model or failure criterion may fit well with some test results for a particular type
of concrete and one kind of structure and for a special loading, but not for other conditions.
There are several mathematical models which describe the uni-, bi- and tri-axial strength of
concrete; however, the description of multi-axial stiffness and ductility under different loading
conditions is far less developed. This is the reason for such topic to still be an active area of
research in recent years.

In the last three decades, many authors developed several constitutive theories with various
assumptions. They include nonlinear isotropic/anisotropic elastic, elasto-plastic with
hardening/softening, microcracking theory and endochronic theory models. Parameters ranging
from one to five are used in different models under uni- and multi-axial stress states. Since
the literature on the subject is so numerous, no attempt is made here to go over these topics
or even to discuss some in details. Focus is rather placed on the current model and its unique
features. For more information about the published literature, references (Stevens et al. 1991,
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Fanella 1990, Levine 1982, Stankowski and Gerstle 1985, Kotsovos and Newman 1977,
Scavuzzo et al. 1983, Hsu et al. 1963, Tasuji et al. 1978, Gerstle et al. 1980, Kotsovos and
Newman 1978, Willam and Sture 1986, Willam et al. 1984, 1985, 1986, Willam 1984,
Hurlbut 1985, Bresler and Pister 1958, Ottosen 1977, Willam anc Warnke 1975, van Mier
1984, Chen and Saleeb 1982, Desai and Siriwardane 1984, Nayak and Zienkiewicz 1972,
Chen and Chen 1975, Committee on Concrete and Masonry Structures 1982, Elwi and Mur-
ray 1979, Bazant and Shieh 1978, Yoder and Iwan 1981, Lade and Nelson 1981, Krajcinovic
and Fonseka 1981) can be consuited.

2. Failure criterion

One of the most commonly used failure criteria for brittle materials is Mohr-Coulomb. It
was originally developed for soil. When applied to concrete, it is usually necessary to have
stress and/or strain cut-offs. This creates problems numerically as well as in the definition of
the gradient of the plastic potential in some regions, as tried and reported by several authors
(Ghamedy 1986, Day 1985). Because of that, it is tried here to develop a model which avoids
such difficulties.

Most, if not all, concrete plasticity models have one or more of the following shortcomings:

1. Discontinuities exist because of the cut-offs and/or cracking, which make it inconven-
ient to work with.

2. Hardening behavior only is hypothesized, although concrete materials exhibit hardening
as well as softening in tension and compression.

3. Initial linear portion on the stress-strain diagram is assumed (which might not be ob-
served in the experiment).

4. “Arbitrary” coupling among different stress components is normally invoked, even
though the influence of hardening/softening of a stress component on other components
is not fully understood in brittle materials, especially under low stress levels (Chen
1982).

Because of these reasons, a plasticity-based concrete model with a smooth and continuous
failure surface and independent hardening/softening loading functions in tension, compres-
sion, and shear is proposed. It is meanly intended for “oriented” structures in which the state
of stress consists of one normal and one shear stresses as described next.

An ellipse is chosen to represent the failure surface since it can approximate the Mohr’s en-

T

!

N

\ Tt i
fe fo+te fy
2

Fig. 1 Elliptic failure surface in 6-7 space
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velope with cut-offs. The formulation is written in the -z stress space. The ellipse must meet
the following conditions (Fig. 1):

1. The ellipse is symmetric about the g-axis.

2. The major axis is in the horizontal (¢) direction since (f,-f.) >> 2c¢’.

3. The vertices are at points (f;,0) and (/.,0) with /; > 0 and /, < 0.

4. The ellipse intersects with +r-axis at point ¢’.

Where f,, /., and ¢’ are the strength in tension, compression, and shear, respectively.

