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Abstract. Modified virtual crack closure integral (MVCCI) technique has become very popular for
computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems.
The objective of this paper is to propose a numerical integration procedure for MVCCI so as to
generalize the technique and make its application much wider. This new procedure called as numerically
integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite
element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode
I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-
noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI
technique generates the same results as MVCCI, but the advantage for higher order regular and singular
elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to
be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has
been recommended based on the numerical studies.

Key words: fracture mechanics; finite element method; stress intensity factor; strain energy release
rate; numerical integration.

1. Introduction

The fracture behaviour of structural components under fatigue loading or during static overload
can be estimated through linear elastic fracture mechanics (LEFM) principles, and SIF is the
influencing design parameter. A detailed review of fatigue and fracture behaviour of structural
components has been presented by Cotterell (2002) and Schijve (2003). Using the finite element
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method (FEM) for basic stress analysis (Zienkiewicz and Taylor 2000), SIF can be computed
through post-processing of finite element analysis (FEA) results (Liebowitz and Moyer 1989). The
techniques based on displacement extrapolation, strain energy release rate, virtual crack extension,
modified virtual crack closure integral, equivalent domain integral and J-integral are generally
preferred (Owen and Fawkes 1982), for computing SIF through post-processing of FEA results. The
major disadvantage in the extrapolation methods is that the accuracy in evaluating SIF depends on
the accuracy of displacement and stress distribution in the vicinity of crack tips. As such, these
methods are not suitable with conventional finite elements and generally require stress analysis
using singular elements only. The strain energy release rate and the virtual crack extension
techniques require two runs of analysis for evaluating SERR. Considering the merits and demerits
of these techniques, it is observed that for LEFM problems, MVCCI technique in combination with
FEM is an efficient tool for evaluating SERR from which SIF can be calculated. One of the popular
post-processing techniques is MVCCI developed by Rybicki and Kanninen (1977) based on Irwin’s
crack closure integral (CCI) technique (Irwin 1958) with appropriate modifications for computation
of SERR and SIF. The advantage of MVCCI technique is its simplicity and also the ease with
which individual mode SERR/SIF can be estimated in mixed-mode problems.

Rybicki and Kanninen (1977) expressed Irwin’s CCI technique in a form consistent with the finite
element (FE) formulation and evaluated SERR for mode I and II (GI and GII) in terms of nodal forces
and displacements. Further, these computations can be carried out from a single FEA, as against from
two analyses with crack lengths differing by an infinitesimally small crack length as conceived
originally. Buchholz (1984) realized the element dependence of MVCCI equations and presented
appropriate equations for 8-noded quadrilateral elements, but did not establish a formal procedure for
deriving them. Badari Narayana and Dattaguru (1996) and Badari Narayana et al. (1990) presented
the generalised MVCCI equations for conventional and singular quadrilateral elements for 2-D
problems with cracks. Raju (1986) also derived MVCCI equations for 6-noded and 8-noded quarter-
point singular elements. Young and Sun (1993) demonstrated the application of MVCCI technique to
plate bending problems. Buchholz et al. (2001) and Dhondt et al. (2001) conducted fracture analysis
to study the 3-D and mode coupling effects by employing MVCCI method.

For the successful application of MVCCI technique, it is essential (Badari Narayana 1991) to
derive element dependent MVCCI equations for computation of SERR. The derivation of MVCCI
equations involves evaluation of constants used in the polynomial assumed to represent displacement
and stress variation and evaluation of many integrals. In view of these, the derivation of MVCCI
equations becomes a tedious exercise for higher order and singular 2-D and 3-D finite elements.
Therefore, a need is felt to develop a generalized MVCCI technique involving numerical integration
for computation of the required constants and to evaluate the associated integrals. Towards this, NI-
MVCCI technique has been proposed in this paper for computation of SERR and SIF for 2-D crack
problems. NI-MVCCI is a generalized technique and removes the dependence on the type of finite
elements employed. NI-MVCCI technique has been demonstrated for 4-noded bilinear, 8-noded
Serendipity (regular & quarter-point), 9-noded Lagrangian and 12-noded cubic isoparametric finite
elements. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been
conducted. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point)
element for accurate computation of SERR and SIF has been recommended based on the numerical
studies. It may be noted that no results have been reported in the literature using MVCCI technique
for 9-noded and 12-noded elements. In this paper, NI-MVCCI technique has been used for the first
time for this purpose.
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2. Formulation of NI-MVCCI technique

Irwin (1958) proposed CCI technique for evaluation of SERR. CCI was derived using a
fundamental concept that when crack extension takes place, the energy required to close this part of
crack in a solid is same as energy released during crack extension. The rate of change of this energy
with crack extension is SERR, which is generally denoted as G. Fig. 1 shows a crack tip in an
infinite isotropic media subjected to remote tensile loading causing mode I crack deformation.

