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Abstract. The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric
thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and
applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I
cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-
Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the
needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria
approach to determine the stability factor ϕ has been suggested and its analytical formula has been
derived. Finally, as an example, box columns with a center through-wall crack were analyzed and
calculated. The effects of cracks on both the maximum deflection and the stability coefficient ϕ for
various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results
of tests on the columns show that the deflection increment caused by the cracks increases with increased
crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure
ξc is found to decrease with an increase of the slenderness ratio or eccentricity.
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1. Introduction

Thin-walled structures are widely used in civil and mechanical engineering fields. With the
development of new construction techniques and materials, one of the most important considerations
is the effect of the initiation and propagation of cracks. The thin-walled steel structures are usually
built up with welding seams. There are some unavoidable defects that may be considered cracks in
the welding position (Wang and Zhai 1989). In a poor working environment, such as one in which
there is low temperature, dynamic load, corrosion media, etc, the presence and growth of cracks is
more certain to decrease the bearing capacity and residual life of structures. However, research in
this area is very limited and there are no guidelines available for structural engineers to predict and
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control the crack effects. Therefore, it is absolutely essential to estimate quantitatively the influence
of cracks on the behavior of deformation and failure of thin-walled structures.

The load carrying capacity of thin-walled structures is usually governed by the buckling manners.
Moreover, the buckling of thin-walled members is susceptible to the imperfection of geometry and
load. It is generally assumed that the presence of cracks can account for geometrical imperfections
and thus reduce the load carrying capacity of a thin-walled structure (Estekanchi and Vafai 1999).
EI Naschi (1974) considered the buckling problem of a cracked shell for the first time, and the
progress of research in this area was briefly reviewed in literature (Estekanchi and Vafai 1999).
Recently, some studies have begun to pay attention to Finite Element (FE) modeling for the
buckling analysis of cracked plates and shells. A general FE element model for the analysis has
been proposed, verified and applied (Vafai and Estekanchi 1999). With this FE model, Estekanchi
et al. (1999) have investigated the sensitivity of the buckling load of cylindrical shells to the crack
length and orientation. Also, Javidruzi et al. (2004) have studied the vibration, buckling and
dynamic stability of cracked cylindrical shells. An interesting result of the above studies is that the
initiation of cracks not only decreases the limit load of compressed shells but also causes buckling
for tensile shells. However, the concepts used in the above studies, that the cracks in a shell
structure cause geometrical imperfections, is not appropriate, because both the deformation before
buckling and the failure mechanism in the limit state are possibly changed due to the presence of
cracks. Obviously, a theoretical study on the deflection and ultimate bearing capacity of thin-walled
cracked structures is still necessary. 

The object of the present study is to describe the deformation and failure behavior of eccentric
thin-walled columns containing model-I cracks with both ends pinned. A common method for
determining the elastic deflection of cracked members is to resolve such a boundary-value problem
that the local deformation due to cracking is considered as a boundary condition. For example, the
elastic deflection of a rectangular eccentric column with an edge crack has been analyzed by
Okamura (1981), where the rotation of the cracked cross section was simulated by a very short
spring. The disadvantages of the above model are that the smooth condition of the deflecting curve
could not be met and the model is not applicable to thin-walled members because sometimes the
crack extension direction is vertical to the plane of flexure. This method was still applied in Wang’s
study (Wang and Chase 2003) on the buckling of a cracked column, however. In order to describe
the elastic deformation of eccentric thin-walled columns containing model-I cracks, the Rayleigh-
Ritz energy method was used and a trigonometric series solution of the elastic deflection equation
was obtained by Li (2000). This solution fulfils the compatibility of deformation and is useful for
the thin-walled cracked column. 

In this paper, the series solution was used to analyze the effects of crack size on the maximum
elastic deflection of eccentric H-column and box column under different load and eccentricity states,
where the double edge and center crack models were applied respectively to simulate the tensile
flanges that contain a model-I through-wall crack. The stability factor ϕ − λ curves of cracked
eccentric columns were classified as two types: yielding dominant failure and compound failure
from yielding to fracture. A method for determining the ultimate bearing capacity of cracked
eccentric columns was suggested by use of double failure criteria, i.e., yielding criterion and fracture
criterion. Accordingly, the analytical formula of stability coefficient ϕ was derived. In addition, the
box columns with a center through-wall crack were calculated as an example of the use of the
above ϕ formula. The influences of cracking on the stability coefficient ϕ were discussed for
various crack lengths or eccentricities and the critical transition crack lengths ξ0 was found.
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2. Analysis model

