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Abstract. This paper presents a practical method to evaluate the effective length factors for columns in
multi-storey unbraced frames based on the concept of storey-based elastic buckling by means of
decomposing a multi-storey frame into a series of single-storey partially-restrained (PR) frames. The
lateral stiffness of the multi-storey unbraced frame is derived and expressed as the product of the lateral
stiffness of each storey. Thus, the stability analysis for the multi-storey frame is conducted by
investigating the lateral stability of each individual storey, which is facilitated through decomposing the
multi-storey frame into a series of single-storey PR frames and applying the storey-based stability analysis
proposed by the authors (Xu and Liu 2002) for each single-storey PR frame. Prior to introducing
decomposition approaches, the end rotational stiffness of an axially load column is derived and rotational
stiffness interaction between the upper and lower columns is investigated. Three decomposition
approaches, characterized by means of distributing beam-to-column rotational-restraining stiffness between
the upper and lower columns, are proposed. The procedure of calculating storey-based column effective
length factors is presented. Numerical examples are then given to illustrate the effectiveness of the
proposed procedure. 
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1. Introduction

Column and frame stability is of primary importance to the structural design of unbraced multi-
storey frames. Although theoretical methods or so-called system buckling methods on elastic
buckling of such frames under proportional loading were well established (Majid 1972, Livesley
1975, Chen and Lui 1987), the methods were generally considered impractical because the methods
involved solving the minimum positive eigenvalue from either a highly nonlinear or a transcendental
equation. In design practice, the effective-length based methods are still the general methods of
evaluating the column compressive strength, and the concept of effective-length is considered as an
essential part of many analysis procedures and has been recommended in almost all of the current
design specifications (AISC 1989, 2001). 

Among the various effective-length based methods, the most widely adopted method for designing
a frame is the alignment chart method that was originally proposed by Julian and Lawrence (1959).
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However, since this method adopted several simplifications and assumptions that may be not
realistic, inaccurate column strengths may result from when these assumptions are not satisfied.
Various studies had been carried out, aimed to improve the effectiveness of the alignment chart
methods (Bridge and Fraster 1987, Chen and Lui 1985, Duan and Chen 1989, Chen et al. 1997). 

In evaluating column buckling strength in unbraced frames, the alignment chart method takes into
account the rotational restraints by upper and lower assemblages but neglects the interaction of
lateral stiffnesses among the columns in the same storey in resisting lateral sway buckling of
unbraced frames (possible lateral support provided by other columns in the same storey). Unlike the
alignment chart method that considers column buckling as a single subassemblage buckling, the
concept of storey-based buckling introduced by Yura (1971) takes into consideration the fact that
lateral sway instability of an unbraced frame is a storey phenomenon involving the interaction of
lateral sway resistance of each column in the storey and total gravity load in columns in that storey.
Based on this concept, different methods were proposed to assess the column and frame buckling
loads for unbraced frames (LeMessurier 1977, Lui 1992, ASCE 1997, Aristizabal-Ochoa 1997). The
conclusion obtained from different comparative studies (Shanmugam and Chen 1995, Roddis et al.
1998) on the alignment chart method, system buckling method, and storey-based buckling method
recommended the storey-based buckling method for general use in design practice. The LRFD
specification (AISC 2001) addressed the concept of storey-based buckling because the alignment
chart method does not consider destabilizing effects due to lean-on columns in a frame. Two
methods of determining the storey-based effective length factor, namely, the storey stiffness method
(LeMessurier 1977) and storey buckling method (Yura 1971), were presented in the Commentary of
the LRFD Specification (AISC 2001). 

Considering that the foregoing storey-based buckling methods often require either the first order
elastic analysis or the alignment chart while evaluating the storey-based effective length factor, an
efficient storey-based buckling method (Xu et al. 2001, Xu and Liu 2002) based on the single-storey
partially-restrained (PR) frame model was proposed which did not require either conducting frame
analysis or using the alignment chart. This paper extends the method into the multi-storey case by
decomposing a multiple-storey unbraced frame into to a series of single-storey frames. Different
approaches of decomposition which are primarily related to the distribution of end rotational-
restraining stiffness of beams to the connected upper and lower columns are investigated. Following
the proposed procedure of evaluation column effective length factor for multi-storey unbraced
frames, examples were presented to illustrate its efficiency. 

2. Storey-based stability equation

Considering the elastic buckling of an unbraced frame composed of prismatic members, the
concept of storey-based buckling states that lateral sway instability of an unbraced frame is a storey
phenomenon involving the interaction of lateral stiffness among columns in the storey. In other
words, in resisting the lateral sway instability, stronger columns or columns with larger stiffnesses
are able to provide lateral support for weaker columns in the same storey and the weaker columns
rely upon such lateral support to maintain the lateral stability. Accordingly, the condition for multi-
column storey-based buckling in a lateral sway mode is that the sum of the lateral stiffness of the
storey vanishes. For a multi-storey unbraced frame with m − 1 bays and n stories as shown in Fig. 1(a),
the lateral stiffness of an axially loaded column in such frame can be expressed (Xu and Liu 2002) as 
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(1)

where subscripts i and j are storey and column indices; E is Young’s modulus; and Ic, ij and Lc, i are
the moment of inertia and length of the column, respectively. The column lateral stiffness
modification factor βij is 

(2)

in which 

(3a)

(3b)

(3c)

where subscripts l and u denote the lower and upper ends of the column and the corresponding
column end-fixity factors are respectively defined as

(4a)

(4b)

in which Ru, ij and Rl, ij are the rotational-restraining stiffnesses which are contributed by the other
members connected to the upper and lower ends of column ij, respectively.

The parameter φij in Eq. (2) is defined as
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Fig. 1 Analytical model of multistory frames
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(5)

where Pe, ij = π2EIc, ij /L
2
c, i is the Euler buckling load of the column; Pij = λPu, ij is the column axial

force, in which Pu, ij is the applied axial load, and λ is a load proportional multiplier. Having the
lateral stiffness of the axially loaded column expressed in Eq. (1), the stability equation for single-
storey PR frame buckling in a lateral sway mode can be expressed as Xu and Liu (2002)

(6)

For a multi-storey frame as shown in Fig. 1(a), the relationship between lateral stiffness of the
frame, S, and that of the storey (Si, i = 1, 2, 3…n) is

 (7)

Lateral instability occurs when the lateral stiffness of the frame vanishes, which can be concluded
from Eq. (7) to have at least in one storey, say storey k of the frame, such that Sk = 0. Pursuant to
this condition, the lateral stability equation for unbraced multi-storey frames can be conveniently
expressed as

(8)

Eq. (8) defines that the storey-based buckling of an unbraced multi-storey frame occurs as any one
of the stories fails to maintain its lateral stability. Practically, it is desirable to convert the stability
analysis of a multi-storey frame into analysis of single-storey frames for the reason of simplicity
and this can be achieved through decomposing a multi-storey frame into a series of single-storey
frames as shown in Fig. 1(b). In other words, Eq. (8) can be solved by setting the lateral stiffness of
each storey Si to be zero and solving for the corresponding critical load multiplier. The storey that
yields the minimum critical load multiplier in lateral sway instability would be the critical storey of
the frame, and the critical load or corresponding effective length factor for each individual column
in the frame can then be determined by that load multiplier.

