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Abstract. This paper presents a practica method to evaluate the effective length factors for columns in
multi-storey unbraced frames based on the concept of storey-based eastic buckling by means of
decomposing a multi-storey frame into a series of single-storey partialy-restrained (PR) frames. The
lateral stiffness of the multi-storey unbraced frame is derived and expressed as the product of the latera
stiffness of each storey. Thus, the stability analysis for the multi-storey frame is conducted by
investigating the lateral stability of each individual storey, which is facilitated through decomposing the
multi-storey frame into a series of single-storey PR frames and applying the storey-based stability analysis
proposed by the authors (Xu and Liu 2002) for each single-storey PR frame. Prior to introducing
decomposition approaches, the end rotationa stiffness of an axialy load column is derived and rotational
stiffness interaction between the upper and lower columns is investigated. Three decomposition
approaches, characterized by means of distributing beam-to-column rotationa-restraining stiffness between
the upper and lower columns, are proposed. The procedure of calculating storey-based column effective
length factors is presented. Numerica examples are then given to illustrate the effectiveness of the
proposed procedure.
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1. Introduction

Column and frame stability is of primary importance to the structural design of unbraced muilti-
storey frames. Although theoretical methods or so-called system buckling methods on elastic
buckling of such frames under proportiona loading were well established (Majid 1972, Livedey
1975, Chen and Lui 1987), the methods were generally considered impractical because the methods
involved solving the minimum positive eigenvalue from either a highly nonlinear or a transcendental
equation. In design practice, the effective-length based methods are till the general methods of
evaluating the column compressive strength, and the concept of effective-length is considered as an
essential part of many analysis procedures and has been recommended in amost all of the current
design specifications (A1SC 1989, 2001).

Among the various effective-length based methods, the most widely adopted method for designing
a frame is the alignment chart method that was originally proposed by Julian and Lawrence (1959).
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However, since this method adopted severa simplifications and assumptions that may be not
redistic, inaccurate column strengths may result from when these assumptions are not satisfied.
Various studies had been carried out, aimed to improve the effectiveness of the alignment chart
methods (Bridge and Fraster 1987, Chen and Lui 1985, Duan and Chen 1989, Chen et al. 1997).

In evaluating column buckling strength in unbraced frames, the aignment chart method takes into
account the rotational regtraints by upper and lower assemblages but neglects the interaction of
lateral stiffnesses among the columns in the same storey in resisting lateral sway buckling of
unbraced frames (possible lateral support provided by other columns in the same storey). Unlike the
alignment chart method that considers column buckling as a single subassemblage buckling, the
concept of storey-based buckling introduced by Yura (1971) takes into consideration the fact that
lateral sway instability of an unbraced frame is a storey phenomenon involving the interaction of
lateral sway resistance of each column in the storey and total gravity load in columns in that storey.
Based on this concept, different methods were proposed to assess the column and frame buckling
loads for unbraced frames (LeMessurier 1977, Lui 1992, ASCE 1997, Aristizabal-Ochoa 1997). The
conclusion obtained from different comparative studies (Shanmugam and Chen 1995, Roddis et al.
1998) on the alignment chart method, system buckling method, and storey-based buckling method
recommended the storey-based buckling method for general use in design practice. The LRFD
specification (AISC 2001) addressed the concept of storey-based buckling because the alignment
chart method does not consider destabilizing effects due to lean-on columns in a frame. Two
methods of determining the storey-based effective length factor, namely, the storey stiffness method
(LeMessurier 1977) and storey buckling method (Yura 1971), were presented in the Commentary of
the LRFD Specification (A1SC 2001).

Considering that the foregoing storey-based buckling methods often require either the first order
dagtic analysis or the alignment chart while evaluating the storey-based effective length factor, an
efficient storey-based buckling method (Xu et al. 2001, Xu and Liu 2002) based on the single-storey
partialy-restrained (PR) frame model was proposed which did not require either conducting frame
anaysis or using the alignment chart. This paper extends the method into the multi-storey case by
decomposing a multiple-storey unbraced frame into to a series of single-storey frames. Different
approaches of decomposition which are primarily related to the distribution of end rotational-
restraining stiffness of beams to the connected upper and lower columns are investigated. Following
the proposed procedure of evaluation column effective length factor for multi-storey unbraced
frames, examples were presented to illustrate its efficiency.

2. Storey-based stability equation

Considering the elastic buckling of an unbraced frame composed of prismatic members, the
concept of storey-based buckling states that lateral sway instability of an unbraced frame is a storey
phenomenon involving the interaction of lateral stiffness among columns in the storey. In other
words, in resisting the laterd sway instability, stronger columns or columns with larger stiffnesses
are able to provide latera support for weaker columns in the same storey and the weaker columns
rely upon such latera support to maintain the lateral stability. Accordingly, the condition for multi-
column storey-based buckling in a latera sway mode is that the sum of the lateral giffness of the
storey vanishes. For a multi-storey unbraced frame with m— 1 bays and n stories as shown in Fig. 1(a),
the latera stiffness of an axidly loaded column in such frame can be expressed (Xu and Liu 2002) as
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Fig. 1 Anaytical mode of multistory frames
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where subscripts i and j are storey and column indices; E is Young's modulus, and I and L ; are
the moment of inertia and length of the column, respectively. The column lateral tiffness

modification factor §; is
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in which
agij = 3(r i+ ryi—2ryin i) (33)
Qi = 9r|,ijru,ij—(1—r|,ij)(1—ru,ij)(ﬁzj (3b)
Az = 18r|,ijru,ij+al,ij(22j (30)

where subscripts | and u denote the lower and upper ends of the column and the corresponding
column end-fixity factors are respectively defined as

1
L= 4
fui 1+3Elg i/ (Ryijke,i) “

N 1
fuij = 1+3El;i/(RyijLc,i) *

in which R, jj and R ;; are the rotational-restraining stiffnesses which are contributed by the other
members connected to the upper and lower ends of column ij, respectively.
The parameter ¢; in Eq. (2) is defined as
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where P j = T°El,;/LZ ; is the Euler buckling load of the column; P; = AP, ; is the column axial
force, in which P, j; is the applied axial load, and A is a load proportional multiplier. Having the
lateral stiffness of the axialy loaded column expressed in Eg. (1), the stability equation for single-
storey PR frame buckling in a lateral sway mode can be expressed as Xu and Liu (2002)

m m _ 12El, ;
Szzsl':zgijl__ngo (6)
=1 i=1 c,i

For a multi-storey frame as shown in Fig. 1(a), the relationship between latera stiffness of the
frame, S and that of the storey (S,i =1, 2, 3...n) is

5= —

(i=123,..,n) @)

MM
ik

i=1

Lateral instability occurs when the lateral stiffness of the frame vanishes, which can be concluded
from Eq. (7) to have at least in one storey, say storey k of the frame, such that S = 0. Pursuant to
this condition, the lateral stability equation for unbraced multi-storey frames can be conveniently
expressed as

n [dm 12E|
l C| - 8
i=l |-1EjJZlBJ ®

Eqg. (8) defines that the storey-based buckling of an unbraced multi-storey frame occurs as any one
of the stories fails to maintain its lateral stability. Practically, it is desirable to convert the stability
andysis of a multi-storey frame into analysis of single-storey frames for the reason of smplicity
and this can be achieved through decomposing a multi-storey frame into a series of single-storey
frames as shown in Fig. 1(b). In other words, Eqg. (8) can be solved by setting the latera stiffness of
each storey S to be zero and solving for the corresponding critica load multiplier. The storey that
yields the minimum critical load multiplier in lateral sway instability would be the critical storey of
the frame, and the critical load or corresponding effective length factor for each individua column
in the frame can then be determined by that load multiplier.