Thus, the elliptic equation becomes

. o ()
a b

where

a=([{=r)/2 (2)

h=(f(+1)/2 (3)
Ato =0, = +c¢’, therefore

b= az‘fh2 ¢’ “)
After some mathematical manipulation,

at— = —fir (5)
Now after some algebraic operations, the equation for the failure surface can be written as

F:(d—h)z—f—é’,];érz—a"l:O (6)

After developing the failure surface which is smooth and continuous, a hardening/softening
rule must be specified. Independent hardening and softening in tension, compression, and
shear is assumed in this model for the reason stated above. In the past, some researchers sug-
gested different models for concrete displaying independent hardening in tension and compres-
sion, e.g. (Chen and Chen 1975, Murray et al. 1979, Epstein and Murray 1978), but the one
assumed here is different as outlined below.

Figures 2(a) to 2(f) show some possible shapes for the loading surfaces. All but Fig. 2(f) ex-
hibit some¢ kind of coupling among stress components; therefore, the hardening/softening
shown in Fig. 2(f) is chosen since it is completely independent anywhere in the area enclosed
by the elliptic surface. Different coupled loading surfaces were first tried in this study, as
shown 1n Figs. 2(a)-2(e), but later they were dropped as they are not based on any theory, in
addition to making the formulation more complicated. It should be mentioned that Fig. 2(f) is
not based on a theory either. However, the coupling among different stress components under
low stress levels is not quite known, as stated earlier, (Chen 1982) , thus the loading surface in
Fig. 2(f) is selected since it makes the formulation easier.

The proposed hardening/softening functions for each component are stated below. They are
similar to that suggested by Sargin (1971) for concrete under compression. They are attractive
because the shape of the curve, especially the post peak portion, can be modified easily so that
it fits the experimental data in compression, tension, as well as shear.
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The parameters are illustrated in Fig. 3. Note that D is a parameter which mainly controls
the softening regimes as shown in Fig. 4. Thus, it can be changed depending on the state of
stress as well as the confinement the concrete is under.

The gradient of the plastic potential Q or the flow vector (assuming associative plasticity)
for the failure surface is given by

20c—h)
oF _ 0@ _ 0
oo do | 2flfe (10)
C/z T
By differentiation, the tangential modulus in tension can be shown to be
B = [1+(A=2)B+DB][A+2(D—1)B]—-[AB+(D—-1)B][A—2— 2DB]
, (1+(A—2)B+DB ¢, (11)
where
_ Ee 12
A= 7 (12)
and
- &
B= o (13)

Similar expressions are obtained for the tangential moduli in compression and shear.

This concrete plasticity model presented above is formulated and incorporated into a
nonlinear finite element computer program. An incremental-iteration solution algorithm, in
which the applied load/prescribed displacement is divided into small increments within each
iterations are performed until both equilibrium and constitutive relations are satisfied, is writ-
ten and utilized in the current research. The initial, forward-Euler, as well as tangential stiff-
ness methods are all supported by then present nonlinear solution technique. Either load or
displacement norm may be selected for convergence check. Load or displacement control strat-
egy can be chosen.

In the analysis, layered degenerated isoparametric curved beam elements with nonhomo-
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Fig. 3 Hardening/softening in tension, compression and shear
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Fig. 4 Influence of the softening parameter D

geneous cross-sections are utilized (Al-Ghamedy and Willam 1990). They have three degrees
of freedom per node, two displacements and a rotation. Axial, bending and shear deforma-
tions are all accounted for. Such elements have proven to be very efficient and general, espe-
cially in the elasto-plastic analysis of reinforced concrete.

3. Application examples

Several examples of reinforced concrete (RC) structures are solved and the results are com-
pared with experimental data and/or other solutions using different failure criteria. Maximum
normal stress (Rankine) and Tresca theories are incorporated for reinforcing steel (S), while
for concrete (C), maximum normal stress and “modified” Mohr-Coulomb criteria are added.
Tension and compression cut-offs are made in Mohr-Coulomb, and limited ductility in the
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compressive strain is invoked; in addition linear hardening only is assumed with no softening
allowed in compression (Ghamedy 1986). For more details, that reference can be referred to.