However, it should be pointed out that the rotational-restraining stiffnesses Rl, ij and Ru, ij shown in
Fig. 1(b) and employed in Eqs. (4) shall be evaluated differently for the single- and multi-storey
cases. In the single-storey frame case, beams that are connected to the upper end of a column are
the only members that provide the rotational restraint to the column against column instability. For a
column in a multi-storey frame, in addition to the rotational restraints provided by connected beams,
the columns located on the upper or lower level may also contribute rotational restraints to the
column under consideration. To account for the stiffness interaction between the upper and lower
columns that are connected in stability analysis of a multi-storey frame, the end rotational stiffness
of an axially load column has to be determined and is discussed in the following section. 
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3. End rotational stiffness of axially loaded column

For an axially loaded and laterally unrestrained column ij as shown in Fig. 2, let Ru, ij be the
external rotational-restraining stiffness induced by the other members connected at the upper end of
the column. Noted that θB and MB are the end rotation and bending moment at the upper end of the
column, respectively. The moment at a location x along the column is given by

(9)

where, Pij is the column axial force. The equilibrium condition of the column yields

(10)

By substituting the following boundary conditions into Eq. (10), 

(11a)

 (11b)

 (11c)

 (11d)
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Fig. 2 Axially loaded PR column 
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the rotational stiffness at the lower end of the column, Rcl, ij, can be solved as

 (12a)

where ru, ij is the column end-fixity factor associated with the rotational-restraining stiffness Ru, ij and
is defined in Eq. (4a), and parameter φij is defined in Eq. (5). 

Similarly, the rotational stiffness associated with the upper end of the column, Rcu, ij, can be
expressed as

 (12b)

where rl, ij is the end-fixity factor of the column at the lower end and is defined in Eq. (4b). 
Fig. 3 illustrates the relationship among the column end rotational stiffness Rcl, ij, the far end end-

fixity factor ru, ij and applied load Pij . It is clear that the presence of the axial load leads to the
decrease of the column end rotational stiffness. In the case that the column end rotational stiffness
Rcl, ij turns into zero or a negative value as the result of increasing applied load, the column shown
in Fig. 2 becomes laterally unstable. In the context of unbraced frames, if both end rotational
stiffnesses of a column become non-positive as the result of increasing applied load, the column
turns into a lean-on column which relies upon the external restraints provided by other members of
the frame to maintain its stability and sustain the applied load. 

In the case that the column is not axially loaded or the effect of the axial load on column end
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Fig. 3 End rotational stiffness of axially loaded column
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rotational stiffness can be neglected, Eqs. (12) are simplified as 

 (13a)

 (13b)

If the column ends are rigidly connected, Eqs. (13) can be further simplified as 

 (14)

It is noted from Eqs. (12) and (13) that the column end rotational stiffness is a function of the
end-fixity factor at the far end of the column. For instance, the rotational stiffness at the lower end
of the column, Rcl, ij, is a function of ru, ij as that shown in Eq. (12a). As defined in Eq. (4a), ru, ij is
related to Ru, ij, the rotational-restraining stiffness at the far end, which is contributed by the other
members connected to the upper end of column ij including column (i + 1) j. Since the end
rotational stiffness of column (i + 1) j is further involved with that of column (i + 2) j and so on,
therefore, the end rotational stiffness of a column is interrelated with columns at different stories in
the same column line. Apparently, considering such stiffness interaction would make the evaluation
of column end rotational stiffness, and eventually the frame stability analysis, much more
complicated and is not suitable for engineering practice. However, prior to make any simplification
on this issue, the following parametric study was carried out to investigate the stiffness interaction.

Shown in Fig. 4 are simplified models for a series of symmetric one-bay unbraced frames with
different number of stories, in which all columns and beams have identical flexural stiffnesses EIc/Lc
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Fig. 4 Simplified models of one-bay multistory frames
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and 2EIb/Lb, respectively. The lower end rotational stiffness of column ij is denoted as Rcl, ij. Table 1
illustrates the ratios of RclLc /EIc computed according to Eq. (12a) with consideration for the
foregoing described stiffness interaction among columns in different stories with respect to the
variation of the applied load for the four cases shown in Fig. 4. In Case 1, the column stiffness
interaction is not considered, while in Cases 2, 3, and 4, the interaction is considered for the effects
of one column above, two columns above, and three columns above, respectively. The differences of
Rcl, ij of Case 1 to that of Cases 2 to 4 are shown as errors in Table 1. The negative values of the
errors denote that Rcl, ij associated with Case 1 is less than that of the other cases, which indicates
that columns located above and beyond the adjacent stories contribute positively to the column end
rotational stiffness, Rcl, ij. Comparing the errors associated with Cases 2 to 4 for each given applied
load magnitude, it is found that there is almost no difference among the three cases, which suggests
that the effects of columns beyond those in the adjacent stories on Rcl, ij may be negligible.
Furthermore, the trivial values of the errors between Cases 1 and 2 suggest that the stiffness
interaction between columns in adjacent stories is insignificant. Therefore, for the reason of
practicality, the rotational stiffness interaction among columns in the same column line and different
stories is neglected in this study for calculating the column end rotational stiffness. 

4. Decomposition of multi-storey frames 

In the case of single storey frames, the beam-to-column rotational restraint is directly applied to
the upper ends of connected columns. In a multi-storey frame case, floor beams provide rotational
restraints for both the lower and upper columns at a joint. To decompose a multi-storey frame into a
series of single-storey PR frames and apply the storey-based buckling method proposed by Xu and
Liu (2002), one of the challenges is how to distribute the beam-to-column rotational-restraining
stiffness between the lower and upper columns with consideration of the effects of axial load on
column end rotational stiffness. In this section, the beam-to-column rotational-restraining stiffness is
discussed at first. Then, different approaches of decomposing a multi-storey frame into a series of
single-storey PR frames are proposed.

4.1 Beam-to-column restraining stiffness 

Shown in Fig. 5 is the deformed profile of column subassemblage in an unbraced frame in the

Table 1 Comparison of column end rotational stiffnesses

P/Pe

Case 1 Case 2 Case 3 Case 4

RclLc/EIc RclLc/EIc Error (%) RclLc/EIc Error (%) RclLc/EIc Error (%)

0.00 0.8571 0.8727 −1.82 0.8730 −1.86 0.8730 −1.86
0.05 0.6567 0.6719 −2.31 0.6723 −2.38 0.6723 −2.38
0.10 0.4356 0.4486 −2.98 0.4490 −3.08 0.4490 −3.08
0.15 0.1889 0.1963 −3.92 0.1966 −4.07 0.1966 −4.07
0.20 −0.0903 −0.0951 −5.23 −0.0953 −5.54 −0.0954 −5.65
0.25 −0.4112 −0.4415 −7.37 −0.4439 −7.95 −0.4441 −8.00
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lateral sway buckling mode. The beam-to-column rotational-restraining stiffnesses at the upper and
lower joints of column ij are denoted as Rbu, ij and Rbl, ij and can be expressed as 

(15a)

(15b)

where subscript k (k = 1, 2) denotes the beam on each side of column ij. Rbu, ijk and Rbl, ijk are end
rotational stiffnesses of the beams that are connected to the upper and lower ends of column ij,
respectively, and they are Xu and Liu (2002)

(16a)

(16b)

in which rk, 1 and rk, 2 are end-fixity factors associated with the near and far ends of beam k,
respectively. Parameter ν accounts for the deformed shape of the beam in frame buckling. For
unbraced frames buckling in lateral sway mode, ν is taken as one.