However, it should be pointed out that the rotational-restraining stiffnesses R, j; and R, ; shown in
Fig. 1(b) and employed in Egs. (4) shal be evaluated differently for the single- and multi-storey
cases. In the single-storey frame case, beams that are connected to the upper end of a column are
the only members that provide the rotationa restraint to the column against column instability. For a
column in a multi-storey frame, in addition to the rotationa restraints provided by connected beams,
the columns located on the upper or lower level may also contribute rotational restraints to the
column under consideration. To account for the gtiffness interaction between the upper and lower
columns that are connected in stability analysis of a multi-storey frame, the end rotational stiffness
of an axially load column has to be determined and is discussed in the following section.
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3. End rotational stiffness of axially loaded column
For an axially loaded and laterally unrestrained column ij as shown in Fig. 2, let R, ;; be the
external rotational-restraining stiffness induced by the other members connected at the upper end of

the column. Noted that 6; and Mg are the end rotation and bending moment at the upper end of the
column, respectively. The moment at a location x along the column is given by

M = Mg+ Py )

where, P; is the column axia force. The equilibrium condition of the column yields

d2
Ele =%+ Pyy = My (10)
dx
By substituting the following boundary conditions into Eg. (10),

Y=o =0 (11a)
dy| _
i, = 6y (11b)

dy _n —

ax|, . =6,=1 (11c)

Mg = Ryij0s (11d)
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the rotational stiffness at the lower end of the column, Ry j;, can be solved as

Elij Ryijlcii/Elcij — @itang; - Elij3ryi—(1-ryi)@tang;

b Lej 1+ Ry ijLc ijtang; Le,ij 1-r, . +3r, i-t—lan(n'
Elei; @ ! ! @i

where r, j; is the column end-fixity factor associated with the rotational-restraining stiffness R, ;; and
is defined in Eq. (4a), and parameter ¢; is defined in Eq. (5).

Similarly, the rotational stiffness associated with the upper end of the column, R, can be
expressed as

Ry i = EleijRiijLeii/Elcij — @jtang; - Ele i3 —(1—r)@tang (12b)
U L) 1+ R ijLeijtang; Lei 1—r 5 +3r ijtan_(nl
EIC,ij % ' ' QJ

where r ; is the end-fixity factor of the column at the lower end and is defined in Eq. (4b).

Fig. 3 illustrates the relationship among the column end rotational stiffness Ry j;, the far end end-
fixity factor r,;; and applied load Pj. It is clear that the presence of the axial load leads to the
decrease of the column end rotational stiffness. In the case that the column end rotationa stiffness
Ra,ij turns into zero or a negative value as the result of increasing applied load, the column shown
in Fig. 2 becomes lateraly unstable. In the context of unbraced frames, if both end rotationa
stiffnesses of a column become non-positive as the result of increasing applied load, the column
turns into a lean-on column which relies upon the external restraints provided by other members of
the frame to maintain its stability and sustain the applied load.

In the case that the column is not axialy loaded or the effect of the axial load on column end
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Fig. 3 End rotational stiffness of axialy loaded column
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rotational stiffness can be neglected, Egs. (12) are simplified as
El. i/ Leij El.i; 3ryj

Reil = THEI /Roylon - Loy 1+ 2r, (139
_ EIC’”'/LC’” _ EIC,ij 3r|’ij
Rowiy = 1+El /R iLej - Leij 1+2r (130)
If the column ends are rigidly connected, Egs. (13) can be further simplified as
El
Reii = Rewij = LC' (14)

Cij

It is noted from Egs. (12) and (13) that the column end rotationa iffness is a function of the
end-fixity factor at the far end of the column. For instance, the rotationa stiffness at the lower end
of the column, Ry j;, is a function of r, ;; as that shown in Eq. (128). As defined in Eq. (4d), ryj is
related to R, jj, the rotational-restraining stiffness at the far end, which is contributed by the other
members connected to the upper end of column ij including column (i +1)j. Since the end
rotationa gtiffness of column (i + 1) j is further involved with that of column (i +2)j and so on,
therefore, the end rotational stiffness of a column is interrelated with columns at different stories in
the same column line. Apparently, considering such stiffness interaction would make the evaluation
of column end rotationa tiffness, and eventualy the frame sability analysis, much more
complicated and is not suitable for engineering practice. However, prior to make any simplification
on this issue, the following parametric study was carried out to investigate the stiffness interaction.

Shown in Fig. 4 are simplified models for a series of symmetric one-bay unbraced frames with
different number of stories, in which al columns and beams have identical flexural stiffnesses El./L.
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Fig. 4 Simplified models of one-bay multistory frames
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Table 1 Comparison of column end rotationa stiffnesses

PIP Cae1l Case 2 Case 3 Case 4
€ RJLJE ¢ RuLJ/E ¢ Error (%) RJLJE ¢ Error (%) RJLJ/E ¢ Error (%)

0.00 0.8571 0.8727 -1.82 0.8730 -1.86 0.8730 -1.86
0.05 0.6567 0.6719 -2.31 0.6723 -2.38 0.6723 -2.38
0.10 0.4356 0.4486 -2.98 0.4490 -3.08 0.4490 -3.08
0.15 0.1889 0.1963 -3.92 0.1966 -4.07 0.1966 -4.07
0.20 —-0.0903 -0.0951 -5.23 —-0.0953 -5.54 -0.0954 -5.65
0.25 -0.4112 -0.4415 -7.37 -0.4439 -7.95 -0.4441 -8.00

and 2El,/L,, respectively. The lower end rotational stiffness of column ij is denoted as Ry, jj. Table 1
illustrates the ratios of RyL./El. computed according to Eq. (12a) with consideration for the
foregoing described stiffness interaction among columns in different stories with respect to the
variation of the applied load for the four cases shown in Fig. 4. In Case 1, the column giffness
interaction is not considered, while in Cases 2, 3, and 4, the interaction is considered for the effects
of one column above, two columns above, and three columns above, respectively. The differences of
Ry, ij of Case 1 to that of Cases 2 to 4 are shown as errors in Table 1. The negative values of the
errors denote that Ry, j; associated with Case 1 is less than that of the other cases, which indicates
that columns located above and beyond the adjacent stories contribute positively to the column end
rotational stiffness, Ry, ;. Comparing the errors associated with Cases 2 to 4 for each given applied
load magnitude, it is found that there is almost no difference among the three cases, which suggests
that the effects of columns beyond those in the adjacent stories on Ry may be negligible.
Furthermore, the trivid values of the errors between Cases 1 and 2 suggest that the siffness
interaction between columns in adjacent stories is insignificant. Therefore, for the reason of
practicality, the rotational stiffness interaction among columns in the same column line and different
stories is neglected in this study for calculaing the column end rotationa stiffness.

