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Abstract. Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part
beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first
approach is based on matrix transformation while the second one is a direct approach in which the
kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures
allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or
more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentialy a
structural member consisting of two different beam segments between which there is a rigid mass element
that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic
stiffness matrices were performed for a wide range of frequency vaues. Once the dynamic stiffness
matrix is obtained using any of the two methods, the Wittrick-Williams agorithm is applied to compute
the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results
are discussed and the paper concludes with some remarks.
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1. Introduction

Beam-mass systems with varying degrees of complexities have been anaysed by many
investigators using different methods. Dowell (1979) appears to be one of the earlier investigators
who studied some general properties of combined dynamical systems involving beams, springs, and
lumped masses. He made some useful observations for different component systems connected at
more than one points and provided solutions, which are particularly useful when establishing upper
and lower bounds of natural frequencies of complex vibrating systems. Some years later, Nicholson
and Bergman (1986) investigated the free vibration behaviour of combined dynamical systems by
using the classica method of separation of variables. They used Green's function when solving the
generalised differential equations which eventually yielded the characteristic equation for the natural
frequencies of the system. However, one of the drawbacks of their method is that the convergence
towards an accurate result was somehow slow. Interestingly, Ercoli and Laura (1987) carried out an
analytical as well as experimental investigation on continuous beams having elastically mounted
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masses. From a theoretical standpoint, they obtained solution using different variational approaches.
They corroborated their theoretical predictions by experimental results. Liu et al. (1988) on the
other hand, used the Laplace transformation technique to formulate the frequency equations for
beams carrying intermediate concentrated masses. Their investigation covered both uniform and
non-uniform beams with one, two or three intermediate concentrated masses. Later, Wu and Lin
(1990) employed a technique which combines both analytical and numerica methods to study the
free vibration behaviour of uniform cantilever beams with point masses. Other contributors in this
field include Larrondo et al. (1992), Gurgoze (1996), Wu and Zhou (1998, 1999). In most of these
earlier works, the presence of a mass connected to a beam has often been assumed to be of
negligible size and concentrated a a point. Such simple models may lead to large errors in the
moda analysis if the mass has a sizeable dimension which is a significant proportion of that of the
beam. A classic example is an engine mounted on a high aspect ratio aircraft wing of a commercia
airliner. Of course, the wing may be idedised as an assembly of beams whereas the engine may be
assumed to be a lumped mass possessing amost infinite stiffness compared to that of the wing.
Clearly, the size of the engine may not be smal enough to be regarded as a point mass when
carrying out an accurate free or forced vibration analysis of the combined wing-engine system
satisfactorily. It appears that this particular type of problems has been addressed only recently by
Kopmaz and Telli (2002) and Banerjee and Sobey (2003). The theory developed by these
investigators has only been applied to one-dimensional structures in a limited context. The solution
was redtricted to a single two-part beam-mass system with specific boundary conditions at the ends.
Essentially, the works of Kopmaz and Telli (2002), and Banerjee and Sobey (2003) account for the
dynamic behaviour of a two-part beam-mass system consisting of two different beam segments
between which lies arigidly connected masdinertia element of finite length.

The purpose of this paper is to extend the above investigations substantially so that a two-part
beam-mass system can be used in a framework. In order to achieve this, an exact dynamic stiffness
matrix of a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-
Euler beam. The main advantage of the dynamic stiffness method is that it puts the anaysis in a
much more general context in which a two-part beam-mass system can be a structural element so as
to form an integral part (or a component) of an overal fina structure.