Let Rl, ij and Ru, ij be the end restraining stiffnesses of the lower and upper ends of column ij,
respectively. Based on the principle that the distribution of beam-to-column restraining stiffness shall
be proportional to the column end rotational stiffness at each joint, the end rotational-restraining
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Fig. 5 Beam-to-column rotational restraining stiffness
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stiffnesses of the upper and lower ends of column ij can be expressed as,

(17a)

 (17b)

where the stiffness distribution factors µu, ij and µl, ij are

(18a)

(18b)

in which Rcu, (i−1) j and Rcu, ij are the rotational stiffnesses of the upper end for columns (i − 1) j and ij;
Rcl, ij and Rcl, (i+1) j are the rotational stiffnesses of the lower end for columns ij and (i + 1) j,
respectively. 

4.2 Distribution beam-to-column rotational-restraining stiffness

As stated previously, to decompose a multi-storey frame into a series of single-storey PR frames,
one of the challenges is how to distribute the beam-to-column rotational-restraining stiffness
between the lower and upper columns at a joint so that the column end restraining stiffnesses and
corresponding end-fixity factors can be evaluated in accordance with Eqs. (17) and (4), respectively.
It is noted from Eqs. (2) and (3) that the column end-fixity factors are essential for computing the
column lateral stiffness modification factor which characterizes the column stability in the lateral
sway mode.

It is clear from Eqs. (17) and (18) that the determination of the end restraining stiffness of a
column requires the evaluation of column end rotational stiffness which can be computed in
accordance with any one of Eqs. (12) to (14) depending on the desired accuracy of the results.
Therefore, there are three approaches for computing the distribution factor of beam-to-column
rotational-restraining stiffness, in which the column end rotational stiffness are evaluated
corresponding to Eqs. (12), (13) and (14), respectively. For the column subassemblage shown in Fig. 6,
the relationship between the stiffness distribution factors for columns that are joined together
satisfies

 (19)

thus, only the stiffness distribution factor associated with upper end of column ij needs to be
evaluated.

The first approach of computing the distribution factor, µu, ij, is referred to as the geometrical
stiffness distribution (GSD) approach in which the effect of column axial force is accounted for, and
the column end rotational stiffnesses are calculated based on Eqs. (12). For column ij, the column
end rotational stiffness Rcu, ij, can be directly obtained from Eq. (12b) in terms of end fixity factor
rl, ij. Applying Eq. (12a) for column (i + 1) j to compute column end rotational stiffness Rcl, (i+1) j

yields

Ru ij, µu ij, Rbu ij,=

Rl ij, µl i j, Rbl ij,=

µu ij,
Rcu ij,

Rcl i 1+( ) j, Rcu ij,+
--------------------------------------=

µl ij,
Rcl ij,

Rcl ij, Rcu i 1–( )j,+
--------------------------------------=

µl i 1+( )j, 1 µu ij,–=
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  (20)

Noted that Ru, (i+1) j in Eq. (20) can be taken as Ru, (i+1) j = Rbu, (i+1) j based on the foregoing discussion
which concludes that the rotational stiffness interaction between upper and lower columns in the
same column line can be neglected in calculating the column end rotational stiffness. The model of
the decomposition is shown in Fig. 6(a). By substituting Eqs. (12b) and (20) into Eq. (18a), the
stiffness distribution factor associated with the upper end of column ij can be obtained as

 (21)

where rl, ij is defined in Eq. (4b), and φij and φi(j+1) are defined in accordance with Eq. (5). 
Similarly, while Eqs. (13) are employed to evaluate µu, ij based on Eq. (18a), the corresponding

stiffness distribution factor can be expressed as

 (22)

where Ru, (i+1) j = Rbu, (i+1) j as discussed in Eq. (21) and rl, ij is defined in Eq. (4b). The approach
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Fig. 6 Models of decomposition
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based on Eq. (22) to compute the stiffness distribution factor is referred to as the frame-based
stiffness distribution (FSD) approach, and the corresponding model of decomposition is the same as
that shown in Fig. 6(a) except the effects of axial loads are neglected.

If Eqs. (14) are employed to evaluate µu,ij based on Eq. (18a), this yields

 (23)

The approach based on Eq. (23) to evaluate the stiffness distribution factor is referred to as the
column-based stiffness distribution (CSD) approach. The model of decomposition associated with
the CSD approach is similar to that of the FSD approach except that the rotational stiffness of
beams at the far end of the column in adjacent stories is taken as infinite as that shown in Fig. 6(b).
It is shown in the Appendix that the stability equation associated with alignment chart can be
obtained from that of the CSD model in the case of single column subassemblage. 

It is noted that the evaluation of the stiffness distribution factor, µu, ij, in accordance with either the
GSD or FSD approach, requires the end-fixity factor at the far end of the column rl, ij to be known,
as indicated in Eqs. (21) and (22). In such case, the decomposition process can be conveniently
initiated from the first storey because the end-fixity factors associated with column bases are known
and continued toward to the upper stories. For the case of using the CSD approach, the
decomposition process can be initiated from any storey. Having the distribution factor µu, ij be
evaluated, the corresponding distribution factor for the lower end of column (i+1) j, µl, (i+1) j, can
obtained from Eq. (19). Consequently, the corresponding column end restraining stiffnesses Ru, ij and
Rl, (i+1) j shown in Fig. (6c) can be obtained from Eqs. (17). Having column end restraining
stiffnesses for all columns being computed, the multi-storey frame can now be represented a series
of single-storey PR frames as shown in Fig. 1(b). 

Among the three proposed approaches, the GSD approach is the one in which the effects of the
axial force on column end rotational stiffness are accounted for. However, in a frame buckling
analysis, the critical axial force of each column at the buckling state is unknown in advance, and as
the axial force and column end rotational stiffness are interrelated, numerical iterations are required
to obtain the results. As the iterative process may be quite cumbersome from the viewpoint of
practice, it is recommended to initiate the process of evaluation of the stiffness distribution factors
with either the FSD or CSD approach and compute column the critical axial force Pij in accordance
with the procedure of evaluating the column effective length factor, described in the next section.
After that, recalculate the stiffness distribution factor based on the obtained column critical axial
force Pij and Eq. (21) and decompose the frame accordingly. In such a way, more accurate effective
length factors of columns can be obtained with only two iterations as shown in the demonstrated
numerical examples.

5. Evaluation of column effective length factors

Having a multi-storey frame decomposed into a series of single-storey PR frames as discussed in
the previous section, the critical load multiplier associated with each storey in lateral sway buckling
can be obtained from Eq. (6) for the corresponding single-storey PR frame. However, the
transcendental relationship between βij and φij expressed in Eq. (2) is complicated and inconvenient

µu ij,
EIc ij, Lc ij,⁄

EIc ij, Lc ij,⁄ EIc i 1+( )j, Lc i 1+( )j,⁄+
----------------------------------------------------------------------------=
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for solving the critical loads of each storey. For engineering practice, Eq. (2) can be simplified and
approximated by means of the first-order of Taylor series expansion as Xu and Liu (2002)

(24)

where the values of β0, ij and β1, ij can be computed from the following expressions

(25a)

(25b)

By substituting Eq. (24) into Eq. (1), the lateral stiffness of column ij can be written as

(26)

in which Lc, ij and Pu, ij are the length and applied axial load of column j in the ith storey,
respectively. λi is the proportional load multiplier associated with the ith storey of the frame. The
previous study by Xu and Liu (2002) on single-storey PR frames demonstrated that Eq. (24)
provided an adequate approximation for Eq. (2) for evaluating column lateral stiffness. Substituting
Eq. (26) into Eq. (6), the stability equation for storey i buckling in a lateral sway mode can be
expressed as