4. Decomposition of multi-storey frames

In the case of single storey frames, the beam-to-column rotationa restraint is directly applied to
the upper ends of connected columns. In a multi-storey frame case, floor beams provide rotationa
restraints for both the lower and upper columns at a joint. To decompose a multi-storey frame into a
series of single-storey PR frames and apply the storey-based buckling method proposed by Xu and
Liu (2002), one of the challenges is how to distribute the beam-to-column rotationa-restraining
gtiffness between the lower and upper columns with consideration of the effects of axial load on
column end rotational stiffness. In this section, the beam-to-column rotationa-restraining stiffness is
discussed at first. Then, different approaches of decomposing a multi-storey frame into a series of
single-storey PR frames are proposed.

4.1 Beam-to-column restraining stiffness

Shown in Fig. 5 is the deformed profile of column subassemblage in an unbraced frame in the
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Fig. 5 Beam-to-column rotational restraining stiffness

lateral sway buckling mode. The beam-to-column rotationa-restraining stiffnesses at the upper and
lower joints of column ij are denoted as Ry, ; and Ry, ; and can be expressed as

2

Rouij = Z Rou, ijk (159)
K=1
2

Ry ij = z Roi,ijk (13b)
K=1

where subscript k (k=1, 2) denotes the beam on each side of column ij. Ry, ijx and Ry, ijx are end
rotational stiffnesses of the beams that are connected to the upper and lower ends of column ij,
respectively, and they are Xu and Liu (2002)

6ry1 Elpyijk

2+ vr 16
4-=ry 1l 2 Lbu,ijk( 2) (169

6ry1 Elgijk
4—r 1l 2 Lo iji

(2+vry ) (16b)

in which r, and r,, are end-fixity factors associated with the near and far ends of beam k,
respectively. Parameter v accounts for the deformed shape of the beam in frame buckling. For
unbraced frames buckling in lateral sway mode, v is taken as one.

Let R and R, be the end restraining stiffnesses of the lower and upper ends of column ij,
respectively. Based on the principle that the distribution of beam-to-column restraining stiffness shall
be proportional to the column end rotational stiffness at each joint, the end rotational-restraining
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stiffnesses of the upper and lower ends of column ij can be expressed as,
Ruii = HuijRouij (179)
Riii = H,iiRolij (17b)

where the stiffness distribution factors p,  and L4 j; are

Rcu i
oy = s (189
" Ry e+ Reyij
Rel ij
Y= —l (18b)
b Reiij * Reu -

in which Ry, i-1); and Ry, jj are the rotational stiffnesses of the upper end for columns (i — 1) j and ij;
Reij ad Ry ¢+1; ae the rotationa stiffnesses of the lower end for columns ij and (i + 1)],
respectively.

4.2 Distribution beam-to-column rotational-restraining stiffness

As stated previoudly, to decompose a multi-storey frame into a series of single-storey PR frames,
one of the challenges is how to distribute the beam-to-column rotational-restraining stiffness
between the lower and upper columns at a joint so that the column end restraining stiffnesses and
corresponding end-fixity factors can be evaluated in accordance with Egs. (17) and (4), respectively.
It is noted from Egs. (2) and (3) that the column end-fixity factors are essential for computing the
column latera stiffness modification factor which characterizes the column sability in the laterd
sway mode.

It is clear from Egs. (17) and (18) that the determination of the end restraining stiffness of a
column requires the evaluation of column end rotationa stiffness which can be computed in
accordance with any one of Egs. (12) to (14) depending on the desired accuracy of the results.
Therefore, there are three approaches for computing the distribution factor of beam-to-column
rotational-restraining stiffness, in which the column end rotationa iffness are evaluated
corresponding to Egs. (12), (13) and (14), respectively. For the column subassemblage shown in Fig. 6,
the relationship between the iffness distribution factors for columns that are joined together
satisfies

M) = 1—Hyj (19

thus, only the stiffness distribution factor associated with upper end of column ij needs to be
evaluated.

The first approach of computing the distribution factor, 1, j;, is referred to as the geometrical
stiffness distribution (GSD) approach in which the effect of column axial force is accounted for, and
the column end rotational stiffnesses are calculated based on Egs. (12). For column ij, the column
end rotational stiffness Ry, j;, can be directly obtained from Eq. (12b) in terms of end fixity factor
r,ij- Applying Eq. (128) for column (i + 1)j to compute column end rotational stiffness Ry, s 1);
yields
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Noted that R, +1); in Eq. (20) can be taken as R, (+1); = R, ¢+1)j based on the foregoing discusson
which concludes that the rotational stiffness interaction between upper and lower columns in the
same column line can be neglected in calculating the column end rotationa stiffness. The model of
the decomposition is shown in Fig. 6(a). By substituting Egs. (12b) and (20) into Eq. (18a), the
stiffness distribution factor associated with the upper end of column ij can be obtained as

1+

Elgi3r i —(1—=r ;) @;tang;

Lo tang,
Ul +3r|,ij_¢h
Hyij = & (21)
El.i;3r i —(1—r ) @tang; + Roui+1i —Elc i+ 0@+t @i 1/ Le i+
Le i 1-r 5+ 3r|’ijt_an(g- 1+ Rbu,g-li-l)jl—c,(i +nitangi .y
@, ¢ (i +1)j @i + 1)

wherer, j; is defined in Eq. (4b), and ¢; and ¢;.1) are defined in accordance with Eq. (5).
Similarly, while Egs. (13) are employed to evaluate 1, ; based on Eq. (18d), the corresponding
stiffness distribution factor can be expressed as
Elcij 3r
. L. 1+2r;
i El.; 3r +E|c,(i+1)j 1
Leij1+2r5 Loy L+ Elgi+1/Ru+njle i+

(22)

where R, +1)j = Roy, ¢+ as discussed in Eq. (21) and r j; is defined in Eq. (4b). The approach
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based on Eq. (22) to compute the siffness distribution factor is referred to as the frame-based
stiffness distribution (FSD) approach, and the corresponding model of decomposition is the same as
that shown in Fig. 6(a) except the effects of axial loads are neglected.