The dynamic diffness matrix of a two-part beam-mass system is developed in this paper by
employing two different approaches. The first approach is that of the transfer matrix method (Lee
2000, Syngellakis and Younes 1991, Tanaka et al. 1981) whereas the second one is a direct
approach which relies on satisfying the kinematical conditions at the joints of the combined system.
In the transfer matrix approach, the displacements and forces at one end of the two-part beam-mass
system are progressively transferred to the next adjacent end using suitable transformation. For
harmonic oscillation, the expressions for the displacements and forces are obtained from the exact
solutions of the governing differential equations of the combined system. The dynamic stiffness
matrix is finaly developed by relating the forces and displacements at the two end-nodes of the
freely vibrating combined system. In the direct approach, the two-part beam-mass system is
ideadlised using two different coordinate systems. The Y-axes for both coordinate systems are
vertical. However, the X-axis for the left-hand beam dement is from left to right whereas the
corresponding X-axis for the right-hand one is from right to left. By approaching the problem from
both sides of the coordinate systems, and satisfying the kinematical conditions at the joints between
the beams and the rigid mass, the dynamic stiffness matrix is derived. In both approaches, the
displacement and force vectors at one end of the combined system is related to those of the other.
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Fig. 1 Notation and coordinate system of a two-part beam-mass system for the transfer matrix method

The agorithm of Wittrick and Williams (Wittrick and Williams 1971, Williams and Wittrick 1983
Williams and Howson 1997) is finaly applied to the resulting dynamic stiffness matrix to yield
natural frequencies of frameworks consisting of two-part beam-mass systems.

2. Theory

A two-part beam-mass system is shown in a right-handed rectangular Cartesian coordinate system
in Fig. 1. The centra element, which connects two beam dements at its end, is a rigid body with
mass m;, length |5, and mass moment of inertia |, about its centroidal axis. The lengths of the two
beam elements are |; and |, respectively, whereas the mass per unit length, extensional rigidity and
bending rigidity of the two beam elements are my, E;A;, Ejl;, and my,, EoA,, Ealy, respectively. The
total length of the whole assembly is L as shown in the figure.

2.1 Transfer matrix approach

The transfer matrix approach is used here to anayse the free vibratory motion of the combined
system. The method essentially focuses on the derivation of a relationship between the forces and
displacements at the left-hand end A, with those a the right-hand end D of the combined system
(see Fig. 2).

The state vector for this problem in genera form is defined as

S=[uv 8P SM )

where u is the axia displacement, v is the transverse bending displacement, 8 is the anti-clockwise
(tangential) bending rotation, P is the axia force, Sis the shear force and M is the bending moment
a any cross-section of the beam-mass system. Note that the superscript T denotes a transpose.

The transfer matrix method allows the state vector at the point B to be expressed in terms of that
a A, (see Fig. 1) asfollows

Sz = T,S, %)

where Sy and S are the state vectors at points A and B respectively, and T, is the corresponding
transfer matrix relating the two.

Likewise, the state vector at the point D (Sp) can be determined in terms of that a C (Sc) by
using the transfer matrix T, as follows
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Sp = T,Sc ©)

For the central member which is a rigid body, the state vector S¢ at C can similarly be expressed
in terms of Sz a B by using the transfer matrix T; to give

Sc = T3S (4)

Finally, the force displacement relationship between the two ends of the freely vibrating combined
system is obtained in the form of the following matrix relationship.

Sp = TSy = T,T5T:Sa (5)

where T;(i =1, 2,3) are the three transfer matrices corresponding to each part of the two-part
beam mass system.

The equations of motion in free longitudina and flexura vibration for the two beam eements
shown in Fig. 1 are,

o"'zui o"'zui
EiA I = m P (6)
and
', 9
El— +m— =0 (7)
ox’ o’

wherei (i = 1, 2) denotes the left-hand and right-hand beam members, respectively.
For harmonic oscillation with circular (angular) frequency cw, the displacements u; and v; can be
expressed as
ui(x;, t) = Ui(xi)eith
o O (8
vi(x, t) = Vi(x)e " U

where U; and V, are the amplitudes of longitudinal and flexural displacements in free vibration

respectively.
Substituting the Egs. (8) into Egs. (6) and (7) gives
d’u, )
> = —a;U; ©)
dx;
4.
LV g, (10
dx;
where
ori2 = m W/ EA (1)