(27)

from which the critical load multiplier can be solved as

(28)

and the critical axial force of the column is 

 (29)

Finally, the storey-based effective length factor of the column can be evaluated as 

(30)

The proposed procedure for evaluation of the storey-based effective length factor for columns in a
multi-storey unbraced frame with m − 1 bays and n stories can be summarized as follows:

(1) Compute the rotational stiffness of each beam and beam-to-column restraining stiffness of each
joint according to Eqs. (16) and (15), respectively. Set storey index i = 1 (i = 1 for the first
storey); 

βi j β0 i j, β1 i j, φij
2–=

β0 i j,
rl ij, ru ij, ru ij, rl ij,+ +

4 rl ij, ru ij,–
----------------------------------------------=

β1 i j,
8 5 ru ij,

2+( ) 34 ru ij,–( )ru ij, rl ij,– 8 ru ij, 3ru ij,
2+ +( )rl ij,

2+

30 4 rl ij, ru ij,–( )2
-----------------------------------------------------------------------------------------------------------------------------------=

Sij 12
EIc ij,

Lc ij,
3

------------β0 i j,
Pu ij,

Lc ij,
----------β1 i j, λ i– 

 =

Si 12
EIc ij,

Lc ij,
3

------------β0 ij,
Pu ij,

Lc ij,
----------β1 ij, λ i– 

 
j 1=

m

∑ 0= =

λ icr
EIc ij, β0 i j,

Lc ij,
3

----------------------
j 1=

m

∑   
Pu ij, β1 i j,

Lc ij,
--------------------

j 1=

m

∑=

Pij λ icrPu ij, j 1 2 3 … m, , , ,=( )=

Kij
π

Lc ij,
--------- EIc ij,

λ icrPu ij,
------------------ j 1 2 3 … m, , , ,=( )=
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(2) Evaluate upper-end stiffness distribution factors µu, ij from Eqs. (21) to (23) based on selected
decomposing approach (GSD, FSD and CSD) for all of the columns ( j = 1, 2, 3…m) in the
storey; If i ≠ n, then evaluate lower-end stiffness distribution factors for upper columns µl, i(j+1)

from Eq. (19);
(3) Calculate the beam-to-column rotational-restraining stiffnesses Ru, ij and Rl, ij based on Eqs. (17)

and compute corresponding end-fixity factors ru, ij and rl, ij from Eqs. (4) for all of the columns
in the ith storey;

(4) Compute the column lateral stiffness modification coefficients β0, ij and β1, ij ( j = 1, 2, 3…m)
from Eqs. (25); 

(5) Solve the critical load multiplier associated with the ith λicr from Eq. (28) and compute the
corresponding storey-based effective length factors Kij ( j = 1, 2, 3…m) from Eq. (30) for
columns in the storey;

(6) If i ≠ n, then set storey index i = i + 1 and go to step 2, otherwise the procedure is terminated.
It is noted that the above procedure is primarily developed for cases when either the FSD or CSD
approach is selected for the decomposition process. If the GSD approach is selected, then the
iterative process to account for the effect of axial force in columns would have to take place. As
discussed in the previous section, a process that involves only two iterations is recommended by
minor modification on the foregoing procedure for the first iteration as follows: 

1. In Step 2, evaluate upper-end stiffness distribution factors µu, ij based on Eq. (22) or (23) instead
of Eq. (21); 

2. In Step 5, instead of computing column effective length factors Kij ( j = 1, 2, 3… m), calculate
column critical axial force Pij ( j = 1, 2, 3…m) in accordance with Eq. (29) so that Pij can be
used for evaluating upper-end stiffness distribution factors µu, ij in accordance with Eq. (21) in
the second iteration.

It is noted that the effective length factor obtained from Eq. (30) for columns in the i-th storey is
referred to as the storey-based effective length factor because it is evaluated based on the critical
load multiplier, λicr, which is associated with lateral instability of the same storey. Since the critical
load multiplier corresponding to the lateral instability of a particular storey may not be the most
critical one for the multi-storey frame, therefore, the column effective length factor associated with
the most critical load multiplier of the multi-storey frame as defined in the system buckling method
(Majid 1972, Livesley 1975, Chen and Lui 1987) can be obtained as

(31)

where λcr = min{λ1cr, λ2cr, λ3cr … λncr} is the critical load multiplier associated with the multi-storey
frame. 

6. Numerical examples

The proposed storey-based stability analysis procedure for unbraced multi-storey frames is
illustrated in the following two steel frame examples. The frames are comprised of steel beams and
columns with W-shape sections, where Young’s modulus of the steel E = 200 GPa. In the first
example, the column-based stiffness distribution (CSD) approach is adopted for a one-bay three-
storey frame, and the detailed calculations of effective length factors for columns of each storey are

Kij
π

Lc ij,
--------- EIc ij,

λ crPu ij,
----------------- j 1 2 3 … m, , , ,=( )=
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presented. Then, the application of the geometrical stiffness distribution (GSD) approach is
demonstrated through the calculations for columns in the first storey of the frame. While in the
second example, the frame-based stiffness distribution (FSD) approach is employed to analyze a
two-bay two-storey frame. For both examples, comparisons are made among the results obtained
from the proposed analysis procedure and from other methods to show the validity of the proposed
analysis.

6.1 Example 1: One-bay three-storey frame

A one-bay three-storey frame is shown in Fig. 7 (Shanmugam et al. 1995), in which the moment
of inertia associated with W-shape sections are: W8 × 35, Ix = 5.286 × 10−5 m4 (127 in4); W8 × 48,
Ix = 7.659 × 10−5 m4 (184 in4); W14 × 30, Ix = 12.112 × 10−5 m4 (291 in4); W21 × 44, Ix =
35.088 × 10−5 m4 (843 in4). 

Fig. 7 Example 1: One-bay three-storey frame

Table 2 Example 1: Column effective length factors

Column System 
buckling

Alignment
chart LeMessurier Lui CSD 

Eq. (30)
FSD 

Eq. (30)
GSD 

Eq. (30)
CSD 

Eq. (31)
FSD 

Eq. (31)
GSD 

Eq. (31)

Lower 1.14 1.11 1.12 1.14 1.11 1.11 1.13 1.21 1.21 1.15
Middle 1.14 1.21 1.21 1.21 1.21 1.21 1.15 1.21 1.21 1.15
Upper 1.52 1.23 1.23 1.30 1.23 1.23 1.43 1.61 1.61 1.53
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Column-based Stiffness Distribution (CSD) approach
The detailed calculations of critical load multipliers of each storey and column effective length

factors based on the CSD approach are demonstrated in the following. The resulting column
effective length factors are also summarized in Table 2. 

