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Nonlinear analysis using load-displacement control
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Abstract. A new load/displacement parameter method is proposed for the simultaneous control of
applied loads and structural displacements at one or more points. The procedure is based on a generalized
Riks’ method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling
phenomena including snap-through or snap-back. The convergence characteristics are improved by employing
new relaxation factors through an incremental displacement parameter, particularly in a region that
exhibits severe numerical instability. The improved performance is illustrated by means of a numerical
example. 

Key words: post-buckling phenomena; snap-back phenomena; incremental load parameter; incremental
displacement parameter; relaxation factor; relaxation method.

1. Introduction

The problems encountered with a large displacement in a finite element analysis are related to the
nonlinear response. Many numerical methods without limit points have been proposed to solve these
nonlinear problems. Among them, the Newton-Raphson method is recognized as quite effective. In
this method, however, the solutions tend to be unstable and diverge near the limit point where the
tangent stiffness becomes zero or infinite. Therefore, producing a numerical solution for a post-
buckling problem using the Newton-Raphson method is difficult and almost impossible if the snap-
back phenomenon occurs.

Several approaches (Wright and Gaylord 1968, Lock and Sabir 1973, Haisier et al. 1977,
Mondkar and Powell 1978, Ramm 1981, Bergan 1979) have been developed to analyze such post-
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buckling problems: Riks’ constant-arc-length method (normal plane constraint) (Riks 1979) and
Crisfield’s constant-arc-length method (spherical constraint) (Crisfield 1981) are among the most
commonly known. Plus, many researchers (Padovan and Tovichakchaikul 1982, Endo et al. 1984,
Riks 1984, Simo et al. 1986, Chrcielewski and Schmidt 1985, Batoz and Dhatt 1979, Koo et al.
1988, Park and Kang 2003, Wang 2003) have since improved on these methods.

Because Riks’ method is based on load increments, it is difficult to apply when the displacements
are controlled, or when the load and displacement are simultaneously controlled at many points.
Furthermore, the solution may become unstable and substantial computing time is required for a
near-the-limit point and points where the tangent stiffness is infinite. 

This paper reviews Riks’ constant-arc-length method for analyzing post-buckling problems and
proposes a new load displacement parameter method for cases when loads are applied to one or
more points and the displacements of the structure are simultaneously controlled at one or more
points. To improve the computational efficiency and convergence characteristics in a region where
severe numerical instability is exhibited, a “relaxation method” is also proposed based on modified
incremental displacement parameters including two relaxation factors.

The proposed methods, the ‘load-displacement parameter method’ and ‘relaxation method’, were
applied to several numerical examples including the snap-through and snap-back phenomena: a
simple cantilever model clamped on one side, 2-dimensional right angle-frame model, Belleville
spring model, and 3-dimensional curved shell. The convergence speed was compared for various
displacement-load ratios as the relaxation factors were varied, and, as a result, the effective
relaxation factor ranges were obtained. 

2. Numerical method for post-buckling phenomena

The most frequently used iteration scheme for solving post-buckling phenomena is the Newton-
type method that uses a load parameter. However, if the snap through or snap back phenomena are
included in this method, the equilibrium equations usually break down near the limit point even if
the load increment is small. To overcome this difficulty several procedures have been developed.
Among them, Riks’ constant-arc-length method (normal plane constraint) and Crisfield’s constant-
arc-length method (spherical constraint) are well known. 

This section briefly reviews some variations of Riks’ arc-length procedure for load control and
then derives an equation for the case when the load and displacement are controlled simultaneously. 

2.1 Riks’ constant-arc-length method

In the load-controlled arc-length method, proposed by Riks and subsequently improved by Simo,
the stiffness matrix is symmetric and the solution is obtained by satisfying the arc-length constraint.
Fig. 1 represents the arc-length method proposed by Riks. 