If Egs. (14) are employed to evaluate 1, ;; based on Eq. (18a), this yields

b El,/Le.
“ Elg /Loy + Elg 41/ Le i+ 1)

(23)

The approach based on Eg. (23) to evaluate the stiffness distribution factor is referred to as the
column-based stiffness distribution (CSD) approach. The model of decomposition associated with
the CSD approach is similar to that of the FSD approach except that the rotational stiffness of
beams at the far end of the column in adjacent stories is taken as infinite as that shown in Fig. 6(b).
It is shown in the Appendix that the stability equation associated with alignment chart can be
obtained from that of the CSD model in the case of single column subassemblage.

It is noted that the evaluation of the stiffness distribution factor, L1, jj, in accordance with either the
GSD or FSD approach, requires the end-fixity factor at the far end of the column r, j; to be known,
as indicated in Egs. (21) and (22). In such case, the decomposition process can be conveniently
initiated from the first storey because the end-fixity factors associated with column bases are known
and continued toward to the upper stories. For the case of using the CSD approach, the
decomposition process can be initiated from any storey. Having the distribution factor p,; be
evaluated, the corresponding distribution factor for the lower end of column (i+1)j, f4, sy, Can
obtained from Eq. (19). Consequently, the corresponding column end restraining stiffnesses R, j; and
R, ¢+yj shown in Fig. (6¢c) can be obtained from Egs. (17). Having column end restraining
stiffnesses for all columns being computed, the multi-storey frame can now be represented a series
of single-storey PR frames as shown in Fig. 1(b).

Among the three proposed approaches, the GSD approach is the one in which the effects of the
axia force on column end rotational stiffness are accounted for. However, in a frame buckling
anaysis, the critical axial force of each column at the buckling state is unknown in advance, and as
the axia force and column end rotationa stiffness are interrelated, numerical iterations are required
to obtain the results. As the iterative process may be quite cumbersome from the viewpoint of
practice, it is recommended to initiate the process of evaluation of the stiffness distribution factors
with either the FSD or CSD approach and compute column the critical axial force P;j in accordance
with the procedure of evaluating the column effective length factor, described in the next section.
After that, recalculate the gtiffness distribution factor based on the obtained column critical axial
force P;; and Eq. (21) and decompose the frame accordingly. In such a way, more accurate effective
length factors of columns can be obtained with only two iterations as shown in the demonstrated
numerical examples.

5. Evaluation of column effective length factors

Having a multi-storey frame decomposed into a series of single-storey PR frames as discussed in
the previous section, the critical load multiplier associated with each storey in lateral sway buckling
can be obtained from EQ. (6) for the corresponding single-storey PR frame. However, the
transcendental relationship between f; and ¢; expressed in Eq. (2) is complicated and inconvenient
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for solving the critical loads of each storey. For engineering practice, Eq. (2) can be simplified and
approximated by means of the first-order of Taylor series expansion as Xu and Liu (2002)

B = BO,ij_ﬁl,ij(nzj (24)

where the values of % j; and B3, j; can be computed from the following expressions

T ST SO

Bo.ij = A0 o (259)
B, = 8(5+ ri,ij) —(34=ryidryih it B+ry i+ 3rL21,ij)rfij (250)
" 30(4_rl,ijru,ij)2
By subgtituting Eq. (24) into Eq. (1), the latera stiffness of column ij can be written as
ey, Pug
S| = 12%%130,ij—|__'__131,ij/\% (26)
cij

C ij

in which L and P,; are the length and applied axial load of column j in the ith storey,
respectively. A; is the proportional load multiplier associated with the ith storey of the frame. The
previous study by Xu and Liu (2002) on single-storey PR frames demonstrated that Eq. (24)
provided an adequate approximation for Eqg. (2) for evaluating column lateral stiffness. Substituting
Eqg. (26) into Eq. (6), the stability equation for storey i buckling in a latera sway mode can be
expressed as

m Ieii Puii
- 5 12Ekiip _Puig 0 27
S j; DLE‘” BO,I] Lc,ijBl’” ] ( )
from which the critical load multiplier can be solved as
m m
o = § s 8 BB -
i= Lc,ij i= ¢ j

and the critica axial force of the column is

Py = /\ichu,ij (1j=14,2,3,....,m) (29)

Finally, the storey-based effective length factor of the column can be evaluated as

T El. .. .
K = =<l (j=1,23,..,m) (30)
. LC,ij Aicrpu,ij

The proposed procedure for evaluation of the storey-based effective length factor for columnsin a
multi-storey unbraced frame with m— 1 bays and n stories can be summarized as follows:
(1) Compute the rotational stiffness of each beam and beam-to-column restraining stiffness of each
joint according to Egs. (16) and (15), respectively. Set storey index i = 1 (i = 1 for the first
storey);
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(2) Evaluate upper-end stiffness distribution factors y, ;; from Egs. (21) to (23) based on selected
decomposing approach (GSD, FSD and CSD) for al of the columns (j = 1, 2, 3...m) in the
storey; If i # n, then evaluate lower-end stiffness distribution factors for upper columns Ly i+ 1)
from Eq. (19);
(3) Calculate the beam-to-column rotational-restraining stiffnesses R, j; and R, j; based on Egs. (17)
and compute corresponding end-fixity factors r, ; and ry ;; from Egs. (4) for al of the columns
in the ith storey;
(4) Compute the column lateral stiffness modification coefficients B ; and By (j = 1, 2, 3...m)
from Eqgs. (25);
(5) Solve the critical load multiplier associated with the ith A, from Eq. (28) and compute the
corresponding storey-based effective length factors Kj; (j = 1, 2, 3...m) from Eq. (30) for
columns in the storey;
(6) If i #n, then set storey index i =i + 1 and go to step 2, otherwise the procedure is terminated.
It is noted that the above procedure is primarily developed for cases when either the FSD or CSD
approach is selected for the decomposition process. If the GSD approach is selected, then the
iterative process to account for the effect of axia force in columns would have to take place. As
discussed in the previous section, a process that involves only two iterations is recommended by
minor modification on the foregoing procedure for the first iteration as follows:
1. In Step 2, evaluate upper-end stiffness distribution factors L4, ; based on Eq. (22) or (23) instead
of Eq. (21);

2.In Step 5, instead of computing column effective length factors Kj; (j = 1, 2, 3... m), calculate
column critical axial force P; (j = 1, 2, 3...m) in accordance with Eq. (29) so that P;; can be
used for evaluating upper-end stiffness distribution factors (i, j; in accordance with Eq. (21) in
the second iteration.

It is noted that the effective length factor obtained from Eq. (30) for columns in the i-th storey is
referred to as the storey-based effective length factor because it is evaluated based on the critica
load multiplier, A, which is associated with latera instability of the same storey. Since the critica
load multiplier corresponding to the lateral instability of a particular storey may not be the most
critical one for the multi-storey frame, therefore, the column effective length factor associated with
the most critical load multiplier of the multi-storey frame as defined in the system buckling method
(Majid 1972, Livedey 1975, Chen and Lui 1987) can be obtained as

T / El. ;; .
K. = — [—2 =123,....m 31
1] Lcyij Acrpu’ij (J ) ( )

where A = Minf{ Ay, Aogry Aser - Aner} 1S the critical load multiplier associated with the multi-storey
frame.