Storey 1:
(1) The rotational stiffness of beam B11 which is connected to columns C11 and C12 can be

evaluated in accordance with Eqs. (16) as

55256.69 kN-m/rad

(2) The distribution factors associated with the upper ends of columns C11 and C12 can be obtained
from Eq. (23) as

and from Eq. (19), the distribution factors for the lower ends of column C21 and C22 are µl, 21 = µl ,22

= 1 − µu, 11 = 0.4083. 
(3) The end-fixity factors for the lower end of the columns are rl, 11 = rl, 12 = 1 as the column bases

are rigidly connected to the foundation. The beam-to-column rotational-restraining stiffness
contributed by beam B11 to the upper ends of columns C11 and C12 can be computed from Eqs. (17)
as

 = 32695.38 kN-m/rad

The corresponding end-fixity factors are given by Eqs. (4):

(4) The column lateral stiffness modification coefficients β0, 1j and β1, 1j can now be evaluated from
Eqs. (25) as

Rbu 11, 6
EIb 11,

Lb 11,
------------- 6

2 108× 35.088× 10 5–×
7.62

--------------------------------------------------------  = = =

µu 11, µu 12,
EIc 11, Lc 11,⁄

EIc 11, Lc 11,⁄ EIc 11, Lc 11,⁄+
---------------------------------------------------------------= =

 
2 108× 7.659× 10 5–× 3.9624⁄

2 108× 7.659× 10 5–× 3.9624 2 108× 5.286× 10 5–×+ 3.9624⁄⁄
---------------------------------------------------------------------------------------------------------------------------------------------------------- 0.5917= =

Ru 11, Ru 12, µu 11, Rbu 11, 0.5917 55256.69×= = =

ru 11, ru 12,
1

1
3EIc 11,

Ru 11, Lc 11,
----------------------+

-------------------------------- 1

1
3 2× 108× 7.659× 10 5–×

32695.38 3.9624×
---------------------------------------------------------------+

------------------------------------------------------------------------ 0.7382= = = =

β0 11, β0 12,
rl 11, ru 11, ru 11, rl 11,+ +

4 rl 11, ru 11,–
---------------------------------------------------- 1 0.7382 0.7382+ +

4 1– 0.7382×
------------------------------------------------ 0.7592= = = =

β1 11, β1 12,
8 5 ru 11,

2+( ) 34 ru 11,–( )ru 11, rl 11,– 8 ru 11, 3ru 11,
2+ +( )rl 11,

2+

30 4 rl 11, ru 11,–( )2
---------------------------------------------------------------------------------------------------------------------------------------------= =
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(5) Compute critical load multiplier and column effective length factors:

Substituting the foregoing values into Eq. (28) yields

Based on Eq. (30), the storey-based effective length factors of the columns in Storey 1 are

Storey 2:
(1) The rotational stiffnesses of beam B21 are the same as that of beam B11,

 = 55256.7 kN-m/rad

(2) The distribution factors for the upper ends of column C21 and C22 are

and from Eq. (19), the distribution factors for the lower ends of column C31 and C32 are µl, 31 = µl, 32

= 1 − µu, 21 = 0.5. 
(3) The beam-to-column rotational-restraining stiffnesses contributed by beam B11 to the lower

ends of columns C21 and C22 and the corresponding end-fixity factors can be obtained as

 = 0.4083 × 55256.69 = 22561.31 kN-m/rad

The beam-to-column rotational-restraining stiffness for the upper ends of columns C21 and C22 are

 
8 5 0.73822+( ) 34 0.7382–( )– 0.7382× 8 0.7382 3+ + 0.73822×( )+

30 4 0.7382–( )2×
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 9.455 10 2–×= =

Pu ij, β1 i j,

Lc ij,
--------------------

j 1=

2

∑
2Pu 11,

Lc 11,
--------------β1 11,

2 320.4× 0.09455×
3.9624

------------------------------------------------ 15.2907 kN/m= = =

EIc 1 j, β0 1 j,

Lc 1j,
3

------------------------
j 1=

2

∑ 2 2× 108× 7.659× 10 5–× 0.7592×
3.96243

------------------------------------------------------------------------------------- 373.8638 kN/m= =

λ1cr

EIc 1j, β0 1j,

Lc 1j,
3

------------------------   
j 1=

2

∑ Pu 1j, β1 1j,

Lc 1 j,
---------------------

j 1=

2

∑ 373.8638
15.2907
---------------------- 24.45;= = =

K11 K12
π

Lc 11,
---------- EIc 11,

λ1crPu 11,
---------------------

3.1416
3.9624
---------------- 2 108× 7.659× 10 5–×

24.45 320.4×
-----------------------------------------------------× 1.11= = = =

Rbu 21, Rbu 11,=

µu 21, µu 22,
EIc 21, Lc 21,⁄

EIc 21, Lc 21,⁄ EIc 31, Lc 31,⁄+
---------------------------------------------------------------= =

 
2 108× 5.286× 10 5–× 3.9624⁄

2 108× 5.286× 10 5–× 3.9624⁄ 2 108× 5.286× 10 5–× 3.9624⁄+
---------------------------------------------------------------------------------------------------------------------------------------------------------- 0.5= =

Rl 21, Rl 22, µl 21, Rbu 11,= =

rl 21, rl 22,
1

1
3EIc 21,

Ru 21, Lc 21,
----------------------+

-------------------------------- 1

1
3 2 108×× 5.286× 10 5–×

22561.31 3.9624×
---------------------------------------------------------------+

------------------------------------------------------------------------ 0.7382= = = =
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 = 0.5 × 55256.7 = 27628.35 kN-m/rad

from which the corresponding end-fixity factors are given by

(4) The column lateral stiffness modification coefficients β0, 2j and β1, 2j can be evaluated from
Eqs. (25) as

(5) Compute critical load multiplier and column effective length factors:

Thus, the critical load multiplier for Storey 2 is

and the associated storey-based factors can be calculated from Eq. (30) as

Storey 3:
The procedure of calculating Storey 3 is similar to that of in Storey 2. The beam-to-column

rotational-restraining stiffnesses for the lower ends of columns C31 and C32 and the corresponding
end fixity factors are Rl, 31 = Rl, 32 = Ru, 21 = 27628.35 kN-m/rad and rl, 31 = rl, 32 = ru, 21 = 0.7754. For
the upper ends of columns C31 and C32, the beam-to-column rotational-restraining stiffnesses and

Ru 21, Ru 22, µu 21, Rbu 21,= =

ru 21, ru 22,
1

1
3EIc 21,

Ru 21, Lc 21,
----------------------+

-------------------------------- 1

1
3 2× 108× 5.286× 10 5–×

27628.35 3.9624×
---------------------------------------------------------------+

------------------------------------------------------------------------ 0.7754= = = =

β0 21, β0 22,
rl 21, ru 21, ru 21, rl 21,+ +

4 rl 21, ru 21,–
---------------------------------------------------- 0.7381 0.7754 0.7381+ + 0.7754×

4 0.7381– 0.7754×
------------------------------------------------------------------------------------- 0.6085= = = =

β1 21, β1 22,
8 5 ru 21,

2+( ) 34 ru 21,–( )– ru 21, rl 21, 8 ru 21, 3ru 21,
2+ +( )rl 21,

2+

30 4 rl 21, ru 21,–( )2
---------------------------------------------------------------------------------------------------------------------------------------------= =

8 5 0.77542+( ) 34 0.7754–( )– 0.7754× 0.7381× 8 0.7754 3 0.77542×+ +( )+ 0.73812×
30 4 0.7754– 0.7381×( )2×

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

8.9534 10 2–×=

Pu 2 j, β1 2j,

Lc 2j,
---------------------

j 1=

2

∑
2Pu 21,

Lc 21,
--------------β1 21,

2 222.5× 0.089534×
3.9624

--------------------------------------------------- 10.0552= = =

EIc 2 j, β0 2 j,

Lc 2 j,
3

------------------------
j 1=

2

∑ 2 2 108×× 5.286 10 5–×× 0.6085×
3.96243

------------------------------------------------------------------------------------- 206.8106= =

λ2cr
EIc 2j, β0 2j,

Lc 2j,
3

------------------------
j 1=

2

∑  
Pu 2j, β1 2j,

Lc 2 j,
---------------------

j 1=

2

∑ 206.8106
10.0552

---------------------- 20.57= = =

K21 K22
π

Lc 21,
---------- EIc 21,

λ2crPu 21,
---------------------

3.1416
3.9624
---------------- 2 108× 5.286× 10 5–×

20.57 222.5×
-----------------------------------------------------× 1.21= = = =
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corresponding end fixity factors are

kN-m/rad

The critical load multiplier for Storey 3 is found as λ3cr = 35.55, while the storey-based effective
length factor for the columns are K31 = K32 = 1.23. 