Let {t}(1) denote the tangent vector to the load-deflection curve at the beginning of the time step,
which can be expressed in matrix form as

(1)t{ } 1( ) U∆{ } 1( )T; λ 1( )∆[ ] T
=
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where  and  designates the load increment. When , 
will represent the incremental vector defined by the matrix form as 

(2)

Riks’ method requires the following constraint equation

(3)

where {t}(1) is the tangent vector, S0 represents the prescribed value and {γ}(k) is the total
incremental vector expressed as

(4)

For improved computational efficiency, it is advantageous to enforce Eq. (3) as a two-step
procedure, as follows:

k = 1. In the first iteration within a given increment, the constant arc constraint is enforced,
which can be expressed as

(5)

The substitution of Eq. (1) into Eq. (5) yields 

(6)

Then, the load increment ∆λ(1) becomes

U∆{ } 1( ) λ 1( ) U∆{ } 0( )∆= λ 1( )∆ k 2≥ γ∆{ } k( )

γ∆{ } k( ) U∆{ } k( )T; λ k( )∆[ ] T
=

t{ } 1( )T γ{ } k( ) S 0
2=

γ{ } k( ) t{ } 1( ) γ∆{ } n( )

n 2=

k

∑+=

t{ } 1( )T t{ } 1( ) S0
2=

λ 1( )∆ λ 1( )∆ U∆{ } 0( )T U∆{ } 0( ) λ 1( )∆ λ 1( )∆+ S0
2=

Fig. 1 Basic notation of Riks’ method
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(7)

k ≥ 2. The constant arc length constraint condition in Eq. (5) is only applied in the first step
(k = 1) of the solution process. For k ≥ 2 the normal plane constraint is enforced, which can be
defined as

(8)

The substitution of Eqs. (1) and (2) into Eq. (8) yields 

(9)

The substitution of the constraint Eq. (9) directly into the original system of equations results in a
non-symmetric stiffness matrix. To overcome this drawback, a system of equations with a matrix
coefficient is solved twice as follows (Simo et al. 1986). The formulation of an iterative solution
procedure can be written as

(10)

where
m : number of incremental stages
k : number of iterations at current stage (m + 1) 

: tangent matrix at iteration (k − 1) 
: load factor until incremental stage m
: load factor until iteration k − 1 at current stage m + 1
: load increment until iteration k at current stage m + 1
: incremental displacement vector until iteration k at current stage m + 1

{P} : external load vector
{F} : equivalent nodal force vector

Eq. (10) can be divided into the following two Eqs. (11) and (12)

(11)

(12)

The incremental displacement vector at iteration k can be expressed as

(13)

The substitution of Eq. (13) into Eq. (9) yields

(14)

λ 1( )∆
S0

2

U∆{ } 0( )T U∆{ } 0( ) 1+
---------------------------------------------------

 
 
 

1 2⁄

=

t{ } 1( )T γ∆{ } k( ) 0=

U∆{ } 1( )T U∆{ } k( ) λ 1( )∆ λ k( )∆+ 0=

K[ ] k 1–( ) U∆{ } k( ) λ k( ) P{ }∆ λm λ k 1–( )+( ) P{ } F{ } k 1–( )–+=

K[ ] k 1–( )

λm

λ k 1–( )

λ k( )∆
U∆{ } k( )

K[ ] k 1–( ) UI∆{ } k( ) P{ }=

K[ ] k 1–( ) UII∆{ } k( ) λm λ k 1–( )+( ) P{ } F{ } k 1–( )–=

U∆{ } k( ) λ k( ) UI∆{ } k( )∆ UII∆{ } k( )+=

λ k( )∆
U∆{ } 1( )T UII∆{ } k( )

U∆{ } 1( )T UI∆{ } k( ) λ 1( )∆+
--------------------------------------------------------------–=
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Thereafter, Eqs. (7) and (14) can be converted as follows by incorporating the displacement scale
factor, u*, and load scale factor, p*.

(15)

(16)

where

M = 1 or D.O.F/3

A stable solution can be obtained when M = D.O.F/3. 

2.2 Problems with simultaneous load application and displacement control : Load-
displacement parameter method

When either displacements are controlled at one or more points, or displacements and loads are
simultaneously controlled, the previous load parameter method is insufficient to yield a solution. To
overcome this, the current study presents a new parameter method.

