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An efficient four node degenerated shell element
based on the assumed covariant strain
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Abstract. This paper proposes a new four node degenerated shell element. In the formulation of the new ele-
ment, the assumed covariant shear strains are used to avoid the shear locking problem, and the assumed co-
variant membrane strains arc applied to alleviate the membrane locking problem and also to improve the
membrane bending performance. The assumed covariant strains are obtained from the covariant strain field
defined with respect to the element natural coordinate system. This formulation enables us to obtain a shell
element, which does not produce spurious singular modes, avoids locking phenomena, and excels in calcula-
tion efficiency. Several examples in this paper indicate that, despite its simplicity, the achieved accuracy and
convergence are satisfactory.
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1. Introduction

The degenerated shell element has been proven to be a successful general shell element in
the thin and moderately thick plate and shell analysis. The basic assumptions employed in de-
generated shell elements allow the transverse shear deformation and the isoparametric repre-
sentation of kinematics of deformation. It thus can be applied to the finite element modeling
of the arbitrary shell geometry without using any particular shell theory. The original degener-
ated shell element (Ahmad et al. 1970) gives rcasonably good results for moderately thick
shells. However, the performance of the element deteriorates rapidly as the shell thickness be-
comes thin (Zienkiewicz et al. 1971).

This phenomenon is called locking. Two different types of locking effects in thin shell ele-
ments were identified by Lee et al. (1978) and Belytschko et al. (1985). First type of locking, i.
e. the shear locking, is associated with the overconstraining effect of the condition of zero
transverse shear strain energy on the assumed displacement field for thin shells. Secondly, the
membrane locking is due to the overconstraining effect of the condition of zero membrane
strains for curved shells. These problems are more subtle for lower-order elements which are
often preferred in many analyses, in particular nonlinear problems, because of the simplicity
of element and the easiness of modeling. To alleviate these deficiencies, several methods have
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been proposed by many investigators in the past such as the selective and reduced integration
schemes (Parisch 1979, Hughes et al. 1978), heterosis elements (Hughes and Cohen 1978), sta-
bilization methods (Belytschko et al. 1989), and discrete Kirchhoff elements, etc.

With the aforementioned developments, it is possible to obtain a number of successful C*
displacement—based degenerated shell elements. These approaches, however, provide a num-
ber of distinct limitations. The selective or reduced integration scheme is not always successful
in overcoming the locking problem and thus the resulting solutions may be overstiff for prob-
lems with highly constrained boundaries when coarse meshes are used. Furthermore, for the
problems with lightly constrained boundaries, these schemes may engender the rank deficiency
(Parisch 1979, Belytschko et al. 1989). Heterosis elements exhibit the overstiffening effect for
the problem with irregular mesh (Chot and Kim 1989). The stabilization methods involve cer-
tain parameters which still lack appropriate physical interpretations. Discrete Kirchhoff ele-
ments do not include the transverse shear deformation effect due to the Kirchhoff hypothesis
and therefore still circumvent the membrane locking. Thus, there is still no general consensus
in favor of a particular approach to avoid the locking problems due to its aforementioned in-
herent limitations.

Lately, Dvorkin and Bathe (Dvorkin and Bathe 1984, Bathe and Dvorkin 1986), Park and
Stanley (Stanley 1985, Park and Stanley 1986), Huang and Hinton (Huang and Hinton 1986,
Huang 1987) and Jang and Pinsky (Jang and Pinsky 1987) have developed various elements
based on the assumed strain methods to solve the locking problems. The first two elements
(Dvorkin and Bathe’s and Park and Stanley’s) seem to be among the best available 4 node ele-
ments. The four node element proposed by Park and Stanley (1985) uses the assumed strains
for all the strain components, 1.e. membrane, bending and transverse shear strains. But be-
cause the assumed bending strain cannot satisfy the rigid body motion condition, this element
locks the solution for a pinched hemispherical shell problem unless the reduced one—point in-
tegration is invoked. And this element has a restriction on transverse shear deformations and
the application to the laminated composite shell because of the thickness pre-integration. An-
other four node element developed by Dvorkin and Bathe (1984) uses assumed strains only
for the transverse shear components, but not for the membrane components because the mem-
brane strain cannot be decoupled from the in—plane strain in their element. Therefore, this ele-
ment is still overstiff for the membrane behavior.