Comparing with the critical load multiplier found for each storey, the critical storey of the frame
in lateral instability is Storey 2 with the load multiplier λcr = λ2cr = 20.57. The column effective
length factor associated with λcr are obtained from Eq. (31) are K11 = K12 = 1.21, K21 = K22 = 1.21,
and K31 = K32 = 1.61. 

Geometrical Stiffness Distribution (GSD) approach
The foregoing calculation of obtaining the critical load multiplier of the frame (λcr = 20.57) based

on the CSD approach is identical to that of the first iteration for the GSD approach. Therefore, the
second iteration of the GSD approach is illustrated herein. Due to the space limitation, only the
detail calculation associated with the columns in Storey 1 is presented. However, the resulting
effective length factors for columns in Storeys 2 and 3 are summarized in Table 2.

Storey 1:
(1) The rotational stiffnesses of beam B11 are obtained previously as Rbu, 11 = Rbu, 21 = 55256.69

kN-m/rad.
(2) Evaluate stiffness distribution factors: Based on Eq. (29), the critical axial forces for columns

in Storeys 1 and 2 are

Then, the corresponding parameters, φij, are obtained from Eq. (5) as

Note that the end-fixity factors are unity at column bases (rl, 11 = rl, 12 = 1) and take Ru, 21  Rbu, 21

= 55256.69 kN-m/rad. The stiffness distribution factors associated with the upper end of columns
C11 and C12 can be computed based on Eq. (21) as

Ru 31, Ru 32, Rbu 31, 6
EIb 31,

Lb 31,
------------- 6

2 108× 12.112× 10 5–×
7.65

-------------------------------------------------------- 19074.02= = = = =

ru 31, ru 32,
1

1
3EIc 31,

Ru 31, Lc 31,
----------------------+

-------------------------------- 1

1
3 2× 108× 5.286× 10 5–×

19074.02 3.9624×
---------------------------------------------------------------+

------------------------------------------------------------------------ 0.7044= = = =

P11 P12 λminPu 11, 20.57 124.6 97.9 97.9+ +( )× 6590.63 kN= = = =

P21 P22 λminPu 21, 20.57 124.6 97.9+( )× 4576.83 kN= = = =

φ11 φ12
P11Lc 11,

EIc 11, Lc 11,⁄
---------------------------- 6590.63 3.9624×

3865.84
------------------------------------------ 2.5991= = = =

φ21 φ22
P21Lc 21,

EIc 21, lC 21,⁄
--------------------------- 4576.83 3.9624×

2668.08
------------------------------------------ 2.6071= = = =

≈
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(3) The beam-to-column rotational-restraining stiffness contributed by beam B11 to the upper ends
of columns C11 and C12 can be computed from Eqs. (17) as

 kN-m/rad

and the corresponding end-fixity factors can be found as

(4) The column lateral stiffness modification coefficients β0, 1j and β1, 1j can be obtained from
Eqs. (25) as

(5) Compute the critical load multiplier and column effective length factors:

kN/m

kN/m

Substituting the foregoing values into Eq. (28) yields

Therefore, the effective length factors for columns C11 and C12 are

µu 11, µu 12,

EIc 11,

Lc 11,
-------------

3rl 11, 1 rl 11,–( )φ11tanφ11–

1 rl 11,– 3rl 11,
tanφ11

φ11

--------------+

----------------------------------------------------------------

EIc 11,

Lc 11,
-------------

3rl 11, 1 rl 11,–( )φ11tanφ11–

1 rl 11,– 3rl 11,
tanφ11

φ11

--------------+

----------------------------------------------------------------
EIc 21,

Lc 21,
-------------

Rbu 212, EIc 21, Lc 21,⁄( )⁄ φ21tanφ21–

1
Ru 21,

EIc 21, Lc 21,⁄( )
---------------------------------

tanφ21

φ21

--------------+

---------------------------------------------------------------------------------+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

 
16667.24–

16667.24– 16037.72–
------------------------------------------------------- 0.5096= =

Ru 11, Ru 12, µu 11, Rbu 11, 0.5096 55256.7× 28160.15= = = =

ru 11, ru 12,
1

1 3 EIc 11, Lc 11,⁄( )+ Ru 11,⁄
------------------------------------------------------------- 1

1 3+ 3865.84× 28160.15⁄
---------------------------------------------------------------- 0.7083= = = =

β0 11, β0 12,
1 0.7083 0.7083+ +

4 1– 0.7083×
------------------------------------------------ 0.7341= = =

β1 11,
8 5 0.70832+( ) 34 0.7083–( ) 0.7083( )– 8 0.7083 3+ + 0.70832×( )+

30 4 0.7083–( )2
------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 9.4279 10 2–×= =

Pu ij, β1 i j,

Lc ij,
--------------------

j 1=

2

∑
2Pu 11,

Lc 11,
--------------β1 11,

2 320.4× 0.094279×
3.9624

--------------------------------------------------- 15.2469= = =

EIc 1j, β0 1 j,

Lc 1 j,
3

------------------------
j 1=

2

∑
2Rcu 11,

Lc 11,
2

----------------β0 11,
2 3865.84 0.7341××

3.96242
--------------------------------------------------- 361.5254= = =

λ1cr
EIc 1j, β0 1j,

Lc 1j,
3

------------------------
j 1=

2

∑  
Pu 1j, β1 1j,

Lc 1 j,
---------------------

j 1=

2

∑ 361.5254
15.2469

---------------------- 23.71= = =

K11 K12 π EIc 11, Lc 11,⁄
λ1crPu 11, Lc 11,
-------------------------------- 3.1416 3865.84

23.71 320.4× 3.9624×
--------------------------------------------------------× 1.13= = = =
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Repeating the foregoing procedure for storeys 2 and 3, it can be found that λ2cr = 22.71, K21 = K22 =
1.15 and λ3cr = 26.24, K31 = K32 = 1.43 for storeys 2 and 3, respectively. Therefore, the critical load
multiplier of the frame in lateral instability is λcr = λ2cr = 22.71, and the corresponding column
effective length factors are K11 = K12 = 1.15, K21 = K22 = 1.15, and K31 = K32 = 1.53.

For the purpose of comparison, the column effective length factors of this example obtained from
the CSD, FSD and GSD approaches and those obtained from other methods reported by
Shanmugam et al. (1995) are presented in Table 2. It is found the results obtained from the CSD
and FSD approaches are not different from this example, and they are in good agreement with those
of LeMessurier’s method when Eq. (30) is used for computing column effective length factors. It
can be seen from Table 2 that among different methods of evaluation of column effective length
factors, the GSD approach associated with using Eq. (31) yields the most accurate results to those
of system buckling analysis.

Two-bay two-storey frame
The second illustration is a two-bay two-storey frame as shown in Fig. 8, which is investigated by

Lui (1992), where the beam-to-column connections of are rigid. The moment of inertia of each
member is shown in Fig. 8, in which I = 8.3246 × 10−5 m4. For this example, the FSD approach is
selected for computing column effective length factors, and the detailed calculation for columns in
the first storey is present below to illustrate the procedure. 