In general, displacements are controlled at points p and q, and loads are applied at points i and j,
as denoted by

(17)

where  and  represent the relations between the constrained displacements and the loads.
The displacements are unknown except for points p and q, and the loads are zero or unknown
except for points i and j. The tangential vector {t}(1) at an arbitrary point on the load-displacement
curve can be denoted with an incremental displacement vector and incremental load vector as

(18)

where the subscript D represents the point where the displacement is controlled and subscript L
corresponds to the point where the load is controlled. The displacement and load can both be
converted into a scaled quantity using scale factors such as

λ 1( )∆
S0s

  2

Us∆{ } 0( )T Us∆{ } 0( ) M p*2⁄+
--------------------------------------------------------------------

 
 
 

1 2⁄

=

λ k( )∆
Us∆{ } 1( )T UIIs∆{ } k( )

Us∆{ } 1( )T UIs∆{ } k( ) λ∆ 1( ) p*2⁄+
-----------------------------------------------------------------------------–=

Us∆{ } 1( ) U∆{ } 1( ) u*⁄=

UIs∆{ } k( ) UI∆{ } k( ) u*⁄=

UIIs∆{ } k( ) UII∆{ } k( ) u*⁄=

U{ } U{ } , Up Up= Uq Uq=,( )=

P{ } P{ } , Pi Pi= Pj Pj=,( )=

U{ } P{ }

t{ } 1( ) U∆{ } 1( )T; PD∆{ } 1( )T; PL∆{ } 1( )T[ ] T
=
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 (19)

(20)

Therefore, the scaled tangential vector {ts}
(1) at a point on the scaled load-displacement curve

becomes

(21)

where

(22)

and  is the displacement increment.
In addition, the scaled incremental vector,  can be defined by the matrix notation as

(23)

It is also possible to obtain Riks’ constraint by using Eqs. (21) and (23) as Eq. (3) and it can be
computed as a two-step, as in the previous procedure.

k = 1. In the first iteration of the initial increment, the constant-arc-length constraint is

(24a)

This is accomplished by setting

(24b)

The scaled incremental displacement vector  can be written as a product of the
displacement increment ∆µ(1) and {Us}

(0):
Here , and {U}(0) mean the displacement ratio vector that represents the

ratio between the displacements in the structure, and can be obtained from 

(25)

where

α >> Kii

[DI]: unit diagonal matrix

The subscripts p and q denote the D.O.F. of the point where the displacements are controlled,
therefore, the displacements at points other than these points are unknown.  denotes
the ratio that should be satisfied between the load increment and the displacement increment.

Us{ } U{ } u*⁄=

Ps{ } P{ } p*⁄=

ts{ } 1( ) Us∆{ } 1( )T; PDs∆{ } 1( )T; PLs∆{ } 1( )T[ ] T
=

Us∆{ } 1( ) µ 1( ) Us{ } 0( )∆=

µ∆
γs∆{ } k( )

γs∆{ } k( ) Us∆{ } k( )T; PDs∆{ } k( )T; PLs∆{ } k( )T[ ] T
=

ts{ } 1( )T ts{ } 1( ) S0s
  2=

Us∆{ } 1( )T Us∆{ } 1( ) PDs∆{ } 1( )T PDs∆{ } 1( ) PLs∆{ } 1( )T PLs∆{ } 1( )+ + S0s
  2=

Us∆{ } 1( )

Us{ } 0( ) Us{ } 0( ) u*⁄=

K
t t∆+

0[ ]
0( ) α DI[ ]+( ) U{ } 0( ) α U{ } κ* P{ }+=

U{ } … Up… Uq …{ } T
= , Up 1=

κ* λ∆ µ∆⁄=
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The scaled equivalent nodal force {∆PDs}
(1) corresponding to {∆UD}(1) becomes 

(26)

In contrast, the scaled incremental load vector  can be expressed using the load increment
∆λ and the load scaling factor p* as follows:

(27)

The substitution of Eqs. (26), (27), into Eq. (24b) yields

(28)

where  denotes the displacement increment at k = 1, and

k ≥ 2. In a subsequent iteration, the normal plane constraint can be defined as

(29a)

Similarly, using Eqs. (21) and (23) the following expression can be given

(29b)

A finite element equilibrium equation with a displacement constraint can also be rewritten as

(30)

To overcome the drawback resulting in the non-symmetric coefficient matrix in Eq. (30), the
system of equations can be solved in two steps as in Eqs. (11) and (12). 

