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Abstract. For the spatially coupled free vibration analysis of shear deformable thin-walled non-
symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of
curved beam is evauated. Firstly equations of motion and force-deformation relations are rigorously
derived from the tota potential energy for a curved beam element. Next a system of linear agebraic
equations are constructed by introducing 14 displacement parameters and transforming the second order
simultaneous differential equations into the first order simultaneous differentia equations. And then
explicit expressions for displacement parameters are numericaly evaluated via eigensolutions and the
exact 14 x 14 dynamic element diffness matrix is determined using force-deformation relations. To
demondtrate the accuracy and the reliability of this study, the spatialy coupled natural frequencies of
shear deformable thin-walled non-symmetric curved beams subjected to initid axia forces are evaluated
and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements
and results by ABAQUS's shell elements.
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1. Introduction

The vibrational behavior of shear deformable non-symmetric thin-walled curved beam structures is
very complex due to the coupling effect of extensional, bending, and torsional deformation. Due to
this reason, it is not easy to evaluate exactly the natural frequencies of the spatially coupled thin-
walled curved beam with non-symmetric cross section.

Up to the present, the study for the free in-plane vibration of curved beam have been done by
considering various parameters such as boundary conditions, shear deformation, rotary inertia,
variable curvatures and variable cross sections. Particularly considerable research (e.g., Nieh et al.
2003, Eisenberger and Efraim 2001, Howson and Jemah 1999, Huang et al. 1998, Tseng et al.
1997, Gupta and Howson 1994) was reported on the exact solutions for free in-plane vibration of
curved beam. Nieh et al. (2003) developed an analytical solution for the free vibration and stability
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of dliptic arches subjected to a uniformly distributed vertical static loading by incorporating series
solutions and stiffness matrices. Eisenberger and Efraim (2001) presented the exact dynamic
gtiffness matrix for a circular beam with a uniform cross section. The matrix is derived from the
differentia equation of motion for a beam. This stiffness matrix is free of membrane and shear
locking as the shape functions that are used are the exact solution of the differential equations of
motion. Howson and Jemah (1999) evaluated the planar natural frequency of curved Timoshenko
beams with uniform cross section and arbitrary boundary conditions. This is achieved by using exact
dynamic stiffness matrix and by utilizing a new version of the Wittrick-Williams agorithm (Wittrick
and Williams 1971) which determines the number of natural frequencies exceeded by any trid
frequency. Huang et al. (1998) and Tseng et al. (1997) provided the systematic approach to solve
the in-plane vibrations of arches with variable cross section and constant cross section, respectively
using the Frobenius method (Whittaker and Watson 1965) combined with the dynamic giffness
method. Gupta and Howson (1994) presented a method for converging with certainty upon any
required natural frequency of a plane dender curved beam. They used the exact member theory in
conjunction with the dynamic stiffness technique and this necessitated the solution of a
transcendental eigenvalue problem. Solutions were achieved by use of the Wittrick-Williams
algorithm.

Also the research for the free out-of-plane vibration analysis of curved beam has been performed
by severa authors (Lee and Chao 2001, Huang et al. 2000, 1998, Howson and Jemah 1999,
Howson et al. 1995, Kang et al. 1996). Lee and Chao (2001) derived the governing differentia
equations for the out-of-plane vibrations of a curved non-uniform beam of congtant radius via
Hamilton's principle. With the explicit relations between the torsiona displacement, its derivative
and the flexural displacement, the two coupled governing characteristic differential equations are
reduced to one sixth order ordinary differential equation with variable coefficients in the out-of-
plane flexura displacement. Huang et al. (2000, 1998) developed the dynamic stiffness matrix for
non-circular curved beams from a series of solution using the Frobenius method, with which an
exact solution of the out-of-plane free vibration of this type of beam was derived. Howson and
Jemah (1999) and Howson et al. (1995) evaluated the required natural frequencies of out-of-plane
motion of plane structures composed of Timoshenko and slender curved beams, respectively. The
solution of the inherent transcendental eigenvalue problem was achieved through a variation on the
Wittrick-Williams agorithm. Kang et al. (1996) computed the eigenvalues of free vibration of
horizontally curved beams with doubly symmetric cross section using the differential quadrature
method (DQM).

On the other hand, the study for free in-plane and out-of-plane decoupled vibration analysis of
curved beam have been performed by a few researchers (Yildrim 1997, Kang et al. 1996, 1995).

Even though a significant amount of research has been conducted on development of exact
solutions for free vibration analysis of curved beam structures, to the author’'s knowledge, there was
no study reported on the exact solutions for the spatially coupled free vibration of shear deformable
thin-walled curved beams with non-symmetric cross section in the literature. Recently Kim et al.
(2004) presented an improved energy formulation for spatially coupled free vibration of shear
deformable thin-walled curved beams with non-symmetric cross section and derived an analytica
solutions for free out-of-plane vibrations of curved beams with monosymmetric cross section.