The analysis and discussion in this paper are based on the following assumptions: (1) the columns
have both ends pinned and the eccentricity of the axial concentric loads applied at both ends are
equal; (2) the loads are applied along the longitudinal symmetrical plane of the column and the
lateral stiffness is sufficient to prevent buckling; (3) the deflection of the column is linear elastic;
and (4) the model-I crack is located at the tensile edge of a certain cross section of the column. The
analysis model according to these assumptions is as shown in Fig. 1, where plane xoy is the
longitudinal symmetrical plane of the column, and e and ek are the eccentric distance of the gross
and the cracked cross-section, respectively. 

Assuming the longitudinal coordinate of the cracked cross-section is xk and, therefore, that the
deflection is yk = y(xk), the maximum tensile stress (assuming the eccentric distance is far enough)
and the compress stress in the cracked cross-section can be written, respectively, as follows:

 (1)

(2)

where A0 and Ak are the areas of gross and cracked cross-section, respectively; εk = ek Ak /Wk and
εy = ek Ak /Wy, refer to the relative eccentricity of the cracked edge and to another edge, respectively,
in which Wk and Wy are the section modulus of the cracked cross-section at the cracked edge and at
the another edge, respectively; and α = P/PE = σ/σE , in which PE and σE are Euler’s critical load and
stress for an ideal column, respectively. It should be noted that all the parameters with down
marking of k in the above equations are associated with the crack length.

Because the restraint effect of web plate on flange plate is not significant and can be neglected,
the tensile flange plate with model-I cracks of the H-column (shown in Fig. 1b) and the box column
(shown in Fig. 1c) can be analyzed according to the double edge crack plate (shown in Fig. 2a) and
the center crack plate (shown in Fig. 2b), respectively. It has been recognized in linear elastic
fracture mechanics that the critical failure state of a cracked body is dominated by the stress
intensity factor (SIF). When a plate with model-I cracks is subjected to tensile stress σk, the general
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Fig. 1 Analysis model of eccentric thin-walled columns with model-I cracks
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expression of SIF can be written as 

(3)

where ξ = a/b is the relative crack length, a* is a characteristic length parameter that is related to the
configuration of the cracked body and uncorrelated to crack length, and fk (ξ ) is the configuration
correction factor of the SIF and may be looked up in SIF handbooks or determined computationally.

3. Series solution of deflection

3.1 Objective functions and energy variation equations of deflection 

According to the boundary conditions of the column shown in Fig. 1(a), the objective function of
the deflection can be assumed to take the trigonometric series form

   (4)

where Cm (m = 1, 2, ..., n) may be called the deflection coefficients and can be determined by means
of Rayleigh-Ritz’s energy variational calculations. When εk ( yk /ek + 1) ≤ 1 and thus the tensile stress
is σk ≤ 0, the closed crack has no influence on the deflection of the column, so Cm = Cm(α, ε). When
εk ( yk /ek + 1) > 1 and thus σk > 0, the opened crack has some influence on the deflection of the
column, so Cm = Cm(α, ε, ξ ). Where ε = eA0 /W0 is the relative eccentricity of the gross cross section
of the column.

By using the deflection function given by Eq. (4), the total potential energy of the cracked thin-
walled column may be written as

(5)

where U0 is the elastic strain energy of the loaded column assumed to be uncracked, Uk is the
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Fig. 2 The crack model of flange plates
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change in elastic strain energy caused by introducing the crack in the column, and UP is the work
performed by external forces. From the principle of minimum potential energy, it can be known that
δΠ = 0 that is

(6)

The deflection coefficients Cm (m = 1, 2, ..., n) in Eq. (4) can be determined by Eq. (6), and the
deflection curve can then be obtained. 

3.2 Strain energy and external forces work

In the final deformation state, assuming that the deflection due to both the loading and cracking is
resisted when the crack disappears, the elastic strain energy of the loaded, uncracked column
obtained by elastic bend theories is as follows:

(7)

From the theories of linear fracture mechanics, we know that the change in elastic strain energy
caused by introducing the crack in the column is 

(8)

by substituting from Eq. (3) into (8) together with Eq. (4), the expression of Uk is obtained as

(9)

where 

(10)

and λ is the slenderness of the column. All parameters of A0 /Ak , e/ek and εk that appeared in the
above equations are all the function of the relative crack length ξ and are related to the
configuration of the cross-section of the columns.