B! = m&’/E|, (12)
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Fig. 2 Sign convention for positive axia force (P), shear force (S and bending moment (M) (a) for a beam
element, (b) for arigid mass element

The solutions of differential Egs. (9) and (10) are in the usual notation given by
U; = ficosa;x + gsina;x; (13)
V; = a;coshfB,x; + b;sinhB;x + ¢,cosB;x; + d;sinB;x; (14
where fi, g, &, by, ¢ and d; (i = 1, 2) are two sets of six arbitrary constants for the two beam
elements respectively.

The bending rotation, axial force, shear force and bending moment of the beam eement can be
written as (see Fig. 2(a) for sign convention)

6 = 2—\; = Bi(asinhB;x; + b,coshBix; — ¢;sinB,x; + d,cosf;x;) (15)
dy;
P, = EAICl = EA a;(f;sina;x; — g;cosa;X;) (16)
dv,
S = E,IId = E|||ﬂ| (a;sinhB;x; + bycoshB;x; + ¢;sinBx; — d;sinB;x;) (17)
_ e 9V . . |
M; = _EiliF = —El; B (ajcoshBx; + b;sinh 3;x; — c,cosfBx; — d;SinBx) (18)

For each beam element, the right-hand state vector can be written in terms of the left-hand end
state vector by substituting appropriate properties and boundary conditions for each element. For
instance, the transfer matrix T, for the beam element AB relating the state vector at A to that at B
can be obtained as follows.

Substituting x;, = 0 into Egs. (13)-(18) gives the state vector at A as

Up = 14 Pa = -E1A010; 0

O
Vpa=a,+t¢ Sy = Elllﬁi(bl_dl) E (19)
On = Bi(by+d;) My = _Elllﬁi(al_cl)lj
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At x, = |, for the end B, the state vector a B can be obtained from Egs. (13)-(18) to give,

Ug = f,cosayl; + g;sina;l,

= a;coshf,l, + b;sinhB,l, + c,cosB, 1, + d;sing,1;

8 = Bi(assinhByl; + bycoshByl; — ¢ sinByly + dicospyly)

Ps = E;A a,(f1Sinayl; — g cosa;ly)

Ss = Eil1Bi(a.sinhBil; + b,coshByl; + ¢;sinBil; — dycospBily)
Mg = —E,l 1B§(31005h31| 1+ b;sinhByl; — ¢ cospB,ly —dysinfyly) E

<

@

|
o o

(20)

Now the six constants (f1, gi, a1, by, ¢; and dy) in Egs. (19) and (20) can be eliminated to form

the transfer matrix T, relating the state vectors a B and A (see Fig. 1).

Following the same procedure T, can be derived for the right-hand beam element as well.

Thus, T;(i =1, 2) in genera can be expressed as

T, 0 O T4 0 O
0 Tp Tu 0 Tx Tx
0 Ty Tz 0 T Ty
T, 0 O T4 0 O
0 Ty Tz 0 Tes Tss
10 T Tes 0 Te Tegl

(21)

For both beam elements, the components of the matrix T;(i =1,2) can be expressed by

substituting appropriate beam parameters. The elements of T; are as follows
T = Tu = cosal;
Ty, = —sinali/ (EA @)
Ty = Tg = Tss = Tes = (coshl; + cosBili)/ 2
Ty = —Tes = (SNhBI +sinBl)/ (2B3)
T = (SinhBl—sinBl)/ (2E1,8)
Tye = —Tss = —(coshBl, —cosBl)/ (2E1, )
Ty, = —Tss = Bi(sinhBl; —sinfl;)/ 2
Ty = —(sinhBl; +sinBl;)/ (21, 3)
T4 = EAQ;sinal;
Ts = E LB (sinhBl; +sinBl)/2
Tss = —Te, = El,3 (coshBl; — cospl;)/ 2
Tes = —EiliBi(sinhBil; —sinfl;)/ 2

o o o o |

(22)
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The rigid element, which may be considered to be a non-uniform rigid mass of length |5 with its
centre of gravity located at a distance A I; from one end (see Fig. 2b).