6. Numerical examples

The proposed storey-based stability analysis procedure for unbraced multi-storey frames is
illustrated in the following two steel frame examples. The frames are comprised of steel beams and
columns with W-shape sections, where Young's modulus of the steel E = 200 GPa. In the first
example, the column-based stiffness distribution (CSD) approach is adopted for a one-bay three-
storey frame, and the detailed calculations of effective length factors for columns of each storey are
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presented. Then, the application of the geometricd siffness distribution (GSD) approach is
demongtrated through the calculations for columns in the first storey of the frame. While in the
second example, the frame-based stiffness distribution (FSD) approach is employed to analyze a
two-bay two-storey frame. For both examples, comparisons are made among the results obtained
from the proposed analysis procedure and from other methods to show the validity of the proposed
anaysis.

6.1 Example 1: One-bay three-storey frame

A one-bay three-storey frame is shown in Fig. 7 (Shanmugam et al. 1995), in which the moment
of inertia associated with W-shape sections are: W8 x 35, |, = 5.286 x 10°m* (127 in%); W8 x 48,
I, = 7.659x10° m* (184 in%); W14x30, |, = 12112x10° m* (291 in%); W21 x44, |, =
35.088 x 10 m* (843 in®.

124.6 kN l B, l 124.6 kN
. W14x30 3 E
31
B on
979 kNl = By 1979 kN
2
o W21x44 £
m pal Cxn o
Z . >
2 & “
97.9 kNlI Bu = 197.9 kN
W21x44 1
% g &
Cy % % Ci2 §
= = «

7.62 m

T
1

Fig. 7 Example 1. One-bay three-storey frame

Table 2 Example 1: Column effective length factors
System  Alignment

CSD FSD GSD CsD FSD GSD

Column | ckling  chart  -eMessurier  Lul 20 Tan) £ (30) Eq. (30) Eq. (31) Eq. (31) Eq. (31)
Lover 114 111 112 114 111 111 113 121 121 115
Midde 114 121 121 121 121 121 115 121 121 115

Upper 152 123 1.23 1.30 123 1.23 143 161 161 153
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Column-based Stiffness Distribution (CSD) approach

The detailed caculations of critical load multipliers of each storey and column effective length
factors based on the CSD approach are demonstrated in the following. The resulting column
effective length factors are also summarized in Table 2.

Storey 1:
(1) The rotational stiffness of beam By; which is connected to columns C;; and Cp, can be
evaluated in accordance with Egs. (16) as

EI 8 _5
bu _ 2%10 x35088x10  _ ppone oo kN-mirad
Ly 1t 7.62

Rou,11 = 6

(2) The distribution factors associated with the upper ends of columns Cy; and C,, can be obtained
from Eq. (23) as

El;11/Lgu
Elg1/Leu+Elgun/Len

Hy11 = Hy12 =

_ 2 x 10° x 7.659 x 10°°/3.9624
2% 10° x 7.659 x 10°°/3.9624 + 2 x 10° x 5.286 x 10/ 3.9624

= 0.5917

and from Eq. (19), the distribution factors for the lower ends of column C,, and Cy are p, o1 = 22
=1- p, 11 =0.4083.

(3) The end-fixity factors for the lower end of the columns are r; 1; =r 1, = 1 as the column bases
are rigidly connected to the foundation. The beam-to-column rotationa-restraining stiffness
contributed by beam B,; to the upper ends of columns Cy; and Cy, can be computed from Egs. (17)
as

Ruu = Ry = My 1Ry 1 = 0.5917 x 55256.69 = 32695.38 kN-m/rad

The corresponding end-fixity factors are given by Egs. (4):

Mo = My = 1 = ;L - = 0.7382
| 4 SElen o 3x2x10°x7.659% 10
Ry ulecu 32695.38 x 3.9624

(4) The column lateral stiffness modification coefficients 3, 1; and B, 5 can now be evaluated from
Egs. (25) as

Nautlyntlynfha _ 1+0.7382+0.7382

4_rl,llru, 11 4—-1x%0.7382 = 0.7592

Bou = Boz =

B - B _8(5+ I‘i 1) = (34—, 1)yl +(8+r, 4 + 3"5, 11)"511
1,11 = Pr =
30(4—r, 1l 11)2




Sorey-based stability analysis of multi-storey unbraced frames 695

_ 8(5+0.7382°) - (34-0.7382) x 0.7382 + (8 + 0.7382 + 3% 0.7382%) _

> 9.455x 107
30 x (4-0.7382)

(5) Compute critical load multiplier and column effective length factors.

2 PyiiBui _2Puu _ 2x320.4 x 0.09455

= 15.2907 KN/m
Leij Lenn 3.9624

i=1
2 Elg 1By — 2%2x10°x7.659 x 10 x 0.7592

2 - = 373.8638 kN/m
&Ly 3.9624

Substituting the foregoing vaues into Eq. (28) yields

Ay = ! = = 24.45;

2 Elg 4By / 2 P, 1By _ 373.8638
& Ly /4 Loy 15.2907

=1

Based on Eq. (30), the storey-based effective length factors of the columnsin Storey 1 are

n [ El 3.1416 _ [2x10°x7.659 x 107°
Ky = Kp = 6il - XJ =111
T T A Pen | 3.9624 24.45 x 320.4
Storey 2:
(2) The rotationa stiffnesses of beam B,, are the same as that of beam By,

Rbu, 21 = Rbu, 11 = 552567 kN'm/raj

(2) The distribution factors for the upper ends of column C,; and C,, are

Elc, 21/|—c,21
Ele s/ LeoitElga/Lea

Hy21 = Hy22 =

_ 2 x 10° x 5.286 x 10"/ 3.9624 _
2 x 10° x 5.286 x 107>/ 3.9624 + 2 x 10° x 5.286 x 10>/ 3.9624

and from Eq. (19), the distribution factors for the lower ends of column C;; and Cgp are 1y, 31 = Uy 2
=1- My 21 = 0.5.