PDs∆{ } 1( ) PD∆{ } 1( ) p*⁄=

K
t t∆+

0[ ]
0( )

UD∆{ } 1( ) p*⁄=

µ 1( ) K
t t∆+

0[ ]
0( )

U{ } 0( ) p*⁄∆=

PLs∆{ }

PLs∆{ } 1( ) λ 1( ) PLs∆{ } 0( )∆=

µ 1( )κ* PL{ } 0( ) p*⁄∆=

µ 1( )∆
S0s

  2

Us{ } 0( )T Us{ } 0( ) PDs{ } 0( )T PDs{ } 0( ) κ* p*⁄( )
2

+ +
--------------------------------------------------------------------------------------------------------------------

1 2⁄

=

µ 1( )∆

PDs{ } 0( ) K
t t∆+

0[ ]
0( )

U{ } 0( ) p*⁄=

PL{ } 0( ) 1=

ts{ } 1( )T γs∆{ } k( ) 0=

U∆ s{ } 1( )T U∆ s{ } k( ) P∆ Ds{ } 1( )T P∆ Ds{ } k( ) P∆ Ls{ } 1( )T P∆ Ls{ } k( )+ + 0=

K
t t∆+

0[ ]
k 1–( ) α DI[ ]+{ } U∆{ } k( )  =

µ k( ) α U{ } κ* P{ }+( )∆  µm µ k 1–( )+( )κ* P{ } F
t t∆+

0{ }
k 1–( )

–+
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(31)

and  are obtained from Eq. (31).
The incremental displacement vector  can be written as 

(32)

(33)

The substitution of Eq. (33) into Eq. (32) yields

(34)

where ,  and E means the point where the
displacements are not controlled. 

The incremental load vectors of the points where the displacement and load are controlled,
 and , can be denoted by using the displacement increment  as follows:

(35)

 (36)

Finally using Eqs. (29)-(36), the displacement increment  can be obtained from

(37)

where 

According to this method, the load increment is expressed as a ratio of the displacement

K
t t∆+

0[ ]
k 1–( ) α DI[ ]+{ } UI∆{ } k( ) α U{ } κ* P{ }+=

K
t t∆+

0[ ]
k 1–( ) α DI[ ]+{ } UIIE∆{ } k( ) µm µ k 1–( )+( )κ* P{ } F

t t∆+
0{ }

k 1–( )
–=

UI∆{ } k( ) UIIE∆{ } k( ),
Us∆{ } k( )

Us∆{ } k( ) UDs∆{ } k( ) UEs∆{ } k( )+=

UDs∆{ } k( ) µ k( ) UIDs∆{ } k( )∆=

UEs∆{ } k( ) µ k( ) UIEs∆{ } k( )∆ UIIEs∆{ } k( )+=

Us∆{ } k( ) µ k( ) UIs∆{ } k( )∆ UIIEs∆{ } k( )+=

UIs∆{ } k( ) UI∆{ } k( ) u*⁄= UIIEs∆{ } k( ) UIIE∆{ } k( ) u*⁄=

PDs∆{ } k( ) PLs∆{ } k( ) µ k( )∆

PDs∆{ } k( ) PD∆{ } k( ) p*⁄=

K
t t∆+

0[ ]
k 1–( )

UD∆{ } k( ) p*⁄=

µ k( )∆ K
t t∆+

0[ ]
k 1–( )

UID∆{ } k( ) p*⁄=

PLs∆{ } k( ) µ k( )∆ κ* PL{ } p*⁄=

µ k( )∆

µ k( )∆ U∆ s{ } 1( )T U∆ IIEs{ } k( )– U∆ s{ }[ 1( )T U∆ Is{ } k( )  +⁄=

P∆ Ds{ } 1( )T P∆ IDs{ } k( ) µ 1( )∆ κ* p*⁄( )
2
]+

Us∆{ } 1( ) µ 1( ) U{ } 0( )∆ u*⁄=

P∆ Ds{ } 1( ) µ 1( )∆ PD{ } 0( ) p*⁄ µ 1( ) K[ ] 0( ) U{ } 0( )∆ p*⁄= =

P∆ IDs{ } k( ) K[ ] k 1–( ) UID∆{ } k( ) p*⁄=
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increment. As a result, the loads and displacements can be simultaneously controlled by just the
displacement increment.