(1) Compute the rotational stiffnesses of beams in the first storey from Eqs. (16):

kN-m/rad

where the last subscript denotes whether the beam is located on the left or right side of the column.
For example, the last subscript 2 in Rbu, 112 denotes that the beam is on the right side of column C11

as that shown Fig. 8.

Rbu 112, Rbu 121, Rbl 212, Rbl 221, 6
EIb 112,

Lb 112,
--------------- 6

2 108× 87.4915× 10 5–×
6.0168

------------------------------------------------------ 174494= = = = = =

Fig. 8 Example 2: Two-bay two-storey frame
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Similarly, it can be found that Rbu, 122 = Rbu, 131 = 233685 kN-m/rad, Rbu, 212 = Rbu, 221 = 139629 kN-
m/rad, and Rbu, 222 = Rbu, 231 = 186992 kN-m/rad. Hence, the beam-to-column restraining stiffnesses
are: Rbu, 11 = Rbu, 112 = 174494 kN-m/rad, Rbu, 12 = Rbu, 121 + Rbu,122 = 408179 kN-m/rad, Rbu, 13 = Rbu, 131

= 233685 kN-m/rad, Rbu, 21 = Rbu, 212 = 139629 kN-m/rad, Rbu, 22 = Rbu, 221 + Rbu, 222 = 326621 kN-m/
rad, Rbu, 23 = Rbu, 231 = 186992 kN-m/rad. 

(2) Evaluate the stiffness distribution factors: as the end-fixity factors are unity at the column
bases (rl, 11 = rl, 12 = rl, 13 = 1) and the beam-to-column restraining stiffness at the upper end of
column C21 is Ru, 21 = Rbu, 21 = 139629 kN-m/rad, the distribution factors associated with the FSD
approach for the upper end of column C11 can be obtained from Eq. (22) as,

and from Eq. (19) the stiffness distribution factor for the lower end of column C21 is µl, 21 = 1 − µu, 11

= 0.3514. Similarly, the distribution factors corresponding to the other columns can be found as
µu, 12 = 0.5445, µl, 22 = 0.4555, µu, 13 = 0.6772, µl, 23 = 0.3228.

(3) The beam-to-column rotational-restraining stiffnesses contributed by beams B11 and B12 to
columns C11, C21 and C13 can be computed respectively from Eqs. (18) as

 kN-m/rad

 kN-m/rad

and

 kN-m/rad

The corresponding end-fixity factors can be obtained from Eq. (4) as ru, 11 = 0.6439, ru, 12 = 0.8338,
and ru, 13 = 0.8257. 

µu 11,

EIc 11,

Lc 11,
-------------

3rl 11,

1 2rl 11,+
----------------------

EIc 11,

Lc 11,
-------------

3rl 11,

1 2rl 11,+
----------------------

EIc 21,

Lc 21,
------------- 1

1 EIc 21,+ Ru 21, Lc 21,⁄
-------------------------------------------------+

-----------------------------------------------------------------------------------------------------------

EIc 11,

Lc 11,
-------------

EIc 11,

Lc 11,
-------------

EIc 21,

Lc 21,
------------- 1

1 EIc 21, Ru 21, Lc 21,⁄+
-------------------------------------------------+

------------------------------------------------------------------------------------= =

 

2 108× 38.2933× 10 5–×
3.5296

------------------------------------------------------

2 108× 38.2933× 10 5–×
3.5296

------------------------------------------------------ 2 108× 19.5628× 10 5–×
3.048

------------------------------------------------------ 1
1 12836+ 139629⁄
-------------------------------------------+

-------------------------------------------------------------------------------------------------------------------------------------------------------------- 21698
21698 11756+
---------------------------------- 0.6486= = =

Ru 11, µu 11, Rbu 11, 0.6486 174494× 113177= = =

Ru 12, µu 12, Rbu 12, 0.5445 408179× 2222253= = =

Ru 13, µu 13, Rbu 13, 0.6772 233685× 158251= = =

Table 3 Example 2: Parameters associated with columns in Storey 1

Column 1j ru,1j rl,1j β0,1j β1,1j × 10−2 Pu,1jβ1,1j/Lc,1j EIc,1jβ0,1j/L3
c,1j

1 0.6349 1.000 0.6745 9.386 41.696 1174.78
2 0.8338 1.000 0.8425 9.585 73.023 998.52
3 0.8257 1.000 0.8353 9.572 30.397 746.40

ΣPu,1jβ1,1j /Lc,1j, ΣEIc,1jβ0,1j /L3
c,1j 145.115 2919.70
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(4) The column lateral stiffness modification coefficients β0, 1j, and β1, 1j are calculated based on
Eqs. (25) and tabulated in Table 3.

(5) Computing the critical load multiplier and column effective length factors: based on the
information provided in Table 3, the critical load multiplier λ1cr can be found from Eq. (28) as

Thus, the effective length factors for columns C11, C12, and C13 can be evaluated based on Eq. (30)
as K11 = 1.39, K12 = 0.87, and K13 = 1.17, respectively.

(6) Repeat steps (2) to (5) for columns in the second storey; the corresponding column effective
length factors are obtained and presented in Table 4. 

For the reason of comparison, the column effective length factors calculated based on the CSD,
FSD and GSD approaches and that of other methods reported by Lui (1992) are also presented in
Table 4. It can be seen from Table 4 that when Eq. (30) is used for computing column effective
length factors, the results of the CSD and FSD approaches are in good agreement with those of
LeMessurier’s method while the GSD approach associated with Eq. (31) yields the most accurate
results to those of system buckling analysis. 

7. Conclusions

This paper presents a study on elastic stability analysis of multi-storey unbraced frames based on
the concept of storey-based buckling. A practical method of evaluating the effective length factors
for columns in multi-storey frames is proposed by means of decomposing the multi-storey frame
into a series of single-storey PR frames and applying the storey-based stability analysis procedure
(Xu and Liu 2002) to each single-storey PR frame. In this study, the lateral stiffness of a multi-
storey frame is derived and expressed as the product of the lateral stiffness of each individual storey,
which make it possible to investigate the lateral stability of the multi-storey frame through
examining the stability of each individual storey. The end rotational stiffness of an axially loaded
column is derived, and rotational stiffness interaction between the upper and lower columns that are
connected to each other is investigated. The study concludes that while calculating the column end
rotational stiffness, the rotational stiffness interaction among columns in the same column line and
in different stories is insignificant and can be neglected for the reason of engineering practice.