In this paper, a simple and efficient four node degenerated shell element which overcomes
aforementioned drawbacks is proposed. This element uses the assumed strain concept in terms
of covariant strains referred to the element natural coordinate system. In formulation of the el-
ement, the assumed shear strains are used to avoid the shear locking. The covariant mem-
brane strains are separated from the covariant in—plane strains which consist of the combina-
tion of the membrane and bending strains by mid—surface interpolation. With these separated
strains, it is now possible to use the assumed membrane strains to alleviate the membrane
locking by eliminating the violation in the rigid body motion condition caused by applying as-
sumed bending strains.

Since this element is used under the three dimensional stress—strain condition, this element
is applicable to both thin and thick shells and can be easily implemented into the existing fi-
nite element analysis program by minimum modification. A brief comparison of major four
node elements and the element proposed in this study is given in Table 1.

Numerical examples are presented to evaluate the performance of the new element devel-
oped. The proposed element has no hourglass modes and the numerical results indicate that
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this element has a rapid convergence, provides a reasonable accuracy for the stresses, and also
improves the membrane bending behavior of the shell.

Table 1 Comparison of the 4—node assumed strain elements
Bathe & Park & .

Dvorkin Stanley This study

Membrane Assumed Assumed
Displacement Strain Strain

. . Model Assumed Displacement

Strain Bending Strain Model

Transverse Assumed Assumed Assumed
shear Strain Strain Strain

Application  Thin or Thick Thin Thin or Thick
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Evaluate the strain—displacement matrix
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Calculate the clement stiffness matrix
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Fig. I Procedure of the new clement formulation
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2. The formulation of new four node degenerated shell element

In the contrary to the conventional shell element formulation (Ahmad et al. 1970,
Zienkiewicz et al. 1971), the membrane and transverse shear strains ar¢ not evaluated from
the displacement field but from the assumed covariant strain field in the new element formu-
lation in this study as illustrated in Fig.1.

2.1. Geometry Descriptions and Kinematics
The four node degenerated shell element considered here has a quadrilateral shape consist-

ing with four corner nodes as shown in Fig.2(b). The initial geometry of the element can be
described by a set of natural coordinates (£,7.0) as
—x
[ v 37

x 4 'ri 4
v - Y‘ - /11‘ -y
[} = (& Y. (= (R 2 3
Y LJNZ(Ss 77) ¥, mz’d+LJNI(S’7})§2 ll Z.’%i (l)
z izl 2 i=1 —z
0.,
37
z,w Vv
X.u
(c¢) Global coordinate system (b) Nodal coordinate system
at Node 2

typical lamina
(¢ = constant )

typical x’

typical 2’ ¢
3
n = constant surfoce
{c) local coordinate system (d) Natural coordinate system

Fig. 2 Element Geometry and Coordinate Systems
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where N(£, ) are the element shape functions corresponding to the surface {=constant, /4;
is the shell thickness at node 7, and &, », and { are the natural coordinates of the point under

consideration. The vector vy, which is constructed from the nodal coordinates of the top and

. top bot . . .
bottom surface at node 7, thus vy, =x, —x . where x;={r;, ¥;, 2" . The unit vectors in

the directions of vy, is represented by v, .

At each node in the element, five degrees of freedom are defined, i.e., the three transitional
degrees of freedom (2,0 ,u); in the directions defined by unit vectors e, e., e; along the global
Cartesian axes x, ¥ and z, respectively, and two rotational degrees of freedom ¢, and 5; which
are associated with unit vectors v,; and v,; , respectively, defined at node 7 as

— Eg,'xeg
v, =-————
v, Xe
or v; = —e. if vy Xe|=0 2)
whilst 527' = b—ai)(_(;h_

in which denotes the norm of the included vector.

