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The Poisson effect on the curved beam analysis
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Abstract. The bending stress formula that taking into account the transverse deformation is developed
for plane-curved, untwisted isotropic beams subjected to loadings that result in deformations in the plane
of curvature. In order to account the transverse Poisson contraction effect, a new constitutive relation
between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved plate
is derived in a 6 × 6 matrix form. This constitutive relation will provide the fundamental basis to the
analyses of curved structures composing of isotropic or anisotropic materials. Then, the bending stress
formula of a curved isotropic beam can be deduced from this newly developed curved plate theory. The
stress predictions by the present analysis are compared to those by the analysis that neglected the Poisson
contraction effect. The results show that the Poisson effect becomes more significant as the Poisson ratio
and the curvature are getting larger.
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1. Introduction

The technical theory of bending generally yields results of good accuracy for straight slender
beams. However, there are many applications where the centerline of the beam is curved rather than
straight. For example, the airplane fuselage frame, as indicated in Fig. 1, is an instance where
stresses and displacements must be determined on the basis of a theory that accounts for the non-
straight geometries of the structures.

For a straight beam, the axial strain is distributed in a linear fashion across the cross section under
the Navier’s hypothesis. Accordingly, the flexure formula of a straight beam is resolved to be
σ = −My/I by assuming the beam as a one-dimensional elastic isotropic structure. Due to the linear
axial strain distribution, the same flexure formula can also be deduced from the two-dimensional
plate theory by which the transverse deformation is considered. It means that Poisson’s ratio will not
affect the bending stress predictions. On the subject of curved beams, the axial strain is distributed
in a nonlinear fashion across the cross section due to the geometric curvature and the corresponding
bending stress distribution is generally shown in Fig. 2. The bending stress formula of a curved
beam has been formulated by assuming the curved beam composing of a one-dimensional elastic
isotropic solid behaving according to the stress-strain relation of σx = Eεx and τxy = Gγxy (Bickford
1998). However, due to the nonlinear axial strain distribution of the curved beam, the different
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bending stress formula will be deduced from the two-dimensional curved plate theory by which the
transverse Poisson contraction effect is taken into account. This paper will be devoted to develop a
new curved plate theory from which the bending stress formula of the curved beam can be deduced
to explore the Poisson contraction effect on the stress and strain predictions.

In order to account for the transverse deformation into the curved beam analysis, a constitutive
relation for a curved plate needs to be established. Similar to the classic 6 × 6 ABD matrix
constitutive relation of a flat laminated composite plate (Vinson and Chou 1975, Christensen 1979,
Vinson and Sierakowski 1987, Herakovich 1998), a new 6 × 6 constitutive relation between force
resultants, moment resultants, mid-plane strains and deformed curvatures is formulated for a curved
plate. This new curved plate constitutive relation will provide the fundamental basis to the analyses
of curved structures (e.g., curved beams and plates etc.) composing of isotropic or anisotropic
materials. By applying this newly derived constitutive relation, the bending stress of a curved
isotropic beam subjected to loadings that result in deformations in the plane of curvature can be
formulated. Unlike the bending stress formula by one-dimensional approach (Bickford 1998) that is
independent to the Poisson’s ratio ν, the formula derived by considering the Poisson contraction
effect composes of the term of Poisson’s ratio ν. It implies that the curved beams composing of
different Poisson’s ratio will result in different bending stress predictions. The bending stress
predictions are investigated as a function of Poisson’s ratio ν and the geometric parameter of the
thickness-radius (h/R) ratio. The results show that the higher Poisson ratio ν and the larger h/R ratio,
the more Poisson contraction effect exhibits on the bending stress predictions.

2. Curved plate theory

Consider a curved plate of thickness h as depicted in Fig. 3. Here, the x-axis is passing
everywhere through the centroid of the section and tangent to a circular arc of Radius R, that is,
ds = Rdθ, where θ is the angular variable associated with a change in location along the curved
section. The z-axis lies along the local direction of the radius R with the y-axis such that a right-
handed coordinate system is formed.