The work performed by external forces is:

(11)
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3.3 The series solution of equations of deflection

Substituting from Eqs. (7), (9) and (11) into Eq. (6), the equations of the deflection coefficients
are given by 

(12)

where r is the gyration radius of the gross cross-section. 
Substituting from Eq. (12) into (4), the deflection equation of the cracked column is finally given

by

(13)

where it should be noted that yk is still the functions of the coefficients Cm.
The analytical results (Li 2000) show that the accuracy of the first term of the series expressed by

Eq. (13) is 1.5% for a typical thin-walled column. For an engineering application, Eq. (13) can be
therefore simplified as 

(14)

Assuming that the crack is located on the intermediate cross-section of the column shown in
Fig. 1, which is the most dangerous section, i.e., x = xk = l/2, the maximum deflection can be
determined by solving Eq. (14), that is: 

(15)

where .

4. Ultimate bearing capacity of cracked eccentric columns

4.1 Stability coefficients according to SIF criteria

According to the fracture criteria of stress intensity factor criteria, the SIF KI increases linearly
with increased tensile stress. When KI exceeds a critical value Kc, the crack propagates unstably.
Thus, fracture occurs when

(16)
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Substituting from Eq. (1) into (16), it can be seen that the dimensionless parameter of the ultimate
compress capacity of the column is 

(17)

where

  (18)

Substituting from Eq. (15) into (17) and neglecting the α3 term, the ultimate compress capacity α,
can be solved and, therefore, the formula of stability coefficient ϕk (= σc /fy = απ2E/fy λ2) based on K
criteria is given by 

(19)

where fy is the yielding strength of the material.

4.2 Stability coefficients according to edge yielding criteria 

After derivation similar to that in the above section, the formula of stability coefficient ϕy based
on edge yielding criteria can be obtained as follows: 

 

(20)

where

   (21)

Eq. (20) may be regarded as a development of Perry’s column formula.

4.3 The ϕ −− λ curves of columns in terms of the two-criteria approach

For generally eccentric thin-walled columns containing model-I cracks, there are two possible
kinds of failure mechanisms in states of ultimate bearing capacity: yielding at the compression edge
and fracturing at the tensile edge. Which kind of failure will occur under the compression load
depends on the compound states of the slenderness λ of columns, the eccentricity ε of the loads, the
relative crack length ξ and the material properties such as the yielding strength fy, fracture
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toughness Kc and elastic modulus E. Therefore, the equations of the ϕ − λ curves of the cracked
eccentric thin-walled columns should be expressed according to 

(22)

The above approach of determining the ϕ − λ curves of the columns may be called the two-
criteria approach. Generally speaking, the higher the values of the slenderness λ, the eccentricity ε
and the relative crack length ξ , the greater the possibility of column fracture failure. 

5. Example and analysis

5.1 Introduction of problem 

The mechanical properties of the steel 16 Mn calculated here are as follows: yielding strength
fy = 390 N/mm2, fracture toughness Kc= 4282 Nmm1..5, and elastic modulus E = 206 × 105 N/mm2.

The box column shown in Fig. 1(c) will be numerically computed and discussed. The geometric
properties of the gross section are as follows: b = 160 mm, t/b 0.1, η1 = 1.0, η2 = 2.0, A0 =  4bt,

, and ε = eA0 /W0 = 3e/b. The dimensionless characteristics of the cracked section
and relative eccentricity can be given by 

(23)

(24)

(25)

(26)

The configuration correction factor of the SIF may be looked up in Wang and Chase (2003); it is

 (27)

with 0.1% accuracy. The parameter a* in expression (3) is b/π. 
The values of functions g1(ξ, ε) and g2(ξ, ε) can be obtained by substituting from Eqs. (23)-(27)

into (10) and thus the deflection and the stability coefficient are finally determined.