In the kinematics, two assumptions are imposed as only small rotations are considered and
nodal fibers are inextensible. Then, the displacement vector u=(u,v,w) at a generic point of
the shell is expressed in the following form:

—x —x
yo. =,
u 4 7 4 11 2:
W\ Ny | o | fern
v ¢= ) N;{v; + ) NEF v, —u,,
2 1 2i . (3)
w zéll w, Jmid Zé'-% —Z —z ‘ Bl ,
Uy Ty

2.2. Definition of covariant strain components

The covariant displacement components in the natural coordinate system , are obtained
by projecting the displacement components with respect to the global-Cartesian coordinate
system u; onto the natural coordinate directions, which is expressed as

_ o =
u, = (}50 u; (Q’_Cs”,é/) (4)

where repeated indices imply the summation over the range | to 3 (¥'=.x, r'=y, r'=z, u =u,
=0, «,=w). Eq.(4) can also be rewritten in a matrix form as

R

“l_ ) ox o oz

/"[ oy oy Oy ][") ()
or oy oz | "

oc &k ok

= Ju. v, 1)

The derivatives of the covariant displacement in the natural coordinate system are ob-
tained as
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The covariant strain components associated with the covariant displacement are defined as

6(15 = %(Lla,/:?_f-llﬂ,a) (a/qﬂ:fﬂ” ﬂé’) (7)

[t should be noted that the directions of the covariant strains are equivalent to those of the
natural coordinate basis vectors. Detailed expressions for all the covariant strain components
are given by

Eee = %Zz&i (3a)
ew =% (8b)
en =70 =5 ( G2+ ) (8c)
SRERTEAY

The terms €., €4, and y s, are the covariant in—plane strains which are combinations of the
membrane and bending behavior. The terms 7. and y, are the covariant transverse shear
strains and the strain in the thickness y ., is ignored as usual.

2.3. Covariant membrane and bending strains

The new element can have non-flat geometry which allows the coupling between the mem-
brane and bending strains. Therefore, in order to define the assumed covariant membrane
strains, it is first necessary to decompose the covariant in—plane strains given by Eqgs.(8a)—(8¢)
into the covariant membranc and bending strains.

The total in—plane strains are decoupled into covariant membrane strains and covariant

bending strains by defining the covariant membranc strain e;'; as the constant part of the co-

variant in—planc strain €. in the ¢ dircction, i.c. the constant covariant in—plane strains at the

m

. . . . . m - "
mid-surface. Similarly, the other covariant membrane strains €, and 7,, can be defined using

g,, and 7, . respectively.
The covariant membrane strains at the Gauss quadrature points through thickness are the
same as those at the corresponding mid—surface point. Therefore, as shown in Fig.3, the covar-
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tant bending strains at the Gauss quadrature points through thickness are obtained by sub-
tracting the covariant in-plane strains at the mid-surface point from the covariant in-plane
strains at the Gauss quadrature points.

Typical Gauss-lLegendre point

i / Hlewsy = oo

& m
¢t~k 85b€|¢=—‘,% = 855|€=—J313' - 5&5!¢=_J13
= Cfgl . 5&"{:0

{=0

A

In—plane strain  Membrane strain  Bending strain

555’(: afrg¢=iJ:‘;= 8&'(:0 £&|(=i\}%

1
13
Fig. 3 Covariant membrane strain and bending strain

When compared with other approaches (Park and Stanley 1986, Jang and Pinsky 1987),
the proposed method can be more easily implemented, and also include the higher order terms
in ¢ for the covariant bending strains which are neglected in other approaches. Owing to these
concepts, this element may become versatile to be applied to a wide range of shell problems, i.
e., thin, thick and laminated composite shells.

2.4. Determination of assumed covariant strain field

The derivation of the assumed covariant strain field for the four node shell element pro-
ceeds as follow. Covariant strain components are evaluated along the four element sides which
are called the natural coordinate lines. The assumed covariant strain field can then be calculat-
ed through the appropriate interpolation of covariant strain components in the two interpola-

tion directions over the element as shown in Fig.4. The values of ZZ; and 7., on the natural co-
ordinate lines are interpolated through the #» ~direction, and EZ; and 7, are also interpolated

through &-direction while the membrane shear strain ?;"ﬂ is interpolated in both directions.