The am of this study is to evaluate the exact dynamic element stiffness matrix of shear
deformable non-symmetric thin-walled curved beams subjected to initial axial forces. For this,
equations of motion and force-deformation relations are first derived for a curved beam element.
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Next the second order simultaneous differentia equations are transformed into a set of the first
order simultaneous ordinary differential equations by introducing 14 displacement parameters. And
then using the solutions of the eigenproblem, displacement functions of 14 displacement parameters
are exactly derived with respect to nodal displacements. Finally noda forces are exactly evaluated
using force-deformation relationships and 14 x 14 dynamic element stiffness matrix of curved
beams is determined.

Through the numerical examples, the spatially coupled natura frequencies of shear deformable
thin-walled curved beam with non-symmetric cross section are evaluated and compared with
analytical solutions and the results analyzed using the isoparametric and Hermitian curved beam
dements and the ABAQUS's shell elements.

2. Equations of motion of shear deformable curved beam with non-symmetric thin-
walled cross sections

To derive the equations of motion of a shear deformable thin-walled curved beam with non-
symmetric cross section subjected to intial axial forces, we adopts a globa curvilinear coordinate
system (xg, X2, X3) as shown in Fig. 1 in which the x; axis coincides with a centroid axis but x,, X3
axes are not necessarily principal inertia axes. The displacement parameters and the stress resultants
of thin-walled curved beams defined a the non-symmetric cross-section are shown in Figs. 2(a) and
2(b), respectively. Where Uy, Uy, U, and w, w,, w; are rigid body trandations and rotations of the
Cross section with respect to x;, X, and X3 axes, respectively. f is a digplacement parameter measuring
warping deformations. Stress resultants in Fig. 2(b) are defined by

F,= J’ArﬂdA, F,= IATlZdA’ Fs= J’ArlgdA, M, = J’A(T13x2—rlzx3)dA
Mz = [, TuXdA, M= —f T1,dA, M, = [, T, dA (1a-g)
where F1, F, and F; are the axial, shear forces acting at the centroid, M,, M, and M3 are the tota
twist moment with respect to the centroid axis, bending moments with respect to x, and xz axes,

respectively. My is the bimoment.
Now alowing the shear deformation, the rotary inertia and the thickness-curvature effect, the

Fig. 1 A curvilinear coordinate system for non-symmetric thin-walled curved beams
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O : Shear center
C : Centroid

O : Shear center
C : Centroid

(a) Displacement parameters (b) Stress resultants

Fig. 2 Notation for displacement parameters and stress resultants

eadgtic stain and kinetic energies (Kim et al. 2004) of thin-walled curved beams with non-symmetric
cross section can be written as follows
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+ L 5

where E and G are the Young's modulus and the shear modulus, J and p are the torsional constant
and the dmgty, reSpeCtlver lo, 13, 123, 1202, 1223, 233, |¢, I(ﬂZ! |¢3, I(IQZ! I(ﬂ23! I(ﬂ(/? are the sectiond
constants of which the detailed expressions may be referred to the Reference (Kim et al. 2004). The
superscript ‘prime’ denotes the derivative with respect to x;.

And referring to Kim et al. (2000), the potential energy Mg due to the initial axia force °F; can
be expressed as follows

Mg = Zr{FEU'Z H; - u+ FiB + %‘ﬂdxl )

where

B = < (7)

In Eg. (6), the °F, denotes the Wagner effect and the total potential energy N is can be expressed
as

M=TMNg+MNg—Ty 8

Now, by variation of Eq. (8) with respect to seven displacements, equations of motion, boundary
conditions and force-deformation relations for shear deformable curved beam are derived as
follows
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and
dU,(0) = 8UY or Fy(0) =—F ; oULl) =08U) or Fy(l) =F] (10a,b)
3U,(0) = 8Uy or Fy(0)=—-F5 ; dU,(l)=3dUy or Fy(l) =F3 (10c,d)
dU,(0) = 8UY or Fa(0) =-F5 :; 6U,()=38U? or Fy(l) = F3 (10e)

dw(0) = ddf or My(0) =-M{ ; dw(l) =3¢ or My(l) = Mj] (10g,h)
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dwy(0) = dch or My(0) =-M5 ; Jawy(l) = daf or My(l) = M3 (20i,)
dwsy(0) = dah or My(0) =-M5 1 Sawy(l) = 6} or My(l) = M3 (10Kk,))
5f(0) = 8" or M0) =M% : &t(1) = &t T or My(l) = M, (10m,n)