(3) The beam-to-column rotational-restraining stiffnesses contributed by beam By, to the lower
ends of columns C,; and C», and the corresponding end-fixity factors can be obtained as

Rz = Ri2 = [ 2Ry, 11 = 0.4083 x 55256.69 = 22561.31 kN-m/rad

Mo =022 = 1 = 1 = 0.7382

1+ SElea ,3x2x10°x5286x10"
Ry 21ke 21 22561.31 x 3.9624

The beam-to-column rotational-restraining stiffness for the upper ends of columns C,; and Cy, are
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Ru21 = Ry2 = My 21Rou 21 = 0.5 x 55256.7 = 27628.35 kN-m/rad

from which the corresponding end-fixity factors are given by

Mnor = My = 1 = ;L - = 0.7754
’ 14 3Blea 0 3x2x10°x5.286x 10
Ry 21ke 21 27628.35 x 3.9624

(4) The column lateral stiffness modification coefficients By 5 and B, 5 can be evaluated from
Egs. (25) as

truon ol _ 0.7381+0.7754 +0.7381 x 0.7754 _
4=r aly 2 4-0.7381 x 0.7754

Boa = Boz = fLat 0.6085

B - B _8(5+ rﬁ,21) —(34—r, )y ol nH(8+T1, o + 3"5,21)"521
121 = Pro =
30(4_rl,21ru,21)2

_ 8(5+0.7754%) — (34— 0.7754) x 0.7754 x 0.7381 + (8 + 0.7754 + 3 x 0.7754%)  0.7381°
30 x (4—0.7754 x 0.7381)°

= 8.9534x 107
(5) Compute critical load multiplier and column effective length factors.

2 Pu,2]Bl,2] — 2Pu,21
=1 Lc'2j LC,Zl

_ 2x2225x0.089534 _
Bia = 39604 = 10.0552

2 Elg 5Bz — 2%2x10°x5.286 x 10° x 0.6085
=1 Lz 2 3.9624°

= 206.8106

Thus, the critical load multiplier for Storey 2 is

_ 2 El 21 Bo, 2i 2 P, 2iB12i _ 206.8106 _
AZcr - z 3 /z LC’ZJ - 100552 - 2057

i=1 Lc,2j =1

and the associated storey-based factors can be calculated from Eqg. (30) as

n [ El 3.1416 _ [2x 10°x 5.286 x 10
Ky = Ky = ezl - XJ =121
AT T L N APy 39624 20.57 x 222.5
Storey 3:
The procedure of caculating Storey 3 is similar to that of in Storey 2. The beam-to-column
rotational-restraining stiffnesses for the lower ends of columns Cz and Cs, and the corresponding

end fixity factors are R 31 = R 32 = Ry 21 = 27628.35 KN-m/rad and 1, 3; = 1| 32 = ry 21 = 0.7754. For
the upper ends of columns Cz and Csp, the beam-to-column rotational-restraining stiffnesses and
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corresponding end fixity factors are

Elpa _ .2x10°x12.112x10™°

R,s1 = R,» = R =6 =6 = 19074.02 kN-m/rad
U, 31 u, 32 bu, 31 Lb' 31 765
1 1
Miar = Mz = = 3 - = 0.7044
14+ SElea ,3x2x10"x5.286 x 10
Ryailea 19074.02 x 3.9624

The critical load multiplier for Storey 3 is found as Az, = 35.55, while the storey-based effective
length factor for the columns are Ks; = K3, = 1.23.

Comparing with the critical load multiplier found for each storey, the critical storey of the frame
in lateral instability is Storey 2 with the load multiplier A, = Ay = 20.57. The column effective
length factor associated with A, are obtained from Eq. (31) are Ky; = Kip = 1.21, Ky = Ky = 1.21,
and Ks = K = 1.61.

Geometrical Stiffness Distribution (GSD) approach

The foregoing calculation of obtaining the critical load multiplier of the frame (A, = 20.57) based
on the CSD approach is identical to that of the first iteration for the GSD approach. Therefore, the
second iteration of the GSD approach is illustrated herein. Due to the space limitation, only the
detail calculation associated with the columns in Storey 1 is presented. However, the resulting
effective length factors for columns in Storeys 2 and 3 are summarized in Table 2.

;Slt)otl'iyelr.otational stiffnesses of beam B,; are obtained previously as Ry, 11= Ry, 21 =55256.69
k[\(lé;nllzrvaald.uante stiffness distribution factors. Based on Eqg. (29), the critical axia forces for columns
in Storeys 1 and 2 are

Py = Py = AyinPuu = 20.57 x (124.6 + 97.9+ 97.9) = 6590.63 kN
Py = Py = ApinPu o = 20.57 x (124.6 + 97.9) = 4576.83 kN

Then, the corresponding parameters, ¢;, are obtained from Eq. (5) as

_ _ Pulen J6590.63 x 3.9624 _

= = ' = = 25001
Gu= 2= B Lla 3865.84

_ _ Poleor A/4576.83 x 3.9624 _

= = ' = = 2.6071
P = P Elen/lcn 2668.08

Note that the end-fixity factors are unity at column bases (11 =1, 12 = 1) and take R, 21 = Ry, 21
= 55256.69 kN-m/rad. The stiffness distribution factors associated with the upper end of columns
Cyu1 and Cy, can be computed based on Eg. (21) as
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Elg 1131 11— (1-r 1) @utang,

L tan
ot1- Mot 3|’|,11_(P'Ll

1
Elg 1131 11— (1—r 1) @utang;, + Elg 21Ryy 212/ (El g 21/ L 21) — @tan gy,

Hy1n = Hy2 =

Len tang,, Le 2 Ry 21 tang,
’ 1-rp+3rny—— ' 1+ :
the i O (Elg21/Le 1) @n
—16667.24 — 0.5096

= 216667.24— 16037.72

(3) The beam-to-column rotational-restraining stiffness contributed by beam B,; to the upper ends
of columns Cy; and C;, can be computed from Egs. (17) as

Rit1 = Ry12 = Hy11Rou 11 = 0.5096 x 55256.7 = 28160.15 kN-m/rad

and the corresponding end-fixity factors can be found as

fun = Tuw = T03E /1 1)/R. s 1+ 3 3865.84/28160.15

(4) The column lateral stiffness modification coefficients 3, ; and B, 4 can be obtained from
Egs. (25) as

= 0.7083

Bow = foss = 1+ 0.7083 + 0.7083
0, 11 0, 12 4-1x%0.7083

= 0.7341

2 2
s 8(5 + 0.7083") — (34— 0.7083)(0.7083) + (8 + 0.7083+ 3 X 0.7083%) _ ¢ 1o7g 102

30(4 —0.7083)°

(5) Compute the critical load multiplier and column effective length factors:

2 PyiiBuij - 2Pun,  _ 2x320.4x0.094279

= = 15.2469 kN/
jZl L, ij Leu Bl’ H 3.9624 ©.2469 m
2 B 2
Eloyboy - Ranp - 2x366584x 07341 _ 561 gp5y njm
i1 Loy Leu 3.9624

Substituting the foregoing vaues into Eq. (28) yields

2 2
Ay = § Beubo 1;/ PuLlJﬁL L - 3%%:3‘ = 2371
¢ 1 .