Linear interpolations are used for all strain components except the membrane shear strain. It
is well known that the full integration (2—point quadrature) for the transverse shear and mem-
brane strains along the natural coordinate lines cause the locking (Park and Stanley 1986,
Huang and Hinton 1986). Therefore, the integration points for both strains should be chosen
to avoid this locking. For this purpose, this paper presents an appropriate intcgration points in
the following two sections.
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Fig. 4 Natural coordinate lines and interpolation functions

2.4.1. Covariant transverse shear strain along the natural coordinate lines

To determine the covariant transverse shear strain field to avoid the shear locking, we con-
sider a natural coordinate line 7 =+ 1. Then, this natural coordinate line is considered as a
Timoshenko beam connected between nodes 3 and 4. Using the Timoshenko beam theory, the
strain energy can be written as:

| . Gl )
U= 1—2Elz“J'/cg«d§+ Zlgbfyg; d& 9
where k=0 , is the section curvature and 7z =, +0 is the transverse shear strain. In Eq.
(9). E, G are Young’s modulus and the shear modulus, respectively. /4 is the shell thickness
and ¢ is the shear correction factor.

In a C" beam element, the displacement and rotation field are approximated in terms of
the natural coordinate & as follows:

2
w(§) = ZN,-(E) w;

i=1

0(E) = ZNi(é) 0, (10)

where w, and ¢ ; are the nodal displacements and rotations, respectively, and N, are the relat-
ed shape functions as follows:

(1)

The curvature and transverse shear strain emanating from Eq.(11) is then obtained in the
following form:
ke=10.=[BNHd) (12)
75; == /{',5+(} = [[),\I{(/}
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where
{dYy =Lw. 0w, 0]
[, = [0, N1 0. Noe] = | 0. =5, 0.5 |

T
[Bo] = [Nye. Ni. Nyooo No] = [ -%, —é{l—;), 4 7(1+¢-)]

The curvature is a constant given by

re =200 (13)

while the transverse shear strain has the following linear variation along the element:
. = A+B& (14)
where
A= (w> wl)_’_((} 46 )

2
B___ !ﬁ_}'_(}]!
- 2

As the beam span-—to-thickness ratio (L//) approaches to infinity, the Euler (Kirchhoff)
constraints are also enforced to approach to zero (A—0, B—0) over the entire element do-
main (Donea and Lamain 1987, Tessler and Hughes 1983).

The condition on A=0 means physically that the average element rotation equals to the el-
ement slope, which is clearly satisfied for slender beams. On the other hand, B=0 imposes a
uniform or zero rotation on the element. This constraint leads to vanishing of the section cur-
vature (x - in Eq.(13)) and the bending energy, and thus leads as to shear locking. At this point
it is apparent that the linear term in the shear strain polynomial (B in Eq.(14)) must be re-
moved to permit the condition of vanishing shear strains in thin beam limit to be attained
without engendering spurious constraining. Therefore, the transverse shear strain in a linear C°
beam must be rendered elementwise constant, To achieve this, consider the modified trans-
verse shear strain corresponding to the mean value of the original transversz shear strain over
the eicment.

(watw)) +u'|) + (() +(} 0.+0)

Yer = (15)
The limiting condition of vanishing transverse shear strains is now clearly attainable without
any spurious constraining.

It should be noted that the transverse shear strain values obtained from the original poly-
nomial and those from the modified polynomial coincide at the one—point Gaussian integra-
tion station (£=0) as shown in Fig.5. Hence, the assumed covariant transverse shear strain
along the natural coordinate ling » =+ | is obtained with a one-point integration of the origi-
nal lincar transverse shear strain polynomial. Similar expression can be obtained for y,. by
slmply mtcrchangmg by 7 in y¢ . Thercfore, the assumed covariant transverse shear strain
v 18 constant in £ and linear in 7. Conversely, the assumed covariapt transverse shear strain
¥, 1s constant in 7 and lincar in £. The assumed covariant transverse shear strain field is
given in Fig.6.
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Fig. 5 Assumed covariant transverse shear strain along the natural coordinate line