The equations of motion follow from the equilibrium and compatibility conditions of the element
as follows (see Figs. 1 and 2)

Ue = Ug
6. = 64

* 2
PB_PC = —m3(4)2UB ( 3)

S-S = —W[AVe+ (1-A)Ve]mg
Mc—Mg + SsAls+ Sc(1=Ml; = ol 650

o

The dtate vector S¢ at the end C can be written in terms of that at the end B by using the above
conditions. In matrix notation, this transfer matrix T is

1 0 O 0 0 0
0 1 5 0 0 O
. 0 0 1 0 0 O ot
T im0 0 1 0 0 (24)
0 me wmAl; 0 1 0
| 0 M Mo 0 -3 1
where
2 *
= —w mg(1-A)I 0
Hy 3( )3 (25)

2 * 2 O
—[MA(L=A)3=1,] O

Ha

Using the matrices given by Egs. (21) and (24), the final matrix T (see Eq. 5) of the combined
system can be obtained as

T = {’é Ej (26)

where each of the A, B, C, and D matricesisa 3 x 3 sub-matrix.
Now the relationship between forces and displacements can be rearranged with the help of Eq. (5)
to give

F=Kd (27)
where
0 =[Ux Va 64 Up Vp GD]TD

U (28)
F=[Px Sy My Pp S Mp] O
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Fig. 3 Notation and coordinate system of a two-part beam-mass system for the direct method

0 and F above are the displacement and force vectors at the two ends A and D of the combined
system (see Fig. 1). Note that for presentational purposes, the column vectors for nodal
displacements and noda forces are represented by their corresponding transpose. The required
frequency dependent dynamic stiffness matrix for the combined system can be expressed after some
matrix manipulation as

-1 -1
k= BA B (29)
c-DBA DB™

2.2 Direct approach

Two coordinate systems, namely O.X,Y; and O,X,Y, shown in Fig. 3, are chosen for the left-
hand and right-hand beam elements respectively. Axia and bending stiffnesses are uncoupled and
they are obtained by separate consideration of axial and bending motion of the combined system.

The equations of motion in free longitudinal and flexurd vibration for the two beam elements AB
and DC are given by Egs. (6) and (7). Assuming harmonic oscillation as in Egs. (8), and
introducing the non-dimensional length & so that

& = x/1; (30)

Egs. (9) and (10) can be re-written in non-dimensiona form as shown below

d’u, ..
dfiz +yU =0 (3D
4.
V.
d—4'—ki4Vi =0 (32)
dé;
where
v, = ail? (33)

k' = Bil} (34)
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The solutions of differential Egs. (31) and (32) are given by
Ui(&) = Ticosy& + gsinyé (35)
Vi(&) = acoshk;é; + bsinhk, & + & cosk; &, + d;sink; &, (36)
where fi, g, a, Bi,éi,ai (i = 1, 2) are two sets of six different arbitrary constants for the two beam
dements AB and DC respectively.

The bending rotation, axial force, shear force and bending moment of the beam elements can be
expressed as

6.(&) = ﬁ(éisinhki & + bicoshk; & — & sink; & + dicosk; &) (37)
P.(&) = A (fsmyx 0,COSy;X;) (38)
ElK . « L ~
S(&) = B 1§ + bicoshk;¢; + € sink;§; — dicosk; &) (39)
ElK . . ~ ~
M(&) = i¢; + bysinhk; &; — cjcosk; &; — disink;¢;) (40)