Fig. 1 Airplane fuselage frame Fig. 2 Bending stress distribution in a curved beam
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2.1 Strain-displacement relations

Under small deformation, a curved plate is assumed to deform by following the Kirchhoff-Love
hypothesis for plates (Vinson and Chou 1975):

(1) A lineal element of the curved plate extending through the plate thickness is normal to the
mid-plane (i.e., xy plane). Upon the application of loads, the lineal remain straight and normal
to the deformed mid-plane.

(2) The lineal element does not change length.

Based upon the foregoing assumptions, the most general forms for the displacements in the x and
y directions are

u(x, y, z) = u0(x, y) + zα (x, y) (1)

v(x, y, z) = v0(x, y) + zβ(x, y) (2)

where u0 and v0 denote the mid-plane displacements in the x and y directions and α and β are
notations which will be further defined later. From the assumption (2), requires that εz = 0 and in
turn means that the lateral deflection w can be expressed as

w(x, y, z) = w0(x, y) = w (3)

By specializing the strain-displacement relations in the cylindrical coordination into the present x-
y-z coordination, the strain-displacements become

(4)

(5)

(6)

εx
1

1 κz+
---------------- ∂u

∂s
------ κw+ 

  1
1 κz+
----------------
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Fig. 3 Geometry for a curved plate
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(7)

(8)

(9)

where κ = 1/R is the curvature of the curved plate. The assumption (1) requires that the shear
strains of γxz = 0 and γyz = 0 are zero and leads to 

(10)

(11)

Substituting Eqs. (10-11) into Eqs. (4-5) and Eq. (7), the remainder planar strains of εx, εy and γxy

can be expressed as

(12)

(13)

(14)

where the mid-plane strains {ε0} and deformed curvatures {κ 0} and {κ1} are defined as 

(15)
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(21)

Combining Eqs. (12-14) and Eqs. (15-21) in matrix form, we obtain

(22)

or more simply

(23)

Eq. (23) indicates that the planar strains {ε} at any z-location in the curved plate are in terms of the
mid-plane strains {ε0} and the deformed curvatures {κ0} and {κ 1}; it is a fundamental equation of
curved plate theory. 

2.2 Stresses

The stresses at any z-location can then be determined by substituting strain equation of (22) into
the plane stress constitutive equation, and leads to

(24)

where [Q] is the stress-strain stiffness matrix of the material which can be either isotropic or
anisotropic. Here, we only consider the curved isotropic plate and the stiffness matrix [Q] is, then,
given by

(25)

where E, G and ν denote the Young’s modulus, the shear modulus and the Poisson’s ratio of the
material, respectively. Combining Eqs. (22) and (24) gives a general expression for stresses at z-
location in the plate:

(26)
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second and third terms correspond to the stresses associated with bending strains. It is noted that
{ε0}, {κ 0} and {κ1}, which are only associated with the mid-plane displacements and geometric
curvature κ, are independent of z location.

2.3 Force resultants and moment resultants

The force resultants {N} refer to the stresses integrated over the thickness of the plate. A similar
interpretation can be given to the moments resultants {M}. Thus, {N} and {M} in compact forms
are, respectively, expressed as

(27)

(28)

Substituting Eq. (26) into Eqs. (27) and (28) gives 

(29)

(30)

Remembering that {ε0}, {κ 0} and {κ 1} are independent of z location, the integrals in Eqs. (29-30)
are easily carried out. For example,

(31)

(32)

where ln represents natural logarithms.

2.4 Curved plate constitutive relations

By carrying out the integrations in Eqs. (29) and (30), the fundamental equation of the curved
plate theory can be written in the following form:

Nx

Ny

Nxy 
 
 
 
  σx

σy

τ xy 
 
 
 
 

zd
h 2⁄–

h 2⁄∫=

Mx

My

Mxy 
 
 
 
  σx

σy

τ xy 
 
 
 
 

z zd
h 2⁄–

h 2⁄∫=

Nx

Ny

Nxy 
 
 
 
 

Q[ ]

εx
0

εy
0

γxy
0 

 
 
 
 

zd
h 2⁄–

h 2⁄∫ Q[ ]

0

κ y
0

κ xy
0

 
 
 
 