Fig. 6 Assumed covariant transverse shear strain ficlds

2.4.2. Covariant membrane strain along the natural coordinate lines

Fig. 7 Geometry of curved Timoshenko beam

To determine the covariant membrane strain
field, we shall consider a arch Timoshenko beam
(Tessler and Hughes 1983) in Fig.7 to examine
the membrane action in the beam. The strain en-
ergy of this clement may be written as ’

[/ = J—-‘{["z/\ 11,,;+%)3(/E

+ [Eloas+ [“0%0 +wyas (6

Considering the effects due to the introduction
of these simple shape functions into the mem-
brane strains, the displacements can be written as
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u=ua-+ta &
w=b+b.& (17)

» —m
so that the membrane strain £, becomes

.5-:;=Zl,g+%=<ag+%>+%g (18)

When arch beam js subjected to a state of pure bending, the membrane strain will vanish.
Therefore, an inextensional bending that will enforce the following constraints is expected

by _

(l2+ﬁ— 0
b, _ (19)
R_O

Clearly, the second constraint in Eq.(19) would introduce a spurious in-plane stiffening
state that was described as membrane locking, which was demonstrated for the curved and
arch beams (Belytschko et al. 1985, Prathap 1985). Therefore, to eliminate the spurious con-
straint. the membrane strains must be made elementwise constant as in the transverse shear
strains.

Hence, the assumed covariant membrane strain along the natural coordinate lines 7 = + 1
is obtained by a one-point integration of the original linear membrane strain polynomial. Sim-

ilar expression can be obtained for E:; by interchanging £ by 7 in EZ; .
The assumed covariant membrane shear strain 7;'; is defined as a pure constant distribu-

tion to improve membrane bending performance of the element. This strain is obtained by
averaging the covariant membrane shear strains at one-point integration along the natural co-
ordinates (=t 1, =11).

For the assumed covariant strain fields, interpolation functions and interpolation points
are used as shown in Table 2.

Table 2 Interpolation function

Interpolation Interpolation

Strains

Directions Functions

uxr 1

1 N, =§{ 1+7)

-

¢ Cee T .1

2 /M=§{ 1—7)
K I

. Ni=7{148)

e

un 7/ ug

S
a
7
Il
o
I
o
1
%
]
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2.5. Substituted strain — displacement matrix

The assumed covariant membrane and shear strain at the Gauss quadrature points are ob-
tained using the aforcmentioned assumed covariant membrane and shear field. And local Car-
tesian strains may then be obtained from these strains by the use of the following tensor trans-
formation:

-, 05 9E® — i
e = g .7 N =r . .1 s K 2
€ T T g Sar ) =x"¥,2") (20)
where repeated indices imply summation over the range | to 3 (&'=¢&, &=p, &=0).
Therefore, the strain—displacement matrix B, relating the strain components in the local
coordinate system to the element nodal variables, can be constructed. Obtaining the element
stiffness matrix is now straight forward.

3. Numerical Examples

A number of commonly used benchmark problems are examined to compare the present
element with other element models in the open literature to assess their relative accuracy and
convergence. Elements to be included in the comparisons are summarized in Table 3.

Table 3 Summary of elements used in comparisons

Name Element Description

4-SRI Four node shell element with selective reduced integration on the transverse shear terms.
This element possesses two zero encrgy modes (Belytschko et al. 1989).

4_URI Four node shell element with uniformly reduced integration.

This element possesscs six zero encrgy modes (Bcelytschko et al. 1989).

4-RSDS Four node resultant stress degenerated shell clement (Belytschko ct al. 1989).

4-Bathe Four node shell element based on assumed shear strain field (Dvorkin and Bathe 1984).

4-ANS  Four node shell element based on assumed covariant strains (Park and Stanley (1986).

In addition to some standard examples which illustrate the convergence in displacements,
we have included problems which are designed to demonstrate the convergence in stresses ob-
tained from the proposed shell element, including transverse shear stress. These examples
show not only that the new shell element is accurate in all stress components but also that
these stresses do not significantly deteriorate with mesh distortion.

3.1. Eigenvalue analysis
The element stiffness matrix of the proposed clement was such that the number of zero

eigenvalues are only the six modes corresponding to the six rigid body motions, thus this cle-
ment was identified not to include any spurious singular modes.