And force-deformation relations are
- cigo g, Ly 1o 1 s 1 0y 10
F, = EAR; +RUE—RE|2%J2 - QUi ~ U~ RElef +RE|23%»3 ~ol (119
I I 1 1 1 '
Fa = GAY(U; — ) + GAgl] + @y~ 2Ug+ GAy o] +f+ 2w+ Rl (11b)

Fy = GAL + @,— SUT+ GAX(U; — @) + GA T +F+ Zol+ R UL ~2UF (119

1 = GIHY, +éw§+GAr%u'l +f+éw§+GA2r(u; — w;) + GAG U, +w2—éug
+ BF, +éw§ (11d)
M, = ElzgwZ =U ——UD+ El of '— Elzg%% (11e)
M; = EisHo} —éwg—Eiwf'—Efzs%;; —éu; —R%ug (11f)
= El f+EI¢2%uz U ——uD El o 0% ——wlD (11g)

where it should be noted that Egs. (11b-d) include the effects of the initid axia force.

3. Exact dynamic element stiffness matrix of shear deformable curved beam elements
3.1 Exact evaluation of displacement functions
In order to transform the equations of maotion in Egs. (9a-g) into a set of the first order ordinary

differentia equations, a displacement state vector composed of 14 displacement parameters is
defined by

Edla d21 d3, d4’ d5, d61d7 vd8 1d9 !d10 1dll 1d12 1d13 1dl4|jr
IJJxl U)’(! Uyu U;’%v a)éiuzvuév%!a}zlvwl!wa_vf!fllj-r (12)

d(x)
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Using Eq. (12), Egs. (9a-g) are transformed into the first order simultaneous ordinary differentia
equations with constant coefficients.

d; =d, (139)
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a 1 o \J Ay GA; D
A A
+ B% tpw %% E|23d12 [% tpw _@]dla (13b)
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dy = dyp (13i)
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Egs. (13a-n) can be compactly expressed as a following matrix form
Ad' = Bd (14)
where components of matrices A and B are given in Appendix .
We consider the following eigenvaue problem with non-symmetric matrix in order to compute the

homogeneous solution of the simultaneous differentia Eq. (14).

AAZ = BZ (15)
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In this study, IMSL subroutine DGVCRG (IMSL Library 1995) is used to obtain the complex
eigensolutions of Eq. (15). From Eqg. (15), 14 eigenvalues A; and 14 x 14 eigenvectors Z; in complex
domain can be calculated.
(A, Z), 1=1,2,..,14 (16)
where
Z; = L, 2y, Zgj, 24, Zsi Zsi  Z7i 1 Zi + Zoj +210i 42117 +Z12i 213 ’214iDT (17)

Next it is possible that the general solution of Eq. (14) is represented by the linear combination of
eigenvectors with complex exponential functions as follows

14
dx) = 3 aze” = X(x)a (18)
i=1
where
a= |}'11 a'2! a'3! a'41 a'5! a'G’a7 va8 ’a9 valO !a'll !a'12 !al3 !a'14|jr (19)
X(x) = (2,67 2,67 2,6 2,6 256 2™ 2,6

X X AgX

X AgoX Ap1X A A1z

; Z1o€ ; Zu€ Ty Zp€ 7 Zyse o Zye ] (20)
in which a is the integration constant vector and X(x) denotes the 14 x 14 matrix function made up
of 14 eigensolutions.

And then it is necessary to represent complex coefficient vector a with respect to 14 noda
displacement components as shown in Fig. 3. For this, the following nodal displacement vector is

defined by
U, = W’ ud (21a)

U= @’ v w, o, of, o, f0, a=pq (21b)

Fig. 3 Nodal displacement vector of a thin-walled curved beam element
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where
U” = [U,(0), Uy(0), U,(0), w,(0), wy(0), ws(0),f(0)T (229)
U = U,(1), Uy(1), U(1), aon (1), (1), os(1) (1T (22b)

The nodal displacement vector U, is obtained by substituting the coordinates of the member end
into Eg. (18) and accounting for Egs. (22a,b).

U, = Ea (23)
where E is evaluated from X(x) and the inverse matrix of E is calculated using IMSL subroutine
DLINCG (IMSL Library 1995).

Finally elimination of a from Eq. (23) and Eqg. (18) yields the exact displacement state vector.
d(x) = X(X)E"'U, (24)
where X(x)E™" denotes the exact interpolation matrix.