Since Eq. (37) is a very general expression, many cases can be derived using this equation. The
elimination of the terms related to displacement control, (p, q), and the multiplication of κ *(=∆λ/∆µ) at
both hands in Eq. (37), produce Riks’ method (Bergan 1979) for a load control problem as

(37a)

The elimination of the terms related to load control, (i, j), yields a Riks’ type method (Endo et al.
1984) for a displacement control problem as 

(37b)

The solution for a load control problem can be obtained by taking  in Eq. (37a), and this
equation becomes the Newton-Raphson method (Bathe 1982) as

(37c)

The substitution of p* for the infinity condition in Eq. (37a) yields the following, which is
Ramm’s method1) or Crisfield’s quasi-penalty method (Crisfield 1981).

(37d)

By considering only i-D.O.F. in Eq. (37d), one obtains Batoz’s method (Batoz and Dhatt 1979) as

 (37e)

The control of p* in Eq. (37a) reduces it to Noor and Peters’ method (Noor and Peters 1981).
The elimination of the load term and the substitution of u* for  in Eq. (37b) give the solution

for a displacement control problem as

(37f)

and this has become the quasi-penalty method (Choi et al. 1990).

Considering only p-D.O.F. in Eq. (37f), produces the penalty method (Choi et al. 1990) as

(37g)

Therefore, Eq. (37) can be regarded as a general equation including most cases.

2.3 New approach : Relaxation method

The cases in which loads and displacements are controlled simultaneously in a post-buckling
problem can be analyzed by the load_displacement parameter method, as stated previously in

λ k( )∆
Us∆{ } 1( )T UIIs∆{ } k( )

Us∆{ } 1( )T UIs∆{ } k( ) λ 1( )∆ p*2⁄+
-----------------------------------------------------------------------------–=

µ k( )∆ Us∆{ } 1( )T UIIEs∆{ } k( ) Us∆{ } 1( )T UIs∆{ } k( ) P∆ Ds{ } 1( )T P∆ IDs{ } k( )+[ ]⁄–=

u* ∞→

λ k( )∆ 0=

λ k( )∆ Us∆{ }– 1( )T UIIs∆{ } k( ) Us∆{ } 1( )T UIs∆{ } k( )⁄=

λ k( )∆ UIIi∆{ } k( )– UIi∆{ } k( )⁄=

∞

µ k( )∆ Us∆{ }– 1( )T UIIs∆{ } k( ) Us∆{ } 1( )T UIs∆{ } k( )⁄=

µ k( )∆ 0=
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section 2.2, however, the solution is unstable near the limit point or at the point where the tangent
stiffness is infinite. Accordingly, the present study proposes a new control parameter, ,
incorporating two relaxation factors, β1 and β2.

The third iteration in a total sense, that is the second iteration in equilibrium (normal constraint
iteration) is apt to be unstable, because the starting point after the second iteration can be far from
the exact equilibrium point. Thus, it is necessary that the third iteration should be relaxed for
convergence.

Based on the current authors’ experience, when the third iteration is not relaxed and diverges, any
other effort at the following iteration stage is of no use. Although, the subsequent iterations are not
as critical as the third one, relaxation is still required for better convergence. By watching the initial
difference between the external and equivalent nodal load at each iteration stage, the relaxation
factor can be confirmed. The displacement increment modified by the multiplication of the two
relaxation factors yields: 

(38)

where f1 and f2 are obtained by using the relaxation factors β1 and β2 as 

where

where Rk is the ratio of initial errors between the previous stage and the present stage, and the errors
are the maximum difference between the applied load and the equivalent nodal force at all nodes.