 

z zd
h 2⁄–

h 2⁄∫ Q[ ]
κ x

1

0

κxy
1

 
 
 
 
 

z
1 κz+
--------------- zd

h 2⁄–

h 2⁄∫+ +=

Mx

My

Mxy 
 
 
 
 

Q[ ]

εx
0

εy
0

γxy
0 

 
 
 
 

z zd
h 2⁄–

h 2⁄∫ Q[ ]

0

κy
0

κ xy
0 

 
 
 
 

z2 zd
h 2⁄–

h 2⁄∫ Q[ ]
κx

1

0

κ xy
1 

 
 
 
 

z2

1 κz+
--------------- zd

h 2⁄–

h 2⁄∫+ +=

z
1 κz+
--------------- zd

h 2⁄–

h 2⁄∫ 1
κ
--- h

1
κ
---ln

1 κh 2⁄+
1 κh 2⁄–
-----------------------– 

  I1= =

z
2

1 κz+
--------------- zd

h 2⁄–

h 2⁄∫ 1

κ2
-----– h

1
κ
---ln

1 κh 2⁄+
1 κh 2⁄–
-----------------------– 

  I2
I1

κ
----–= = =



The Poisson effect on the curved beam analysis 713

(33)

where [A], [D] and [C] matrices are defined as

(34)

(35)

(36)

Eq. (33) can be written in expanded form as

 (37)

The form of Eq. (37) is not suitable for matrix operations. Recalling Eqs. (19-21), the deformed
curvature  can relate to the mid-plane strain  and the deformed curvature  by the
following form

(38)
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As can be seen in Eq. (39), the coupling between the stretching and bending responses is existed for
a curved plate. This coupling effect is caused by the non-flat geometry of the structure. This
stretching-bending coupling effect for a curved plate can not be shown by the flat plate. This new
curved plate constitutive relation will provide the fundamental basis to the analyses of curved
structures (e.g., curved beams and plates etc.) of isotropic or anisotropic materials. For isotropic
materials, Eq. (39) turns into the form of

 (40)

It is found in Eq. (40) that the normal responses are unrelated to the shear responses. Thus, Eq.
(40) can be separated into two matrix equations as 
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3. Curved beam analysis

As the aspect ratio of the cross-section, that is, the ratio of the cross-section width to height of a
curved plate is reduced to a certain value such that the axial strain gives rise to a free transverse
distortion of the cross-section because of the Poisson contraction effect, as shown in Fig. 4(a). Then,
the configurations of curved plates can be referred to as the curved beams. On the other hand, a
curved plate does not show the “anticlastic” effect except the outer edges of the cross-section, as
illustrated in Fig. 4(b). 

3.1 Bending stress

Consider a curved isotropic beam with rectangular cross-section subjected to the loadings that
result in deformations in the plane of curvature. The situation of a curved beam can be described
mathematically by setting the transverse moment resultant My = 0 and the transverse force resultant
Ny = 0. Then, the curved plate constitutive relation of Eq. (41) with the inverse becomes

(43)

It should be noted that the stress resultant Nx and moment resultant Mx are on a unit width basis,
and must be multiplied by the width of the beam to get the axial force and moment used in the
beam theory. For the axial force denoted as N (=bNx) and the beam moment denoted as M (=bMx),
the axial and transverse strains can be obtained from Eq. (43):
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Fig. 4 Illustration of anticlastic effect in curved beam and plate showing the distortion of the cross-section
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(45)

where A (=bh) and I (=bh3/12) are, respectively, the area and the moment of the inertial of the cross
section. It is clearly shown in Eq. (44) that the axial strain, εx, is distributed in a nonlinear fashion
across the cross section. The bending and transverse stresses are obtained from the stress-strain
relation given by Eq. (25):

(46)

(47)

The curved beam analysis developed by Bickford (1998), in which the beam was assumed
composing of a one-dimensional elastic isotropic solid behaving according to σx = Eεx and τxy =
Gγxy, gave the following bending stress formula:

(48)

Unlike the bending stress formula of Eq. (46), which is the function of the Poisson’s ratio ν, Eq. (48)
is independent of the Poisson’s ratio ν.