I?
At the intersections at x;, = I, and x, = I, (i.e, & = 1 and &, = 1) for points B and C, see
Fig. 3, the following geometric and dynamic matching conditions must apply.
Continuity of dope:
1., 1.,
T Ve(1) = —=Vc(1) (41)
Iy P
Compatibility of longitudinal and flexural displacements:
Ug(1) = -Uc(1) (42)
I3 .
Va(1) + Vs (1) = Ve(1) (43)

Equilibrium eguations for axia and transverse motions:

Pc(1) = Pg(1) —msa’Ug(l) (44)
EI—'VB (1) + EIL'ZVC (1) = —mw [VB(l) 5] (45)
1 2

Equilibrium equation of rotational motion:

EI E,l I5Esl [ = ™ I,
—vg(1) + f =22y (1) + —Iﬂvc(l) —I#lvB (1) = -

1 2 1

= (46)
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Now it is possible to relate the two sets of the constants f, §,&,b;,& and d;. Hence, the
derivation of dynamic stiffness matrix of the system essentialy involves dimination of six constants
instead of the twelve.

Applying the boundary conditions for the axial and bending displacements, bending rotations,
axia forces, shear forces and bending moments, and noting that & are zeros a end A and D for
i =1andi=2respectively, the following equations can be obtained

- E:A1 Vi~ O
Un = i Py = =g, O
1 0
0
. E .k
Va= 8 +8 Sy = E(B—dy S (47)
17 0
0
. EkE . .
O = b+ ) My =235, -8) 0
1 Il D
and
A E,A s .
Up = 1 P, = zl 2 Vo , E
2 0
0
I Eoloks »  »
Vo = 8,48, S = =22(b—dy) | (48)
13 5
0
Ko - Bl Ko . .
6o = 72D+ ) Mo =—222(8,-8)
2 IZ D
Egs. (47) and (48) can now be written in the following matrix forms,
5 = RC (49)
F=QC (50)

where d and F have aready been defined in Egs. (28), C is the unknown constant vector given by
C = [’fl! gl! é-lu t311 611 al]T (51)

The matrices R and Q in Egs. (49) and (50) are obtained with the help of boundary conditions in
Egs. (47)-(48) and the matching conditions in Egs. (41)-(46). Thus the dynamic stiffness matrix of
the two-part beam-mass system K can be derived by diminating the constant vector C from Egs. (49)
and (50) and in this way relating the amplitudes of the forces F to those of the displacements & at
the ends. In matrix notation, this is represented by Eq. (27) with

K = QR™ (52)

where K is the required frequency dependent 6 x 6 dynamic stiffness matrix of the two-part beam-
mass system.
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3. Solution procedures for the natural frequencies

The dynamic stiffness matrix described by Egs. (29) or (52) can now be used to compute the
natural frequencies and mode shapes of a two-part beam-mass system with various end conditions
or a structure consisting of such systems. An accurate and reliable method of calculating the natura
frequencies and mode shapes of a structure consisting of two-part beam-mass systems using the
dynamic gtiffness method, is to apply the algorithm of Wittrick and Williams (1971) which has
featured in numerous papers (see for example, Williams and Wittrick 1983, Banerjee 1997). Before
applying the agorithm the dynamic stiffness matrices of al individual elements in a structure are to
be assembled to form the overal dynamic stiffness matrix K; of the fina (complete) structure,
which may, of course, consist of a single element. The agorithm monitors the Sturm segquence
condition of K; in such a way that there is no possibility of missing a frequency (or mode) of the
structure. This is, of course, not possible in the conventional finite element method. The algorithm
(unlike its proof) is very simple to use. The procedure is briefly summarised as follows.