3
i1 Loy /=1

Therefore, the effective length factors for columns Cy; and Cy, are

Ky = Ky = 71| Blen/ban _ 31496 % J 3865.84 - 113
APyl 23.71 x 320.4 x 3.9624
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Repesating the foregoing procedure for storeys 2 and 3, it can be found that A, = 22.71, Ky = Ky, =
1.15 and Asy = 26.24, Ka; = K3, = 1.43 for storeys 2 and 3, respectively. Therefore, the critical load
multiplier of the frame in lateral ingtability is A; = Ay, = 22.71, and the corresponding column
effective length factors are Ky; = Ko = 1.15, Ky = K, = 1,15, and Kz, = Ks, = 1.53.

For the purpose of comparison, the column effective length factors of this example obtained from
the CSD, FSD and GSD approaches and those abtained from other methods reported by
Shanmugam et al. (1995) are presented in Table 2. It is found the results obtained from the CSD
and FSD approaches are not different from this example, and they are in good agreement with those
of LeMessurier’'s method when Eq. (30) is used for computing column effective length factors. It
can be seen from Table 2 that among different methods of evaluation of column effective length
factors, the GSD approach associated with using Eqg. (31) yields the most accurate results to those
of system buckling analysis.

Two-bay two-storey frame

The second illustration is a two-bay two-storey frame as shown in Fig. 8, which is investigated by
Lui (1992), where the beam-to-column connections of are rigid. The moment of inertia of each
member is shown in Fig. 8, in which | = 8.3246 x 10™° m*. For this example, the FSD approach is
selected for computing column effective length factors, and the detailed calculation for columns in
the first storey is present below to illustrate the procedure.

(1) Compute the rotational stiffnesses of beams in the first storey from Egs. (16):

El 2x10°x87.4915x 10
Rou 112 = Rou121 = Rl 212 = Roi 221 = 6 el -6 = 174494 kN-m/rad
Lp, 112 6.0168

where the last subscript denotes whether the beam is located on the left or right side of the column.
For example, the last subscript 2 in Ry, 11, denotes that the beam is on the right side of column Cy;
as that shown Fig. 8.

467.1 kKN 815.8kN 348.7kN
l BZ] l B22 l
84117 84117 2
2 21 22 ﬁ C %
1100.9 kN 1873.1 kN 7722 kN =
B B>
10.51 7 10517 1
3 le S 3le. &
2| Cu Cp | 2 A Cs &
o wy
o
1 2 3
‘ 6.0168 m 4.4928 m
|
|

|
Fig. 8 Example 2: Two-bay two-storey frame
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S|m||ar|y, it can be found that Rbu, 122 = Rbu, 131 = 233685 kN-m/rad, Rbu, 212 = Rbu, 21 = 139629 kN-
m/rad, and Ry, 22 = Ry, 231 = 186992 kN-m/rad. Hence, the beam-to-column restraining stiffnesses
are: Ry, 11 = Ry 112 = 174494 KN-m/rad, Ry, 12 = Ruy, 121 + Roy122 = 408179 kKN-m/rad, Ry, 13 = Ry 131
= 233685 kN-m/rad, Ry, 21 = Ry 212 =139629 kN-m/irad, Ry, 22 = Ruy 221 + Ry 222 = 326621 kN-m/
rad, Rbu, 23 = Rbu, 231 = 186992 kKN-m/rad.

(2) Evauate the stiffness distribution factors: as the end-fixity factors are unity at the column
bases (r,11=r,12=r,13=1) and the beam-to-column restraining stiffness at the upper end of
column Cy is Ry 21 = Ry, 21 = 139629 kN-m/rad, the distribution factors associated with the FSD
approach for the upper end of column C,; can be obtained from Eq. (22) as,

I _ Lo 14264 _ Le s
wi Elgn 3ru + El; 2 1 El: 11 + El; 1
Lenn1+2r 4 Lo 1+El 0/Ryialea Lenn Lea 1+ Elg/Ryablen
2x10°x38.2933x 10™°
S % _ ___ 21698 _cgee
2x10°x38.2933x 10 2x10°x19.5628x 10 1 21698+11756
3.5296 3.048 1+12836/139629

and from Eq. (19) the stiffness distribution factor for the lower end of column Cyy iS 21 = 1=ty 11
= 0.3514. Similarly, the distribution factors corresponding to the other columns can be found as
Hy 12 = 0.5445, Hi 22 = 0.4555, Hy 13 = 0.6772, Hi 23 = 0.3228.
(3) The beam-to-column rotational-restraining stiffnesses contributed by beams B;; and B, to

columns C,3, C» and Cy3 can be computed respectively from Egs. (18) as

Ru11 = My 11Rpy 11 = 0.6486 x 174494 = 113177 kN-m/rad

Ri12 = My 12Roy 12 = 0.5445 x 408179 = 2222253 kN-m/rad
and

Ru13 = My 13Roy 13 = 0.6772 x 233685 = 158251 kN-m/rad

The corresponding end-fixity factors can be obtained from Eq. (4) asr, 11 = 0.6439, ry 1, = 0.8338,
and ly,13 = 0.8257.

Table 3 Example 2: Parameters associated with columns in Storey 1

Column 1] Iy I3 BO,lj Bl,lj x 1072 Pu,ljBl,lj/Lc,lj EIC,ljBO,lj/L%,lj
1 0.6349 1.000 0.6745 9.386 41.696 1174.78
2 0.8338 1.000 0.8425 9.585 73.023 998.52
3 0.8257 1.000 0.8353 9.572 30.397 746.40

SPy 1B i ZEl 63iBoi IL3 5 145.115 2919.70
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Table 4 Example 2: Column effective length factors
System  Alignment

CsD FSD GSD CSD FSD GSD

Column pikling  chart  LeMessurier Lul 20 "o £ (30) Eq. (30) Eq. (31) Eq. (31) Eq. (31)
C. 136 119 140 139 139 139 134 139 139 134
Co 086 1.06 088 08 088 08 08 08 08 085
Cs 115 1.07 118 118 118 117 114 118 117 114
Cn 206 1.25 140 158 139 140 175 211 210 204
Cn 156 111 106 121 106 106 132 159 159 154
Cn 156 112 105 120 105 106 132 159 159 154

(4) The column latera stiffness modification coefficients 3 4, and B 4 are calculated based on
Egs. (25) and tabulated in Table 3.

(5) Computing the critica load multiplier and column effective length factors: based on the
information provided in Table 3, the criticd load multiplier A, can be found from Eqg. (28) as

_ 3 El, 11B0 1 3 P, 1,'31 1j _ 2919.70 _
Alcr - Z 3 /J LC' . - 145115 - 2012

j=1 LC,lj =1

Thus, the effective length factors for columns Cy4, Cip, and Cy3 can be evaluated based on Eq. (30)
as Kll = 139, K12 = 087, and Klg = 117, reﬂ)eCUde

(6) Repeat steps (2) to (5) for columns in the second storey; the corresponding column effective
length factors are obtained and presented in Table 4.