λ1cr
EIc 1 j, β0 1 j,

Lc 1j,
3

------------------------
j 1=

3

∑  
Pu 1j, β1 1 j,

Lc 1 j,
---------------------

j 1=

3

∑ 2919.70
145.115
------------------- 20.12= = =

Table 4 Example 2: Column effective length factors

Column System
buckling

Alignment
chart LeMessurier Lui CSD

Eq. (30)
FSD

Eq. (30)
GSD

Eq. (30)
CSD

Eq. (31)
FSD

Eq. (31)
GSD

Eq. (31)

C11 1.36 1.19 1.40 1.39 1.39 1.39 1.34 1.39 1.39 1.34
C12 0.86 1.06 0.88 0.86 0.88 0.87 0.85 0.88 0.87 0.85
C13 1.15 1.07 1.18 1.18 1.18 1.17 1.14 1.18 1.17 1.14
C21 2.06 1.25 1.40 1.58 1.39 1.40 1.75 2.11 2.10 2.04
C22 1.56 1.11 1.06 1.21 1.06 1.06 1.32 1.59 1.59 1.54
C23 1.56 1.12 1.05 1.20 1.05 1.06 1.32 1.59 1.59 1.54
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To facilitate the frame decomposition, the different approaches of distributing beam-to-column
rotational-restraining stiffnesses between the upper and lower columns are investigated. The
proposed three decomposition approaches, namely the GSD, FSD and CSD approaches, are
characterized by the means of distributing beam-to-column rotational-restraining stiffnesses between
the upper and lower columns. Among the three decomposition approaches, GSD accounts for the
effect of axial force on column end rotational stiffness and therefore, provides more accurate results
than that the other two simplified approaches, in which the effect of the axial force is neglected.
However, the drawback associated with the GSD approach is that numerical iterations are required.
This study proposed a procedure, which involves only two iterations to obtain accurate results while
using the GSD approach.

After decomposing the multi-storey frame into a series of single-storey PR frames, the procedure
proposed by Xu and Liu (2002) is applied to each decomposed single-storey PR frame to evaluate
column effective length factors. Numerical examples are then presented to illustrate the effectiveness
of the proposed procedure. The results obtained from the proposed approaches are compared with
those of system buckling analysis, alignment chart method and methods proposed by other
researchers (LeMessurier 1977, Lui 1992). It is found that the results obtained from the GSD
approach provide better accuracy than the other methods. Among the three approaches proposed in
this study, the CSD approach is simplest and provides reasonable accuracy for the column effective
length factors; therefore, it is recommended for engineering practice. In the case that more refined
results are desired, the GSD approach can be applied to obtain higher accuracy. 
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Appendix

It is shown in this Appendix that the stability equation associated with alignment chart can be obtained
from the CSD model in the case of single column subassemblage. The stability equation which is used to
develop the alignment chart for evaluating the effective length factor for column ij in unbraced frames is
(AISC 1999) 

(A1)

where φij is defined in Eq. (5) and the column-to-beam stiffness ratios associated with the lower and upper
joints of the column are defined respectively as 

(A2a)

(A2b)

For a single PR column ij as shown in Fig. (6b), the stability equation for the column buckling in lateral
sway mode such that the lateral stiffness of the column vanishes that can be expressed as follows based on
Eq. (2):

(A3)

where coefficients a1, ij, a2, ij and a3, ij are defined in Eqs. (3). Since Eq. (A3) is true for any values of rl, ij and
ru, ij between zero and one, thus the numerator in Eq. (A3) must satisfy the following:

(A4) 

Considering column ij is in an unbraced frame with rigid beam-to-column connections buckles in lateral
sway mode, this yields rk, 1 = rk, 2 = 1 and ν = 1 in Eqs. (16). Therefore, the beam-to-column rotational-
restraining stiffnesses Rl, ij and Ru, ij at the lower and upper ends of the column can be obtained from Eqs. (16)
as

φij

tanφij

-------------
Gl ij, Gu ij, φij

2 36–
6 Gl ij, Gu ij,+( )

--------------------------------------– 0=

Gl ij,
EIc kj,

Lc kj,
------------

k i 1–=

i

∑
 
 
 

  
EIbl ijk,

Lbl ijk,
---------------

k 1=

2

∑
 
 
 

=

Gu ij,
EIc kj,

Lc kj,
------------

k i=

i 1+

∑ 
 
 

  
EIbu ijk,

Lbu ijk,
----------------

k 1=

2

∑ 
 
 

=

βij

φij
3

12
------

a1 ij, φijcosφij a2 ij, sinφij+
18rl ij, ru ij, a3 ij, cosφij– a4 ij, φijsinφij+
--------------------------------------------------------------------------------------- 0= =

a1 ij, φi jcosφi j a2 ij, sinφi j+ 0=
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(A5a)

(A5b)

Form Eq. (23), the stiffness distribution factors associated with the CSD approach for the upper end of the
column is 

(A6a)

Similar to the derivation of Eq. (23), the stiffness distribution factors associated with the CSD approach for
the lower end of the column can be obtained as 

(A6b)

Substituting Eqs. (A5) and (A6) into Eqs. (17), the rotational-restraining stiffness of the column ends are

(A7a)

(A7b)

Considering Eqs. (A2), Eqs. (A7) can be expressed in terms of G factors as 

(A8a)

(A8b)

Thus, the corresponding end-fixity factors for the column ij can be obtained from Eq. (4) as

(A9a) 

(A9b)

Eqs. (A9) define the relationship between column end-fixity factors and the stiffness ratios. Substituting Eqs.
(A9) into Eqs. (3a and 3b), the coefficients a1, ij and a2, ij can be obtained as

(A10a)

(A10b)

Rbl ij, 6
EIbl ijk,

Lbl ijk,
---------------

k 1=

2

∑=

Rbu ij, 6
EIbu ijk,

Lbu ijk,
----------------

k 1=

2

∑=

µu ij,
EIc ij, Lc ij,⁄

EIc ij, Lc ij,⁄ EIc i 1+( )j, Lc i 1+( )j,⁄+
----------------------------------------------------------------------------=

µl ij,
EIc ij, Lc ij,⁄

EIc ij, Lc ij,⁄ EIc i 1–( ) j, Lc i 1–( ) j,⁄+
-------------------------------------------------------------------------=

Ru ij, 6
EIc ij,

Lc ij,
----------- EIbu ijk,

Lbu ijk,
----------------

k 1=

2

∑ 
 
 

  
EIc kj,

Lc kj,
------------

k 1=

i 1+

∑ 
 
 

=

Rl ij, 6
EIc ij,

Lc ij,
----------- EIbl ijk,

Lbl ijk,
---------------

k 1=

2

∑
 
 
 

  
EIc kj,

Lc kj,
------------

k i 1–=

i

∑
 
 
 

=

Rl ij,
6EIc ij, Lc ij,⁄

Gl ij,
----------------------------=

Ru ij,
6EIc ij, Lc ij,⁄

Gu ij,
----------------------------=

ru ij,
1

1
Gu ij,

2
----------+

--------------------=

rl ij,
1

1
Gl ij,

2
---------+

-------------------=

a1 ij,
6 Gl ij, Gu ij,+( )

2 Gu ij,+( ) 2 Gl ij,+( )
------------------------------------------------=

a2 ij,
36 Gl ij, Gu ij, ϕ ij

2–( )
2 Gu ij,+( ) 2 Gl ij,+( )

------------------------------------------------=
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By substituting Eqs. (A10) into Eq. (A4), the stability equation for the PR column ij shown in Fig. (6b),
buckling in lateral sway mode can be expressed in terms of stiffness ratios other than the column end fixity
factors as

(A11)

Eq. (A11) can be simplified as

(A12)

Thus, Eq. (A1) can be obtained by rearranging Eq. (A12).

6 Gl ij, Gu ij,+( )
2 Gu ij,+( ) 2 Gl ij,+( )

------------------------------------------------ϕ ijcos ϕ ij( )
36 Gl ij, Gu ij, ϕ ij

2–( )
2 Gu ij,+( ) 2 Gl ij,+( )

------------------------------------------------sin ϕ ij( )+ 0=

6 Gl ij, Gu ij,+( )ϕ ijcos ϕ ij( ) 36 Gl ij, Gu ij, ϕ ij
2–( )sin ϕ ij( )+ 0=