The condition of convergence is  and the displacement and nodal force after
convergence can be obtained as follows 

(39)

µr
k( )∆

µr
k( )∆ Us∆{ }– 1( )T UIIEs∆{ } k( ) Us∆{ }[ 1( )T UIs∆{ } k( )⁄= +

P∆ Ds{ } 1( )T P∆ IDs{ } k( ) µ 1( ) κ* p*⁄( )
2

∆+ ] f1× f2×

f1

β1: k 3= and kflag 1=

1 : k 3≠   or kflag 0=



=

f2
β2

n: k 3≥ and kflag 1=

1 : k 2≤   or kflag 0=



=

kflag
0: Rk 1.0< for all k at previous stage

1: Rk 1.0≥ for any k at previous stage



=

n

1: Rk 1>

2: Rk 5>

3: Rk 10>





=

µr
k( )∆ µr

1( )∆⁄ ε<

U
t t∆+{ } U

t{ } U∆{ } 1( ) U∆{ } 2( ) …+ + +=

P
t t∆+{ } F

t t∆+
0{ }

k( )
=
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In the above, β1 controls the quantity of the displacement increment in the next stage, if the
convergence is unstable in the previous stage. That is, if the convergence is unstable in the (m−1)th

stage, the first displacement increment in the mth stage is controlled by multiplying with β1. In the
case when the solution cannot converge by any means because the first incremental stage diverged,
the modification factor β1 is required for convergence. Through this control, we can prevent that the
mth incremental stage is affected in convergence by instability of the (m−1)th incremental stage,
therefore convergence near limit points can be fairly improved. 

However, since it is impossible to completely resolve the instability of the convergence in the mth

incremental stage with only the use of β1, the second relaxation factor β2 is required in order to
modify the displacement increment in the subsequent iteration stages. In the convergence process,
the solution can be estimated using the ratio between the initial error in the previous iteration stage
and that in the current iteration stage. If the ratio is bigger than unity, the increment of the next
stage should be relaxed using β2 and an effective displacement increment can then be selected.

The computation process explained in sections 2.2 and 2.3 can be summarized as follows:
1) Given the displacement component  to be controlled, and applied loads .
2) Decide normal arc-length S0. 
3) Compute initial stiffness matrix  in tangential direction and equivalent nodal force

vector .
4) Solve the equation in two steps. 
5) In the first step 

a) Compute {U}(0).
b) Compute the load {P}(0) corresponding to {U}(0).
c) Compute {PD}(0).
d) Compute the displacement increment ∆µ(1).
e) Obtain  using the displacement increment.
f) Compute  and .

6) In the second step
a) Compute {∆UI}

(k) and {∆UII}
(k) from the equilibrium equation divided into two parts.

b) Obtain {PD}(k).
c) Apply the relaxation factor as follows. 

(1) Decide the first relaxation factor β1 referring to the convergence in the previous iteration
stage.

(2) Decide the second relaxation factor β2 according to the ratio of errors between the
previous iteration stage and the current iteration stage.

d) Compute the modified displacement increment  using the relaxation factors.
7) Compute  using the modified displacement increment.
8) Compute  and .
9) Check the convergence and loop stage 6)−9) until the convergence condition is satisfied. 
10) if the convergence condition is satisfied, set

 

 

11) Increase the increment stage and go to stage 3).

Up Uq, Pi Pj,

K
t t∆+

0[ ]
0( )

F
t t∆+

0[ ]
0( )

U
t t∆+{ } 1( )

K
t t∆+

0[ ] 0( )
F

t t∆+
0[ ] 0( )

µr
1( )∆

U
t t∆+{ } k( )

K
t t∆+

0[ ] k( )
F

t t∆+
0[ ] k( )

U
t t∆+{ } U

t t∆+{ }
k( )

=

P
t t∆+{ } F

t t∆+
0{ }

k( )
=
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3. Numerical examples and discussion

To establish the validity and applicability of the proposed analysis for problems in which loads
and displacements are controlled simultaneously, a cantilever, right-angle frame, and hinged
cylindrical shell were employed as numerical models. In addition, the Belleville spring model with a
displacement control of multiple points was computed. To illustrate the relaxation method currently
proposed, finite element analyses for the right angle frame and hinged cylindrical shell model were
carried out for several ratios between the load and the displacement. Through the examples proper
ranges for the relaxation factors are obtained and the effectiveness of the proposed method in
increasing the computational convergence rate is demonstrated.