3.2 Calculation of dynamic element stiffness matrix

Using the 14 displacement parameters of Eq. (12), force-deformation relations in Egs. (11a-g) of
thin-walled curved beam can be rewritten as

ET El El El El
Fi= BEA"' RZ _Bde E’E_A d7 2d10—?§3d11——|:\:@d14 (259)

GA
Fp = —=22d, +(GA+ Fy)ds— A~ Aﬁd +GAgg+ GAydy+ GA, 0y, +GA, 0y (250)

GA
Fa= ~5(GA+Fy)dh + Gy~ B3y~ + (GA,+ Fy)dy+ GAdy + GAy i+ Gy (250)

GA GA
M, = 3rdl + GA,d, + [&] - GA, + EOFEds + GAg,dg + GAz.dg
+(GJ+ GA, + [°F,)dy, + GA dys (25d)
El ~ . E - L E i
M, = — dez —Eldg— ?sz7 +Elydy + ?stn + Elgdy, (25€)
Ei ~ . Ely El i
M; = ?stz + Elzdg + ?d E|23d10 de 1~ El gy, (25f)
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Fig. 4 Nodal force vector of a thin-walled curved beam element

El

N El - El °
M, = — _Rq)‘zdz —Elgeds - ;Zw‘zd7 + Elgpdyo+ _Rq)‘sdn + El gy (259)

which equations are compactly represented as a following matrix form
f(x) = Sd(x) (26)
where f = [F,, F,, F3,M1,M2,M3,M«DT and each component of 7 x 14 matrix S is given in
Appendix I.
Substituting Eq. (24) into Eq. (26) leads to
f(x) = SX(X)E™'U, (27)
As shown in Fig. 4, the nodal force vector is defined by
F.= (F° FO (283)
FY = [F§, F5,F§,M{,M5,M§,MJT, a=p,q (28b)
Therefore nodal forces at ends of element (x = 0, |) are evaluated using Eq. (27) as
F? = —f(0) = -SX(0)E™'U, (293)
F9 = f() = SX()E™'U, (29b)
Conseguently the exact dynamic stiffness matrix Ky of a spatially coupled shear deformable thin-
walled curved beam element with non-symmetric cross section subjected to intial axial forces is

evaluated as follows

Fe = KyUe (30)
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where

K, = {—SX(O) E_l} (31)
SX(1)E~

It should be noted that dynamic stiffness matrix in Eq. (31) is formed by frequency dependent
shape functions which are exact solutions of the governing differential equations. Therefore, it
diminates discretization errors and is capable of predicting an infinite number of natural frequencies
by means of a finite number of coordinates.

4. Isoparametric and Hermitian curved beam elements

In this section, the isoparametric curved beam element (Kim et al. 2004) based on Egs. (2), (3)
and (6) and the Hermitian curved beam element (Kim et al. 2002) neglecting shear deformation
having an arbitrary thin-walled cross sections are addressed. Fig. 5 shows the nodal displacement
vector of a three-noded isoparametric thin-walled beam element with seven noda degrees of
freedom per a node. The coordinate and al the displacement parameters of the beam element can
be interpolated with respect to the noda coordinates and displacements and the eéastic stiffness
matrix is evaluated using a reduced Gauss numerica integration scheme.

On the other hand, in case of neglecting shear deformation effect, the Hermitian curved beam
dement with two nodes and eight degrees of freedom per a node as shown in Fig. 6 is used. In

Fig. 5 Nodal displacement vector of a three-noded isoparametric curved beam element

o\ //
N 4
/vl’ Vq/uq \

/ " oY) / f\q\ .

g‘]
Fig. 6 Noda displacement vector of a Hermitian curved beam element
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order to accurately express the deformation of element, the third order Hermitian polynomias are
adopted to interpolate displacement parameters that are defined at the centroid axis.

5. Numerical examples

A wide range of problem can be solved by using the method proposed herein. In numerical
examples, the free vibration analysis for the simply supported and clamped curved beams with non-
symmetric cross sections are conducted. For verification, the available results from the three-noded
isoparametric curved beam elements and the analytic solutions (Kim et al. 2004) considering shear
deformation effect and the Hermitian curved beam elements (Kim et al. 2002) neglecting it are
compared in Tables with the current results.

5.1 Simply supported curved beam with x3- monosymmetric cross section

Fig. 7 shows the simply supported curved beam with Xs-monosymmetric cross section and its
geometric and material data. The beam length | is 100 cm and the subtended angles 6, for constant
length of beam are taken to be 10° 30° 60° and 90°, respectively. In this case, the in-plane and the
out-of-plane vibration motions are decoupled as one axis of symmetry which lies in the plane of
beam curvature. For that reason, we evaluate the lowest three in-plane natura frequencies by this
study and present in Table 1. For comparison, FE solutions using 20 three-noded isoparametric
curved beam elements (Kim et al. 2004) with shear deformation effect and 20 cubic Hermitian
curved beam elements (Kim et al. 2002) without it are together presented. As can be seen in Table 1,
the present solutions using only a single element are in a greatly good agreement with the FE

X3
0.5 cm
X3
X2
10 cm 0.5 cm
5cm
(a) Simply supported curved beam (b) Monosymmetric cross section

A=125cm?, E= 13,000 N/om?, G = 28,000 N/cm*, o = 0.00785 N/cm®, J = 1.04167 cm*
o= Ocm, e;=2.88889 cm, I, = 216.66667 cm*, I, = 46.875 cm*, I, = 485.16667 cm®
I,,=—135.41667 cm®, I;,=—350.0 cm®, Ip,=135.41667 cm®, I, = 1541.66667 cm’
Ipy= —854.166667 cm®, A5=5.11364cm?, A5=4.53387 cm?, AS=138.88889 cm!
(c) Material and section properties

Fig. 7 Smply supported curved beam with X3 - monosymmetric cross section
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Table 1 In-plane natural frequencies of simply supported beam with x;- monosymmetric section, «?