For the reason of comparison, the column effective length factors calculated based on the CSD,
FSD and GSD approaches and that of other methods reported by Lui (1992) are also presented in
Table 4. It can be seen from Table 4 that when Eq. (30) is used for computing column effective
length factors, the results of the CSD and FSD approaches are in good agreement with those of
LeMessurier's method while the GSD approach associated with Eq. (31) yields the most accurate
results to those of system buckling analysis.

7. Conclusions

This paper presents a study on elastic sability anaysis of multi-storey unbraced frames based on
the concept of storey-based buckling. A practical method of evaluating the effective length factors
for columns in multi-storey frames is proposed by means of decomposing the multi-storey frame
into a series of single-storey PR frames and applying the storey-based stability analysis procedure
(Xu and Liu 2002) to each single-storey PR frame. In this study, the laterd tiffness of a multi-
storey frame is derived and expressed as the product of the lateral stiffness of each individual storey,
which make it possible to investigate the latera stability of the multi-storey frame through
examining the stability of each individual storey. The end rotational stiffness of an axially loaded
column is derived, and rotational stiffness interaction between the upper and lower columns that are
connected to each other is investigated. The study concludes that while calculating the column end
rotational stiffness, the rotational stiffness interaction among columns in the same column line and
in different stories is insignificant and can be neglected for the reason of engineering practice.



702 Y. Liuand L. Xu

To facilitate the frame decomposition, the different approaches of distributing beam-to-column
rotational-restraining stiffnesses between the upper and lower columns are investigated. The
proposed three decomposition approaches, namely the GSD, FSD and CSD approaches, are
characterized by the means of distributing beam-to-column rotational-restraining stiffnesses between
the upper and lower columns. Among the three decomposition approaches, GSD accounts for the
effect of axia force on column end rotational stiffness and therefore, provides more accurate results
than that the other two simplified approaches, in which the effect of the axid force is neglected.
However, the drawback associated with the GSD approach is that numerical iterations are required.
This study proposed a procedure, which involves only two iterations to obtain accurate results while
using the GSD approach.

After decomposing the multi-storey frame into a series of single-storey PR frames, the procedure
proposed by Xu and Liu (2002) is applied to each decomposed single-storey PR frame to evaluate
column effective length factors. Numerical examples are then presented to illustrate the effectiveness
of the proposed procedure. The results obtained from the proposed approaches are compared with
those of system buckling analysis, aignment chart method and methods proposed by other
researchers (LeMessurier 1977, Lui 1992). It is found that the results obtained from the GSD
approach provide better accuracy than the other methods. Among the three approaches proposed in
this study, the CSD approach is simplest and provides reasonable accuracy for the column effective
length factors; therefore, it is recommended for engineering practice. In the case that more refined
results are desired, the GSD approach can be applied to obtain higher accuracy.
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Appendix

It is shown in this Appendix that the stability equation associated with alignment chart can be obtained
from the CSD model in the case of single column subassemblage. The stability equation which is used to
develop the aignment chart for evaluating the effective length factor for column ij in unbraced frames is
(AISC 1999)

@i _G|,ijGu,ij(ﬂzi_36 =0 (Al)
tang; 6(G,;; +Guij)

where ¢ is defined in Eq. (5) and the column-to-beam stiffness ratios associated with the lower and upper
joints of the column are defined respectively as

0 02
Gl,ij - D J E|b|| (Aza)
DL -1 Lo Lbl ijkO]
1EI(: kJJ EIbu ij
Gu,i 0/ 0 'D (A2b)
: z I—bu I]kD

For a single PR column ij as shown in Fig. (6b), the stability equation for the column buckling in latera
sway mode such that the lateral stiffness of the column vanishes that can be expressed as follows based on

Eq. (2):
B = g 8y, (;C0S@; + 8z, ;;SiNg; -0 (A3)
U 1218ry i1y, i —a3,;COS@; + &y i @SN,

where coefficients &y j, a,,ij and ag ;j are defined in Egs. (3). Since Eq. (A3) is true for any values of r, ; and
ry,ij between zero and one, thus the numerator in Eq. (A3) must satisfy the following:

ay jj@;cos@; + a, jsing; = 0 (A4)

Considering column ij is in an unbraced frame with rigid beam-to-column connections buckles in lateral
sway mode, this yidlds rcq = rc2 = 1 and v = 1 in Egs. (16). Therefore, the beam-to-column rotational-
restraining stiffnesses R j; and R, j; &t the lower and upper ends of the column can be obtained from Egs. (16)
as



704 Y. Liuand L. Xu

El
Ry, j = 65 —oLik (A5a)
o1 z I—bI ijk
Roo = 6 EL'bu~' ‘ (ASD)
K=1 “=buijk

Form Eq. (23), the tiffness distribution factors associated with the CSD approach for the upper end of the
column is

EIC,ij/LC,ij
Elgij/Leijt Elc i+1j/ Le i+

Hyij = (AGa)

Similar to the derivation of Eq. (23), the stiffness distribution factors associated with the CSD approach for
the lower end of the column can be obtained as

El.ii/Lcj
Elgij/Leij + Elg -1/ Le -1

Hiij = (A6b)

Subgtituting Egs. (A5) and (A6) into Egs. (17), the rotational-restraining stiffness of the column ends are

El
R, .. = 6 C UD bu, I| D/D C kID (A?a)
! C ij |1 I—bu ijk Z LC ki [
El Oz i
Ry = 67240 Ib"‘D 0 Z (ATb)
cij & Lok 4L k1|:|

Considering Egs. (A2), Egs. (A7) can be expressed in terms of G factors as

R = ~—cijZ =cij (A8a)
Gl,ij
Ry = 6—-———L—-—1Elg'/L°'“ (A8b)
u,ij
Thus, the corresponding end-fixity factors for the column ij can be obtained from Eq. (4) as
Myij = ](-3 (A99)
1+ 2uij
2
1
rij = G (A9b)
1 + =Lij

2
Egs. (A9) define the relationship between column end-fixity factors and the stiffness ratios. Substituting Egs.
(A9) into Egs. (3a and 3b), the coefficients a,,;; and a,,;; can be obtained as
6(Gyij + Guij)
(2+G,))(2+Gy)

(36— Gy.iiGu.i 1)
(2+Gy))(2+ G )

g = (A10a)

i = (A10Db)
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By substituting Egs. (A10) into Eq. (A4), the stability equation for the PR column ij shown in Fig. (6b),
buckling in lateral sway mode can be expressed in terms of stiffness ratios other than the column end fixity
factors as

6(Guij+ Gui) (36 -G, ;Guii97)
@+ G, )2+ G ) 1) T 2h G, )2+ 6y

sin(¢;) = 0 (Al1)

Eq. (A11) can be simplified as
6(G,i; + Gy, ij) @i;cos(@y) + (36 — G, ;G ¢7)sin(¢;) = O (A12)

Thus, Eg. (A1) can be obtained by rearranging Eq. (A12).