3.1 Load/displacement parameter method

3.1.1 Cantilever model
The material and geometric properties of the cantilever model are given in Fig. 2. The load was

applied near the center, and the displacement was controlled at the end point. The finite element
model was discretized into five 8-node isoparametric elements assuming plane stress and a linear
elastic material.

The computed results of the cantilever model, shown in Fig. 2, were compared with those when
the load was only applied at one point (A of Fig. 2). The one point load problem was then analyzed
using Riks’ method, whereas the case of the simultaneous control of the loads and the
displacements was analyzed using the proposed load/displacement parameter method. In the above,
the ratio between the load increment and the displacement increment was controlled at a constant
(κ* = 50).

In the case where the load and displacement were controlled simultaneously, as in Fig. 3, the
curve moved to the position of increasing the displacement of point A for the same load because of
controlling the displacement at point B. Fig. 4 shows that the ratio between the load applied to point
A and the displacement applied to point B satisfied the given constant value. The force equilibrium
condition was satisfied such that the relative difference between the external force and the equivalent
nodal force was less than 10−4. Accordingly, the validity of the proposed analysis method was
confirmed for a load and displacement control problem. 

Fig. 2 Geometry and finite element model of cantilever
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3.1.2 Right-angle frame model
As the second example, a right-angle frame under plane stress conditions was considered so that

the displacement was controlled at point A, and load applied at point B. The geometry and data for
this problem are shown in Fig. 5. Eleven 8-node isoparametric 2-dimensional elements were used to
discretize a finite element model of the right-angle frame, and the ratio of the load increment to the
displacement increment was set as κ* = 3.

Fig. 6 illustrates the displacement-load curve of point A, and shows that the solution converged
very well even when the snap-back phenomenon occurred. Fig. 7 shows that the ratio of the load
increment to the displacement increment remained at the initial constant value.

Fig. 3 Large displacement analysis of cantilever using proposed load/displacement parameter method

Fig. 4 Relation between load increments and displacement increment at each time step
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Fig. 5 Geometry and finite element model of right-angle frame

Fig. 6 Load-displacement curve of right-angle frame under load/displacement control

Fig. 7 Relation between load increments and displacement increments at each time step
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3.1.3 Hinged cylindrical shell model 
The hinged elastic cylindrical shell, shown in Fig. 8, is a widely used problem for limit point

algorithms and large displacement finite element formulations. Only a quarter of the shell needs to
be modeled because of its symmetric properties, therefore, four 20-nodes isoparametric 3-D
elements were used. The shell was free to rotate about its straight edges, however, these edges were
otherwise completely restrained. The boundary conditions were free along the curved edges. The
applied load and controlled displacement were vertical and the material was assumed to be linearly
elastic.

In Fig. 9, the load-deflection relation resulting from the present work was compared with that
obtained by ABAQUS, a commercial finite element program, for the case when the load was
applied at point A. The structure exhibited a limit point corresponding with the load of
approximately 540 N and exhibited snap-through as well as snap-back behavior. The two curves
agreed very well with each other.

Fig. 8 Geometry and finite element model of hinged cylindrical shell

Fig. 9 Load-displacement curve of hinged cylindrical shell
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3.1.4 Multi-point displacement controlled model
A Belleville spring, as seen in an automotive clutch, is a good example for displaying the snap-

through phenomenon. In this example, a Belleville spring was analyzed under multi-point
displacement control using the proposed method.

Fig. 10 shows the dimensions and finite element model of an axisymmetric Belleville spring. Five
8-node isoparametric elements were used to discretize a cross section of the structure.

Where displacements are controlled at many points, as in this case, problems are very difficult to
analyze using the conventional Riks’ method. However, this situation can be analyzed by the
proposed displacement parameter method. To examine the validity of the multi-point displacement
control method using Eq. (37), the displacement ratio between points A and B was set to 2:1. Fig. 11
shows the load-displacement curve. As a result, the displacement ratio between points A and B was
maintained at 2:1. When the relative difference between the external force and the equivalent nodal
force was smaller than 10−4, the equilibrium condition was regarded as satisfied.