Four node degenerated shell element 29

3.2. Square plate problem for perturbed meshes

The problem suggested by Lasry and Belytschko(1987) is tested to observe the oscillations
in the transverse shear stress under mesh perturbations. This problem involves a clamped
square plate of dimension 10 and thickness of 0.1. Young’s modulus of the material is 1.092
X 10" and Poisson’s ratio is 0.3. Only a quarter of the plate was actually analyzed due to the
symmetry of the structure. Six nodes per side were employed in generating the mesh as shown
in Fig.8. A perturbation was introduced at node A, which has coordinates (3.0,3.0) in the rcgu-
lar mesh and (3.1, 2.9) in the perturbed mesh. Results for transverse shear forces ¢, and §y,
along the lines ¥=1.5 in this study are plotted in Fig.9 along with an analytical solution
(MacNeal and Harder 1985). These figures show that the scvere oscillations in transverse
shear forces obtained by using 4-SRI elements (Lasry and Belytschko 1987) and that the pro-
posed element is unaffected by the perturbation.

E=1.092x10°
p=0.23
Y p=1.0
clamped t=0.1
T’"‘
5 symm. A clamped
y=1 '5 _____ — ———— _._.T
I | )
symm.
: |

I -

Fig. 8 Square plate for perturbed meshes
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© - 4 SRI ® Y el SRl 7
O /
) — : o
° 20 ki L SR
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Fig. 9 Shcar forces (), and ¢, along line ¥=1.5
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Younq's modulus £ = 29x10° . . - .
Poisson's ratio U = 0.22 Table 4 Normalized solution for twisted beam

z length = 12
v #?ct:ne:s;i 0.32 Dil“ ot t

Twist angle = 30° ect. 0 In—-Planc Out—-of-Plane

F=1 Load
Nodes/Side 3X13 5%25 3XI13 5%25
' 4-SRI 0.995 0998 0.924 0.976

F(in—plane)

4-URI 1.009 1.001 1.076 1.014
Flout-of-plane) 4-RSDS 1436 1411 1.377 1.361

X 4-Bathe 0988 00996 0920 0974

Present 0.994 0.998 0.982 0.994

Fig. 10 Twisted beam

Radius = 10.0
Thickness = 0.04
E 6.825x107

v = 0.3

Table 5 Results for hemispherical shell

Nodes/

Side 4-SRI 4-URI 4-RSDS 4-Bathe 4~-ANS Present

5 0.412 1.048 0965 0372 0.01 1.027

9 0.927 0993 0971 0.920 0.05 1.002

17 0.984 1.00  0.989 0.990 0.120 0.996

Fig. 11 Hemispherical shell problem

mar

z< 7 0
ol

[l Q 1]
>
>

@,
te)

Table 6 Results for Scordelis—-Lo roof problem

Nodes/

. 4-SRI 4-URI 4-RSDS 4-Bathe Present
Side

5 0.964 1.219 1.201 0.944 1.044

9 0.984 1.054 1046 0973 1.002
17 0.999 1.017 1011 0989 0.995

Diaphragm

Fig. 12 Scordelis-Lo roof problem
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3.3. Twisted cantilever beamn problem

A cantilever beam of rectangular cross—section, twisted 90° over its length, is subjected to
a concentrated unit load at its free end as shown in Fig.10. This problem was proposed to as-
sess the effect of the element warping distortion. The analytic solutions in the direction of the
in-plane load and that of the out—of-plane load are 0.5424X107* and 0.1754X107%,
respectively, as quoted in MacNeal and Harder (1985). The displacements in the direction of
the applied loading are given in Table 4. They have been normalized with respect to the ana-
lytic solutions.

The proposed element could include the correct warping effect and do not suffer from lock-
ing. All the elements tested, i.e., 4-SRI, 4-URI, 4-Bathe and the proposed element, show the
reasonable convergence to the analytic solution in the direction of in-plane load. However, the
proposed element yields a better convergence than 4~SR1I and 4-Bathe in direction of out-of-
plane load.