4. Results and discussions
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subjected to the loading P, as shown in Fig. 5. This is a statically determined problem in which the
axial force N = Psinθ = bNx and the bending moment M = PRsinθ = bMx can be resolved from
force equilibrium relations. 

For specific examples of h = R and h = 1.5R, the through-thickness bending stress distributions σx

at the location of θ = π/2 are, respectively, plotted in Figs. 6 and 7 for different Poisson’s ratio
values of ν = 0, 0.25 and 0.5. For the case of Poisson’s ratio ν = 0, the bending stress equation of
Eq. (46) reduces to Eq. (48) of Bickford (1998). As illustrated in Figs. 6 and 7, the maximum
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Fig. 5 Bending of a curved beam with rectangular cross section
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bending stresses occur at the inner surface. At the presence of non-zero Poisson ratio, the bending
stresses will shift to higher tensile stress at the inner radius and shift to smaller compressive stress at

Fig. 6 Bending stress distributions σx for various value of Poisson’s ratio ν at the case of h = R

Fig. 7 Bending stress distributions σx for various value of Poisson’s ratio ν at the case of h = 1.5R
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the outer radius, as shown in Figs. 6 and 7. The amount of shifting will be more significant as the
Poisson ratio ν is getting larger. The influence of the h/R ratio on the bending stress predictions can
be illustrated by the comparison between Figs. 6 and 7. It is indicated that the Poisson effect
becomes more noticeable as the h/R ratio is getting larger. 

The Poisson effect on the bending stress predictions is investigated by the finite element analysis
(FEA). For the curved AISI 4340 steel beam of h = R = 20 in and b = 10 in with the loading
P = 23100 lb, the through-thickness bending stress distribution σx at the location of θ = π/2 for
different Poisson’s ratio values of ν = 0 and 0.5 is plotted in Fig. 8, where the maximum tensile and
compressive stresses occur at the inner and outer surfaces, respectively. As analogous to the
theoretical predictions as shown in Figs. 6 and 7, the FEA results also indicates that the bending
stress of ν = 0.5 shifts to higher tensile stress at the inner radius and shifts to smaller compressive
stress at the outer radius.

The Poisson effect on the stress predictions can be exhibited more profound in the through-
thickness transverse stress distributions σy, which are plotted in Fig. 9 for the case of h = 1.5R at
the location of θ = π/2 for different Poisson’s ratio values of ν = 0, 0.25 and 0.5. In the case of
Poisson ratio ν = 0, the transverse stress equals to zero through the thickness. On the other hand, at
the presence of non-zero Poisson ratio ν, the transverse stress is distributed in a nonlinear fashion
which exhibits tensile stress at both end and compressive stress in between. The amount of
deviation from the case of ν = 0 will be more significant as the Poisson ratio ν is getting larger.

Fig. 8 Bending stress distributions σx for ν = 0 and 0.5 at h = R by finite element analysis
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5. Conclusions

1. The equations that describe the linear elastic response of a curved plate subjected to in-plane
loads and bending moments has been developed in this paper. Similar to the classic 6 × 6 ABD
matrix constitutive relation of a laminated composite plate, a new 6 × 6 constitutive relation
between force resultants, moment resultants, mid-plane strains and deformed curvatures for a
curved plate has been formulated. This new curved plate constitutive relation will provide the
fundamental basis to the analyses of curved structures composing of isotropic or anisotropic
materials.

2. The bending stress formula of Eq. (46) for a curved beam has been deduced from the newly
derived constitutive relation of a curved plate. The bending stress predictions by Eq. (46) are
compared to those by Eq. (48), which was derived by one-dimension approach and, therefore,
neglected the Poisson effect. The results show that the Poisson effect becomes more significant
as the Poisson ratio ν and the h/R ratio are getting larger.

3. The Poisson effect on the stress predictions can be exhibited more profound in the through-
thickness transverse stress distributions σy, which are distributed in a nonlinear fashion and
exhibit tensile stress at both end and compressive stress in between at the presence of non-zero
Poisson ratio. The transverse stress σy is caused by the nonlinear distribution of the bending
stress through the thickness.
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