(rad./sec)?
o) ) Finite element method
y Mode This study - - - 5
(degree) With shear deformation  Without shear deformation

1 160.07 160.07 176.41

10 2 1629.6 1629.6 2348.6
3 5831.6 5832.7 9199.5
1 334.01 334.01 349.66

30 2 1583.6 1583.7 2285.7
3 5814.9 5816.1 9369.2
1 905.40 905.40 926.54

60 2 1431.7 1431.8 20715
3 5741.8 5743.0 9915.1
1 1216.0 1216.0 1766.9

90 2 1786.1 1786.1 1860.5
3 5681.8 5683.0 10617.

Table 2 Out-of-plane natural frequencies of simply supported beam with X;- monosymmetric section, «?

(rad./sec)?
Finite e ement method
(d e(gaﬁee) Mode This study Analytic solution With shear Without shear
deformation deformation
1 24.694 24.694 24.694 24.966
2 39.441 39.441 39.441 40.096
10 3 207.51 207.51 207.52 215.79
4 707.26 707.26 707.29 761.91
5 864.92 864.92 865.13 944.39
1 16.805 16.805 16.805 16.980
2 55.244 55.244 55.244 56.180
30 3 260.34 260.34 260.35 270.53
4 561.13 561.13 561.16 604.40
5 983.49 983.49 983.71 1076.7
1 5.0263 5.0263 5.0263 5.0635
2 154.92 154.92 154.92 157.97
60 3 310.57 310.57 310.59 320.38
4 455.90 455.90 455.92 494.15
5 1181.2 1181.2 1181.4 1294.7
1 1.6588 1.6588 1.6588 1.6695
2 228.08 228.08 228.10 237.39
90 3 335.34 335.34 335.34 342.17
4 583.41 583.41 583.42 626.24
5 1376.2 1376.2 1376.5 1498.6

solutions using the isoparametric beam elements. It should be noticed that the solutions by this
study are exact because this curved beam element is based on the exact shape functions which
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satisfy the eement equilibrium equations of motion. Also the FE solutions neglecting shear
deformation effect may lead to the erroneous results for the in-plane free vibration of curved beams
as the subtended angle increases.

Next, the present lowest five out-of-plane natural frequencies are given in Table 2 with the anaytic
solutions (Kim et al. 2004) and the FE solutions using curved beam elements. From Table 2, it may
be seen that the present solutions coincide exactly with the analytical solutions and the influence of
shear deformation on the out-of-plane natura frequencies is pronounced at the higher modes.

5.2 Single-span and continuous two-span curved beams with non-symmetric cross section

In this example, we perform the spatially coupled free vibration analysis of simply supported
single-span and continuous two-span curved beams with non-symmetric cross section.
Firgt, the single-span curved beam as shown in Fig. 8 is considered, in which the subtended angle

X3

2 cm

8 cm
—>X2

>4 0.5 cm

(a) Curved beam subjected to compressive force (b) Non-symmetric cross section

(c) Continuous two-span curved beam

A=17.0cm?*, E=13000N/cm®*, G= 28000 N/cm?, J = 0.5833 cm*, o = 0.00785 N/ cm?
I, = 67.0476 cm*, Iy = 8.4286 om*, Iy = 9.1429 cm®, Iy, = 52.2449com®, Iy, =—20.0272 cm®
Lpyy =—17.4150 em®, Iy =—13.3878 cm®, I, = 272.5442 em®, I, = 115.8095 cm®, I3 = 30.4762 cm®
Igy = 59.2109 cm®, I = —107.1020 om®, Ig = —63.1293 cm®, I, = —67.1720 om’
I,.=—388.7269cm’ , A5=1.69352cm*, A§=3.48152cm?, AS=26.70887 cm’
(d) Material and section properties

Fig. 8 Curved beam with non-symmetric cross section
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Table 3 Spatialy coupled natural frequencies of simply supported beam with non-symmetric section, «? (rad./
se0)?, (O, = 20°, F = 383.08 N)