5.2 Effects of crack on deflection

The ratio of the maximum deflection change caused by cracking to the maximum deflection of an
uncracked column, ∆δ/δ0, can be adopted to describe the effects of cracking on deflection. The
curves of ∆δ/δ− ξ for various eccentricity ε are illustrated in Fig. 3, where the dimensionless load is
α = 0.6 and the slenderness of the column is λ = 100. From Fig. 3 it can be found that, in the same
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situation of eccentricity, the ratio of ∆δ/δ0 increases monotonously with the increasing of crack
length and, in a certain state of cracking, the higher the value of relative eccentricity, the higher the
value of ∆δ/δ0. In other words, the effect of cracking on the deflection of the column increases with
an increase in the crack length or the eccentricity.

There is a limit of load-crack states, i.e., ξ − α , for a column, in which the effects of cracking on
the deflection are so few that the cracking can be neglected (for example, ∆δ/δ≤ 1%). The ξ − α
state curves under the condition of ∆δ/δ = 1% are shown in Fig. 4 for various eccentricity values ε,
where the slenderness of the column is also λ = 100. According to the curves in Fig. 4, if the point
related to the state ξ − α  is under the curve, the effect parameter of cracking on deflection, ∆δ/δ, is
less than 1% and can be neglected for engineering applications. On the other hand, the parameter
∆δ/δ, is higher than 1%. It can be observed that the loads from the crack effects are clearly lower
for a longer crack or higher eccentricity.

Fig. 3 The curves of the ∆δ/δ− ξ for different
eccentricity values 

Fig. 4 The curves of ξ − α  under the condition of
∆δ/δ = 1% 

Fig. 5 The ϕ − ξ curves for various slenderness
values 

Fig. 6 The ϕ − ξ  curves for various eccentricity
values
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5.3 Effects of crack on ultimate bearing capacity

The curves of stability coefficient ϕ versus the relative crack length ξ are shown for various
slenderness values λ in Fig. 5, where the eccentricity is ε = 4, and for various eccentricity values ε
in Fig. 6, where the slenderness is λ = 120.

From Fig. 5 and Fig. 6, it is obvious that there is always a critical transition value of ξc on the
ϕ − ξ curves. The stability coefficients ϕ are insensitive to the varying of crack length when ξ ≤ ξc,
while they decrease with the increasing of crack length when ξ > ξc. Therefore, it can be implied
that if the relative crack length does not exceed its critical value, that is ξ ≤ ξc, the ultimate bearing
capacity of the cracked eccentric thin-walled column will be yielding dominant, and if ξ > ξc, the
failure will be fracture dominant.

Fig. 5 and Fig. 6 also show that the critical transition crack length ξc decreases with increasing
slenderness λ in the column or with increasing eccentricity ε of the loading.

6. Conclusions 

A method has been developed and applied to determine the elastic deflection of eccentric thin-
walled columns containing some model-I cracks. A trigonometric series solution of the elastic
deflection equation was obtained by the Rayleigh-Ritz energy method. In contrast to the solution
presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is
useful for thin-walled columns. 

There are two kinds of failure mechanisms in the states of the ultimate bearing capacity: yielding
dominant and fracture dominant. Based on the above deflection solution, a two-criteria approach to
determine the stability factor ϕ has been suggested.

As an example of the use of the above two-criteria method, box columns with both ends pinned
and containing a through-wall crack under model I loading were calculated and analyzed. The
effects of cracks on both the maximum deflection and the stability coefficient ϕ for various crack
lengths or eccentricity were illustrated and discussed. Finally, the concept of critical transition crack
length ξc was proposed and the limits of crack influence were described in terms of the load-crack
length curve under the equal ∆δ/δ condition, where the parameter ∆δ/δ is a ratio of the deflection
change caused by cracking to the deflection of an uncracked column. From results of the analytical
and numerical tests on the columns, the following brief conclusions are drawn:

(1) The deflection change caused by cracking increases with decreasing the slenderness ratio or
with increasing the eccentricity. 

(2) There is always a critical transition value of ξc on the curves of ϕ − ξ for various values of
slenderness λ or eccentricity ε. The critical transition crack length ξc decreases with the
increasing of slenderness λ of the column or of the eccentricity of loads.

(3) The ultimate bearing capacity of the cracked eccentric thin-walled column is yielding
dominant when ξ ≤ ξc, and is fracture dominant when ξ > ξc.

It should be noted that in the present paper the results from LEFM theory are conservative and
residual stresses are not considered. For practical applications to steel structures, both material
plasticity and residual stresses are important factors that should be considered. Further investigation
on these effects is necessary. 
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