According to the Wittrick-Williams algorithm, j, the number of natura frequencies passed, as wis
increased from zero to w, is given by

j =jots{K¢ (53)

where K, the overal dynamic stiffness matrix of the fina structure whose elements all depend on
w, is evaluated a w= of; s{K¢} is the number of negative elements on the leading diagona of K{,
K{ is the upper triangular matrix obtained by applying the usual form of Gauss eimination to K;,
and jo is the number of natural frequencies of the structure still lying between w =0 and w= w
when the displacement components to which K; corresponds are all zeros. (Note that the structure
can ill have natural frequencies when al its nodes are clamped, because exact member equations
dlow each individua member to displace between nodes with an infinite number of degrees of
freedom, and hence infinite number of natural frequencies between nodes.)
Thus

o= Sin (54)

where j,, is the number of natural frequencies between w =0 and w = « for a component member
with its ends fully clamped, while the summation extends over all members of the structure. This
simple feature of the algorithm (coupled with the fact that successive trial frequencies can be chosen
by the user to bracket a natura frequency) can be used to corverge on any required natural
frequency to any desired (or specified) accuracy. The paper by Williams and Howson (1977)
provides the step by step procedure for determining the natural frequencies of frameworks using the
dynamic stiffness matrix method.

4. Results and discussions

The dynamic stiffness matrix of the two-part beam-mass system was first numerically checked to
machine accuracy for a wide range of frequency values using the above two formulations, namely
the transfer matrix approach and the direct approach, to ensure that the two methods give the same
results.
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Fig. 4 A framework consisting of two-part beam-mass systems with nodes 1 to 4, and member types | and 1l

It should be recognised that a single two-part beam-mass system for a given boundary condition
can be analysed for its free vibration characteristics by simply applying the boundary conditions of
the whole system, and without resorting to the development of its dynamic stiffness matrix. The
work of Kopmaz and Telli (2002) and that of Banerjee and Sobey (2003) are in fact examples of
this relatively simple approach in which the authors have solved the governing differential equations
of a two-part beam-mass system without developing the dynamic stiffness matrix. This approach is
al right for simple problems, but is inadequate when studying the free vibration characteristics of
frameworks consisting of two-part beam-mass systems. The present theory based on the dynamic
gtiffness method has no such limitation because it can handle a single two-part beam-mass system
as well as a combination of them placed in any arbitrary orientations.

To demonstrate some genera applications of the theory, two illustrative examples are chosen. The
first example is a framework consisting of four structural elements of which three are uniform beam
eements without any rigid mass attachment whereas the fourth one has a rigid mass forming a two-
part beam-mass system. The geometrical details of this frame are shown in Fig. 4. The node
numbering and element types are aso shown in the figure. Note that elements with the same
extensiond rigidity EA, bending rigidity El, and mass per unit length m constitute a single member
type. Thus the ements connecting nodes 1-3, 1-4, and 2-4 sharing the same above properties, have
been classified as member type |, see Fig. 4. Of course, the member connecting nodes 1 and 2 is a
two-part beam-mass system for this example, which is considered to be member type 1l as shown.
The data used for these two member types are as follows.

For member type I:
El = 40x10° Nm’, EA = 80x10" N, m = 50 kg/m.
For member type Il:

E,l, = E,l, = 40x10° Nm’, E,A, = E,A, = 80x10° N, my =m, = 50 kg/m
|, = 1.562 kgm® ms = 75 Kg.

The first three natural frequencies for the frame were computed using the present theory and are
shown in column 2 of Table 1. In order to examine the effect of the length of the rigid mass, a
second set of results was obtained by assuming the rigid mass to be concentrated at a point on its
centre of gravity. The results are shown in column 3 of the table. A comparison of results shown in
columns 2 and 3 indicates that the size of the mass did not make much difference to the
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Table 1 The first three natural frequencies of the framework shown in Fig. 4, with and without

a two-part beam-mass system (TPBMYS)

Natural frequencies (Hz)

Natural frequency

number Current method With
With TPBMS With point mass no rigid mass

1 25.04 25.16 35.39

2 36.21 40,53 277

3 43.74 48.60 59.64

be—3m ~—>é<—-—3m —>le— 3 —>

1

7 3 4

1

am N1

l,

1

111

%

5 6

563

Fig. 5 A framework consisting of two-part beam-mass systems with nodes 1 to 8 and member types |, Il and Il

fundamental natural frequency, but it has altered the second and third natural frequencies by around
12%. The final set of results for this example was obtained by removing the rigid mass dtogether.
The natural frequencies without the rigid mass are shown in the fina column of the table. The
results indicate significant influence of the rigid mass on the three natural frequencies. Clearly, the

presence of the rigid mass reduces the natural frequencies as expected.