Finite element method

Mode This study 4 20
With shear Without shear With shear Without shear
deformation deformation deformation deformation
(5.2850) (5.3028) (5.3861) (5.2850) (5.3788)
1 10.570 10.593 10.670 10.570 10.663
[15.855] [15.883] [15.954] [15.855] [15.947]
(119.74) (119.90) (120.85) (119.74) (120.83)
2 125.17 125.34 126.28 125.17 126.26
[130.61] [130.78] [131.72] [130.61] [131.70Q]
(124.63) (128.33) (129.81) (124.64) (128.76)
3 145.57 149.58 150.74 145.57 149.68
[166.50] [170.83] [171.66] [166.51] [170.59]
(397.55) (398.39) (419.86) (397.55) (419.64)
4 402.93 403.74 425.19 402.93 424.99
[408.28] [409.07] [430.51] [408.28] [430.32]
(570.32) (585.05) (608.45) (570.35) (604.66)
5 591.97 607.02 630.12 591.99 626.31
[613.61] [628.98] [651.78] [613.64] [647.97]
(584.21) (662.65) (645.65) (584.35) (624.10)
6 631.12 712.89 692.65 631.27 670.94
[678.06] [763.16] [739.67] [678.22] [717.81]
(1683.0) (2400.8) (2298.4) (1684.3) (1886.0)
7 1766.5 2502.2 2382.7 1767.8 1969.1
[1850.0] [2603.6] [2466.9] [1851.3] [2052.3]
(2361.0) (2661.5) (2765.1) (2361.5) (2675.9)
8 2409.5 2713.4 2813.7 2410.1 2724.3
[2458.0] [2765.3] [2862.3] [2458.6] [2772.8]
(3373.9) (3459.8) (4336.5) (3374.0) (4304.0)
9 3394.2 3480.4 4356.2 3394.4 4323.7
[3414.5] [3501.0] [4375.9] [3414.7] [4343.4]
(3769.7) (8337.2) (5655.4) (3776.6) (4479.4)
10 3899.9 8541.6 5787.6 3906.9 4608.8
[4030.2] [8746.0] [5919.8] [4037.3] [4738.2]

Note: () natural frequency with an initial compressive force 191.54 N
[ ] natura frequency with an initial tensile force 191.54 N

6, is taken to be 20° and the beam length is 80 cm. And the initial axial force 191.54 N which is
the half value of buckling load F. is adopted. For the curved beam with non-symmetric cross
section, there was no analytic solution reported in previous research for the spatially coupled free
vibration. Due to this reason, the lowest ten spatialy coupled natural frequencies of curved beam by
this study are compared with FE solutions using 4 and 20 isoparametric curved beam elements with
shear deformation effect and Hermitian curved beam elements without it in Table 3. Here the
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Table 4 Spatially coupled natural frequencies of continuous two-span beam with non-symmetric section,
«’ (rad./sec)?, (O, = 20°)

Finite e ement method

Mode This study 8 20

With shear Without shear With shear Without shear
deformation deformation deformation deformation

1 151.10 151.39 155.59 151.11 155.42

2 312.04 313.29 338.22 312.07 337.85

3 635.46 636.53 669.29 635.49 668.31

4 1183.1 1187.5 1368.8 1183.2 1367.2

5 1766.5 1814.3 1982.9 1767.9 1969.2

6 2508.2 2604.0 3084.8 25109 3049.9

7 3509.0 3515.0 4450.3 3509.1 4446.5

8 5875.6 5893.5 8116.2 5876.1 8058.1

9 6549.1 6719.8 9612.0 6553.9 9296.0

10 7355.3 8263.3 10359. 7381.7 10345.

parenthesis () and the bracket [ ] denote the natural frequencies subjected to the initiad compressive
and tensile forces, respectively. From Table 3, it can be found that the natural frequencies obtained
from a single element based on the exact dynamic element stiffness matrix are in a excellent
agreement with the FE solutions by 20 isoparametric beam elements. Also the method proposed in
this study gives exact results in the higher vibrational modes as well as the lower ones, while a large
number of beam elements in FE analysis are required to achieve the sufficient accuracy in the
higher modes.

Furthermore it is a well recognized fact that the effect of shear deformation decreases the stiffness
of curved beam and therefore it decreases the natural frequency of beam. Particularly its effect may
be of considerable importance for studying the modes of vibration of higher frequencies when a
vibrating curved beam is subdivided by nodal cross sections into comparatively short portions and in
this case, the maximum difference is 27.56% at the ninth mode. Also investigation of Table 3
reveals that the effects of initia axia forces on the natural frequencies are predominant in the first
few modes and its effect on the fundamenta frequency of beam is nearly the same as the ratio of
the initia force to the buckling load.

Next, we consider continuous two-span curved beam as shown in Fig. 8(c) which the subtended
angle 6, is 20° and the total beam length is 80 cm. In this case, the system matrix can be obtained
by the usua assembling process from the conditions of equilibrium and compatibility at the nodes.
Table 4 shows the spatially coupled natural frequencies by this study using 2 elements and by finite
element method with and without shear deformation effect. The excellent agreement between results
by this study and 20 isoparametric curved beam elements is evident.