3.1. Shear beams

Four shallow and deep RC beams, two under-reinforced (UR) and two over-reinforced
(OR). are analyzed. They are depicted in Fig. 5. The load-displacement curves are drawn in
Figs. 6-9. It can be seen that shallow beams are not very sensitive to the failure criteria, how-
ever, OR section is relatively more sensitive than UR section. This is expected as concrete
plays more role in OR structures. For deep beams, however, the behavior is distinctly differ-
ent, depending on the failure theory chosen. As expected Rankine theory gives greater value
for the ultimate load, while the proposed criterion gives the lowest value; it is more stable and
smoother than “modified” Mohr-Coulomb. Since no experimental data is available, no com-
parison can be made. This is done in all other examples.
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Fig. 5 Shallow and deep beams
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Fig. 8 Load-displacement curve for UR deep beam

3.2. Dutch and German Beams

Two laboratory-tested RC beams are analyzed, and the results are compared with experi-
mental data. A Dutch beam (Walvaren 1982, Blaauwendraad et al. 1983) and a beam tested
at Karlsruhe, Germany (Franz and Brenker 1967, Stankowski 1980) are shown in Figs. 10 and
11, respectively. Parameters not given are assumed just like the first example above.

The load-displacement curves for the two beams are drawn in Figs. 12 and 13 using sever-
al criteria along with the experimental curves. It can be seen that all failure theories give ac-
ceptable results, however, the criterion with elliptic surface is the best, especially when the sof-
tening parameter in tension (D) is set equal to 0.5.



A concrete plasticity model

-1000. R
x
& -s00 |-
"4
[+
W
- 600. -
-400.+
- 200.
Max. normal stress ( C&S)
----------- Mohr- Coulomb (C18& Tresca (S)
— — -~ Ellipse (C) 8 Tresca (S)
0.00 - 1 L

0.00 -1.00 -2.00 -300 -4.00 -5.00
DISPLACEMENT {IN} [E- 2]

Fig. 9 Load-displacement curve for OR deep beam
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Fig. 13 Load-displacement curve for German beam
3.3. Circular rings

The RC circular conduits shown in Figs. 14 and 15 were tested at the U.S. Army Engineer
Waterways Experiment Station (Chiarito and Wright 1984, Wright and Chiarito 1984). The
load-displacement responses for the thin and thick rings are illustrated in Figs. 16 and 17.

Compared with the thin ring test value of 7.3 k for the crown load at ultimate, the maxi-
mum normal stress criterion gives a value of 6.4 k, while the proposed model predicts a value
of 7.07 k for the collapse load. In another analysis (Gerstle 1985), worse results were obtained
assuming different failure criteria and state of stress. For the thick ring, the ultimate load val-
ues are 22.15 k, 21.10 k, 23.44, and 16.24 in the experiment, elliptic surface, maximum nor-
mal stress, and Mohr-Coulomb, respectively. The correct failure mechanism is captured in
both rings; hinges are formed at quarter points. Parameters not determined by the test are as-
sumed as in previous examples. The experimental load-displacement curves could not be ob-
tained by the author.
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4. Conclusions

The proposed concrete model is shown to be good, reasonable, and (to some extent) practi-
cal. The results for different reinforced concrete structures compare well with experimental ob-
servations and are better than the predictions of other old models. The algorithm is numerical-
ly stable and the convergence rate is good. Several parameters are included in the model so
that they can be modified, depending on the concrete on hand and the structure considered.
One shortcoming of the model is the decrease in shear strength under high compressive stress
due to the elliptic shape of the failure surface, however, this is in a small region only. A
“skewed” ellipse may be used to remedy this problem, but, the formulation gets more compli-
cated, and the model may become impractical to use. Nevertheless, it is the intention of the
author to try this in the future and to compare the results with the present model.
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