The second example is adso a framework, but is very different from the first one (see Fig. 5). This
particular problem was earlier solved by Williams and Howson (1977), but without any two-part
beam-mass system attachments. For the purposes of demonstration of the present theory, four of the
thirteen members of the origind frame (earlier used by Williams and Howson 1977) were replaced
by two-part beam-mass systems as shown in the figure. The structural parameters used in the

anaysis are as follows.
For member type I:
E,l, = E,l, = 40x10° Nm’,

m, = m, = 30 kg/m,
m; = 225 Kg,

For member type II:
E,l, = E,l, = 40x10° Nm’,

m; = m, = 30 kg/m,
m; = 15.75 kg,

E,A, = E,A, = 80x10° N,

I, =1, =3.0m,
l, = 1.875 kgm®,

E,A, = E,A, = 80x10° N,

L, =1,=115m,
l, = 0.643 kgm®,

1.0 m.

0.70 m.
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Table 2 The first five natural frequencies of the framework shown in Fig. 5, with and without
two-part beam-mass systems (TPBMS)

Natura frequencies (Hz)

Natural frequency - - Difference
number with without TPBMS (%)
TPBMS [Williams and Howson 1977]

1 31.363 35.762 14

2 37.647 39.104 4

3 40.290 42.555 6

4 438.869 51.394 5

5 49.004 53.935 10
For member type I11:
E,l, = E,l, = 40x10° Nm’, E,A, = E,A, = 80x10° N,
m, = m, = 30 kg/m, I, =1,=19m,
m; = 27.0 kg, l, = 3.240 kgm®, I, = 1.2 m.

The properties used for the rest of the members are same as those reported by Williams and
Howson (1977). Results are obtained for the first five natural frequencies of the frame using the
present theory and are shown in Table 2 alongside the results of Williams and Howson (1977). The
percentage difference shown indicates that the effect of the two-part beam-mass system can make
significant differences to some of the natural frequencies, particularly for the first and fifth
frequencies.

5. Conclusions

By using two different approaches, the dynamic stiffness matrix of a two-part beam-mass system
has been developed and applied to frameworks. It has been shown that as a result of using the
present theory, the finite size of a rigid mass possessing rotatory inertia can be accounted for, in the
prediction of natural frequencies of frameworks accurately. The theory provides considerable scopes
for parametric studies to enable vibration attenuation of complex vibrating structures to be made, by
using two-part beam-mass systems and thus, placing the natural frequencies within appropriate and
desirable bands. Numerical results for natural frequencies are given for two example frameworks
and their significance has been discussed. The theory presented is expected to pave the way for
further research in the development of dynamic stiffness formulation of complex structural systems
combining both continuous and discrete elements.
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Notation

E.A;, ExA; : extensiond rigidity of the two beam elements of the TPBMS
Eily, Exl,  : bending rigidity of the two beam elements of the TPBMS

lo : mass moment of inertia of the rigid mass about the centroidal axis
l4, 15 : lengths of the two beam elements of the TPBMS
I3 - length of the rigid element

L : the total length of the TPBMS
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: mass per unit length of the two beam elements of the TPBMS
: mass of the rigid element

: bending moment

: axia force

: shear force

: state vectors at points A and B respectively
: state vectors at points C and D respectively
: two-part beam-mass system

: corresponding transfer matrix

: axia displacement

: transverse (bending) displacement

: anti-clockwise (tangential) bending rotation