5.3 Clamped curved beam with non-symmetric cross section

In our final example, the spatially coupled free vibration analysis of clamped beam subjected to
congtant initial axial force is performed. The cross section of beam is the same as previous example
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Table 5 Spatially coupled natural frequencies of clamped beam with non-symmetric section, «? (rad./sec)?,
(6, = 20°, F = 1519.7N)

Finite element method

Mode This study 4 20
With shear Without shear With shear Without shear
deformation deformation deformation deformation
(27.699) (28.276) (29.929) (27.700) (29.577)
1 53.751 54.224 56.225 53.752 55.928
[78.808] [79.242] [81.878] [78.809] [81.465]
(201.71) (203.15) (216.16) (201.71) (213.85)
2 227.76 229.15 242.95 227.76 240.52
[253.52] [254.88] [269.58] [253.53] [267.00]
(209.39) (226.00) (238.29) (209.42) (233.13)
3 304.08 321.73 335.62 304.11 329.87
[397.32] [416.15] [432.49] [397.35] [425.52]
(822.00) (1027.6) (1000.2) (822.39) (959.05)
4 1021.7 1157.3 1213.6 1022.1 1164.0
[1170.6] [1184.1] [1422.3] [1170.7] [1365.1]
(1049.5) (1111.0 (1257.0) (1049.6) (1234.0)
5 1145.5 1208.1 1357.8 1145.6 1334.0
[1232.1] [1304.9] [1458.5] [1232.5] [1433.7]
(1131.2) (1241.5) (1542.7) (1131.2) (1533.6)
6 1156.8 1250.2 1571.0 1156.8 1561.7
[1241.1] [1461.2] [1604.2] [1241.3] [1593.1]
(2160.4) (3620.3) (3708.4) (2162.9) (2691.8)
7 2507.7 4037.6 4097.6 2510.4 3049.8
[2854.3] [4453.8] [4487.1] [2857.1] [3407.6]
(3556.5) (4293.8) (4790.8) (3557.9) (4595.1)
8 3760.6 4511.0 5013.1 3762.1 4808.7
[3964.5] [4728.0] [5235.4] [3966.0] [5022.1]
(4535.0) (5898.7) (10216.) (4546.2) (6065.3)
9 5067.5 5987.0 10332. 5079.2 6613.8
[5599.3] [6075.9] [10420.] [5611.6] [7162.1]
(5649.2) (12376.) (10243.) (5649.7) (10047.)
10 5736.5 13186. 10851. 5737.0 10135.
[5823.3] [13917.] [11486.] [5823.8] [10222.]

Note: () natura frequency with an initial compressive force 759.85 N
[ ] natura frequency with an initia tensile force 759.85 N

and the subtended angle and the beam length are 20° and 80 cm, respectively. Here the initia axial
force 759.85 N is acted aong the clamped beam which is the half value of buckling load. The
lowest ten natura frequencies by this study using a single element are compared with FE solutions
using 4 and 20 curved beam elements with and without shear deformation effect in Table 5. The
excellent agreement between results by this study and 20 isoparametric curved beam elements can
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Table 6 Spatialy coupled natural frequencies of clamped beam with non-symmetric section, w (rad./sec),

(6, = 309
Finite lement method
Mode This study (with shear deformation) ABAQUS
4 20
1 2.4053 2.4189 2.4053 2.4193
2 5.8512 6.0299 5.8515 5.8867
3 7.2931 7.3061 7.2932 7.2632
4 10.612 11.658 10.614 10.717
5 11.597 11.879 11.597 11.698
6 13.325 13.484 13.325 13.255
7 16.734 21.552 16.743 16.971
8 20.701 22.738 20.705 20.937
9 23.958 27.914 23.988 24.271
10 27.189 40.876 27.190 26.450

be observed from Table 5. Also the shear deformation effect increases up to the maximum
difference 77.83% at the tenth mode.

Next the clamped curved beam with the subtended angle 30° and the beam length 80 cm is
considered. In Table 6, the spatially coupled natural frequencies by this study are presented. For
comparison, FE solutions with shear deformation effect and the results obtained from 300 nine-
noded shell elements (SOR5) of ABAQUS which is the commercia finite element analysis program
are given. Where a good agreement between results by this study and ABAQUS is observed with
less than 2.8% as maximum of difference at the tenth mode.

6. Conclusions

For the spatialy coupled free vibration analysis of shear deformable thin-walled curved beams
with non-symmetric cross section subjected to intial axia force, an effective method evaluating the
exact dynamic element stiffness matrix is developed in this study.