Fig. 10 Geometry and finite element model of Belleville spring

Fig. 11 Load-displacement curve of Belleville spring under displacement control
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3.2 Relaxation method

The effectiveness of the relaxation factors was investigated using the right-angle frame model and
3-dimensional cylindrical shell model. First, the right-angle frame model was analyzed for the
various conditions of the load/displacement ratio, κ*(κ* = 0, 1, 3, 10, 30), for which the
displacement was controlled at point A and the load applied at point B, as shown in Fig. 5. The
convergence was unstable because of the snap-back phenomenon occurring at point A, for all
conditions of the load/displacement ratio. However, it became stable with the proper range of
relaxation factors. Fig. 12 shows the iteration number for the various conditions. 

Fig. 12(a) shows the improvement of the convergence with the proper range of relaxation factors
in the case of κ* = 0, that is, only the displacement was controlled. The convergence was improved
by 24% when compared to the case where no relaxation factors were used. Fig. 12(b) represents
κ* = 1, where the load and displacement were controlled simultaneously with a small ratio. This
case is more complex than when only the displacement is controlled, however, the solution
converged very well with the proper range of relaxation factors. The convergence was improved by
34% when compared to the case where no relaxation factors were used.

Fig. 12 Dither diagram of the iteration number of right-angle frame
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Figs. 12(c) and (d) represent the cases of κ* = 10 and κ* = 30, respectively. Here, the loads were
very large and there were several limit points on the load/displacement curve. In these cases, the
solution using the load/displacement increment method by itself would either stop or diverge near
the limit point. In contrast, the solution with the load/displacement increment method modified by
the incorporation of relaxation factors exhibited a stable convergence. 

Table 1 shows the iteration number taken for each analysis of the right-angle frame model. The

Table 1 Comparison of iteration numbers for each parameter
                                                                                              (Unit: Number of iterations)

κ* Not relaxed Relaxed Reduction ratio (%)

0
1
3

10
30

87
96
128

Failed
Failed

66
63
100
70
24

24
34
21
100
100

Fig. 13 Dither diagram of the iteration number of hinged cylindrical shell
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improvement of the iteration numbers is shown by the percentage (%) when comparing the results
of the modified load/displacement increment method, through relaxation, with those of the non-
modified load/displacement increment method. 

Figs. 13(a), (b), and (c) present the iteration numbers for the full range of relaxation factors of
κ* = 0.01, 1, and 10, respectively, where the displacement is controlled at point A and the load
applied at point B for the hinged cylindrical shell shown in Fig. 8. Fig. 13(d) displays the case
when the displacement is controlled at point A and the load applied at point C in the same model
κ* = 1. In Fig. 13, the white area indicates the region of rapid convergence, and in most cases an
improved convergence was accomplished by the use of a proper range of relaxation factors.

4. Conclusions

A load-displacement parameter method was developed for the post-buckling analysis of problems
when loads are applied and displacements of structure are controlled simultaneously, plus a
relaxation method was proposed to improve the stability and convergence of the solution. Based on
several numerical examples, the following was concluded: 

1) A new post-buckling analysis method designed for problems where loads/displacements are
controlled simultaneously was derived based on the conventional Riks’ method.

2) The proposed method is a general solution method including most previously developed post-
buckling analysis methods (load control or displacement control).

3) When analyses of problem with snap-back phenomenon were carried out using the proposed
load/displacement parameter method by itself, a solution was apt to exhibit instability around
the limit point or the point where the load suddenly changes in comparison with the
displacement. Accordingly, a new method based on incorporating two relaxation factors into
load/displacement increments was developed which then improved the effectiveness and
convergence of the solutions. The efficiency of this method was illustrated through numerical
examples.

4) The proper ranges of the relaxation factors were determined as a result of computation for
various conditions. The effective range was 0.0 to 0.3 for β1 and 0.6 to 1.0 for β2.

5) When the modified load/displacement increment method with relaxation parameters was
applied to an example, the iteration numbers were decreased by at least 21 %, when compared
with those of the load/displacement method by itself.
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