3.4. Hemispherical shell problem

A hemispherical shell subjected to self-equilibrating radial point forces at 90° intervals, is
analyzed via the quarter model shown in Fig. 11. This problem is intended to check the ele-
ment performance for the rigid body rotations and the near inextensional bending of a doubly
curved shell. The geometry and material properties are shown in Fig.11. An analytical solution
for the problem is given by Flugge (1973). The analytic solution for the radial displacement at
the loaded points is 0.0924. One quarter of the hemisphere was actually analyzed using the
symmetry of the structure. Results for difierent mesh sizes are presented in Table 5. They in-
dicate that the proposed element performs well, while 4—-ANS element is locked due to the
rigid body straining (Stanley 19835).

3.5. Scordelis—Lo roof problern under gravity load

This problem is the membrane dominated example involving very little inextensional bend-
ing. The roof subtends an angle of 80° and the roof is subjected to a distributed gravity load
of 90 per unit area.

The geometry of the problem is given in Fig.12. The material has a Young’s modulus of
4.32X 10" and Poisson’s ratio of 0.0. The roof is supported at each end by rigid diaphragms.
An analytical solution for the transverse displacement at the center of the roof edge(C), as re-
ported by MacNeal and Harder (1985), is 0.3024. Using the symmetry of the problem, only a
quarter of the roof was analyzed. Normalized values for transverse displacement at C are
given in Table 6, for various mesh sizes. All the reported elements do quite well for this exam-
ple, but it can be seen that the proposed element is more accurate than the other elements.
Figs. 13 and 14 compare the vertical displacements on the mid-section and the longitudinal
displacements at diaphragm to the exact shallow shell solution. Good results are obtatned with
8 X 8 mesh per one~quarter of the roof.
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Fig. 13 Vertical displacement on the mid-sec- Fig. 14 Longitudinal displacement at diaphragm

tion
3.6. Pinched cylinder problem

The pinched cylinder is a classical problem that has been used extensively to check the
ability of shell elements to represent the inextensional bending deformation. The open—-end
cylinder leads to the pure inextensional deformation at the limit as {/R approaches zero. An
analytic solution for this limiting case is given by Timoshenko and Woinwky-Krieger (1959)
which is 0.1139. Fig.15 shows the model geometry. Using symmetry only one cighth of the
cylinder was actually analyzed. Normalized transverse displacements under the load are given
Tables 7 for different mesh sizes. Numerical results for the pinched cylinder with open ends
indicate that the proposed element exhibits a good accuracy.

Considering the stresses for the pinched cylinder with rigid end diaphragms predicted in
Figs.16~17 which are stresses at the element centroids, a good overall accuracy of the pro-
posed element is clearly seen.

(a) fFree support (b) Diephragm support
R = 50 in R = 300.0
L= 1035 in , L = 600.0
E = 10.5 x 10 psi E=3.0x‘|0
v = 0.3125 = 0.3
; = (1)3)05;4‘[) T|.—h'c=kn1esos 30 Table 7 Results for pinched cylinder cylinder with free

ends

Nodes/ 4-SRI

Side 4-ANS 4-RSDS  4-Bathe  Present

3 0.634  1.065 0753  0.754
5 0.904 0931 0943 0944
9 0992 0997 1.002 1.003
17 1019 1020  1.020  1.020

Fig. 15 Pinched cylinder problem
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4. Conclusion

Distributions of membrane shear and twisting moment along AD for a pinched cylinder

A new formulation for a four node shell element based on the assumed strain method is
proposed in this study.

To avoid the shear locking in shell problems, the element uses the assumed covariant shear
strains. The assumed covariant membrane strains which are separated from the covariant in—
plane strains by mid-surface interpolation, are applied to alleviate the membrane locking
problem and also to improve the membrane bending performance.

The new element which has no spurious zero energy modes can be effectively applied to a
wide range of shell modeling, i.e., thin, thick and laminated composite shells.

Numerical results show that this new element has a rapid convergence and provides a rea-
sonable accuracy in the stress prediction. This element was also found to be free of membrane
and shear locking problems, and thus improved the overall membrane bending behavior of the
shell.
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