Through the numerical examples, it is demonstrated that results by the present method using only
a single element are in a great agreement with those by thin-walled curved beam elements and
ABAQUS's shell elements. Also the influence of shear deformation and the intial axia force on the
spatialy coupled vibrationa behavior of curved beams is investigated.

As a result, it is believed that this procedure is general enough to provide a systematic tool for
exact solutions of simultaneous ordinary differential equations of the higher order with constant
coefficients. Furthermore, the exact curved beam element eliminates discretization errors and is
capable of predicting an infinite number of natural frequencies of shear deformable curved beams
by means of a finite number of coordinates.
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Appendix I. Each components of matrices A, B and S

1) Components of matrix A

ke _
ko | ks K | ks ke | ks ke
ki
k9 klO k:|_1_
ki
Kz —kio | Kkiz kKia | kis Kis
ky
ka7 —ku1 | kig kis | —Ks Kio
ki
Ke | Kuo koo | ka1 koo | —kag kas
ki
Ko | Koa kos | kas koo | Koz kag
ki
| ke | Ku kog | —Kis koz | koo keo | (A-D)
where
El GA El GA
k, = 1.0, k2=—EA——22, kS:__sz’, k4:__RZ‘3a ks = __R—?’,
El GA,, El 0
Ke = EZ: k; = — R3 , ks = _ﬁga_{ ko= GA+ Fi, Kio=GAz, ki =GA,,
1 El 0 El 0 El
ki = ﬁ%A"' Ezg +GAs+ F |:|’ kis = E;‘aa ki = «(GAs+ Fy), ks = _Ezg'
10El 1, -
ki = —GAg, kiz = _§%E_R23 —GA3H, Kig = —ﬁ(E|3 +GA,), kp=-GI-GA -fF,,
R R R GA,, R
Ko = Ely, ko = GA;, kp=—El,  Kyu=-Elp, Kyu=-GA+ _R—’ Kos = —El3,
GA;, GJ , GA o A _
Ky = —GAz + —R-?’—' ka7 = R + R —GA, + F% Fi, kg =Elg, kyu=GA, kyg=-El,
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2) Components of matrix B

_ by _
b, bs bs | bs bs | by
by
bg | bg b1o b1y | bio b3
by
b14 b15 b16 b17 b18
by
—byp big | br7 2o | b2y b2
by
bs P23 D24 | bos boe | bo7
by
bs b2g —be | 23 bog | bsg
by
| br b3o ba | bor b3 | bs3 |
where
1 . GA,; GA, |
b, = 1.0, b,= ——R—Z(GA3+ Fi) + pafA, by = —-R—23+ ?23_ g,
0 =G, ol oo Bl | _GAy ol
b, R%A+ Z+°FH, bs= R+pw2R, bs——Rz, b, = =2 +pw2R,
bg = GQZS, by = _pafA by = GA; - Gézr, by =-GAgxg, by = paf 2 =-GAx,
GA |
by = —GAx+ 3r: bis = —= BEA al PWA, by =GA;, by = EI23 +pwZ,
R® R
El GJ o El -
b = GA3r+E§L2a leZE_GAZr-'-gFla by = GAg,, b21:—;23+pw2|0,
El GA - El -
by = —_RE"'GAn by = GAx——=2 — pafls, b, :_Ezz’ bas = — GAs + pafia,
Eizs o~ GJ GA 2GA2r _@
=== =_ + = _=_ +
b2 R’ b, GAs + pW e, by= 2 GA; - R R Fl P(U2|¢e,
. A ) R R )
by = s b= R Ay —paie b= Doz, by=-GA+pall,

95

(A-2)
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3) Components of matrix S

B s S | s SRS % |
S S | S S0 | Swo S | Su
Si2 Si0 | S13 Si14 | Si5 Si6 | Si6
S17 Si1 | S8 Si6 | Si6 S19 | S0
S S1 | S S3 | S S
S S5 | TS 1 | S6 S7
B S S7 | S8 S4 | S S0 | (A-3)
where
= Elx Elg . __E, __ Els
Sl_EA+R2’ S = R’ R%A‘L 2|:|’ 54__Ra Ss__Rzy
El GA o GA,
S = __R@’ S;=— st, S =GA+ Fy, s =—-GA+ R2 + Si0= GAym, S =GA,,
GASr
S = __(GAS + Fl) Si3=—GAxz+ R’ Sy = GA; + Fla Sis = GAz, Si= GAg,
GA;, GJ GA, o 0
Si7 = —_R?"y Sig = E R *—GA, + g Fi, S19=GJ+GA +[F;, s0=GA,,

A El - El
Sn = —Elg, 522:_322’ S = E|2, Sy = EI(IJZ! Sy = Elg, 526:—322’,

- El El -
Sy =—Elg S :—‘E(ZQ, 529:_R@, Sz = Ely