The normal stress distribution ahead of the crack tip is σyy. Let the crack of length, ‘a’ be
extended by a small virtual increment of ‘∆a’. The crack opening displacement (COD) behind the
new crack tip is Uy (half of the total COD). The energy required to close the extended crack ‘∆a’
can be estimated as the work done by forces corresponding to the stress distribution, σyy on COD,
Uy. This can be expressed as

(1)W
1
2
--- σyyUydx

0

a∆

∫=

Fig. 1 Schematic of virtual crack extension (Mode I)
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The above CCI can be used to compute SERR, as

(2)

Taking polar coordinate system (r, θ) with the origin at the crack tip in a 2-D domain and using
Eq. (2), SERR for mode I and II cracks (GI and GII) can be expressed as 

(3)

(4)

where σyy (r = x, θ = 0) and σxy (r = x, θ = 0) are distribution of stresses ahead of the crack tip.
Ux (r = ∆a − x, θ = π) and Uy (r = ∆a − x, θ = π) are the relative sliding and opening displacements
between the crack faces and ∆a is the virtual crack increment.

The problem is basically to evaluate SERR, represented as G = (∂U/∂a). If one could do two
stages FEA, SERR can be obtained from the difference in strain energies for the configuration
corresponding to crack sizes ‘a’ and ‘a + ∆a’. However, if ‘∆a’ is kept very small, one could use
the stress distribution ahead of crack tip and COD behind crack tip derived from single FEA to
evaluate MVCCI using Eqs. (3) and (4). The evaluation of CCI by using the results obtained from
single FEA as a post-processing approach is known as MVCCI technique. The derivation of the
element dependent MVCCI equations for computing GI and GII involves evaluation of constants
used in the polynomial assumed to represent displacement and stress variation and evaluation of
many integrals. In view of these, the derivation of MVCCI equations becomes a tedious exercise for
higher order and singular 2-D and 3-D finite elements. NI-MVCCI technique proposed in this paper
involves numerical integration for computation of the constants and to evaluate the crack closure
integrals for GI and GII as given by Eqs. (3) and (4). The numerical integration has to be carried out
in two stages: one for evaluating constants representing the stress distribution ahead of crack tip in
terms of nodal forces and the second to evaluate SERR itself.

Consider a typical FE mesh at the crack tip as shown in Fig. 2. The mesh shown consists of
quadrilaterals with n number of nodes on edge OA. For mode I crack, GI can be evaluated by
multiplying the stress distribution along OA (ahead of crack tip) with the corresponding
displacement distribution along OB (behind crack tip) and integrating this product over ∆a. For
evaluation of GI the stress distribution along OA is expressed in terms of the nodal forces Fy, j, Fy, j+1,
etc. acting at the nodes j, j + 1, etc. respectively. The COD distribution along OB is expressed in
terms of the nodal displacements at j, j − 1, ( j − 1)', etc. GI is derived by evaluating the energy
required to close the crack over a length ‘∆a’ in terms of these nodal forces and displacements. The
shape functions for elements � and � along OB can be obtained by substituting η = −1, in the
respective element shape functions. Let these shape functions be Ni and the general formulation for
any value of n would be as follows.

The COD distribution along OB can be expressed in terms of nodal displacements {(Uy)i} as

(5)

G Lt
a∆ 0→

1
2 a∆
---------- σyyUydx

0

a∆

∫=

GI Lt
a∆ 0→

1
2 a∆
---------- σyy r x= θ 0=,( )Uy r a∆ x–= θ π=,( )dr

0

a∆

∫=

GII Lt
a∆ 0→

1
2 a∆
---------- σxy r x= θ 0=,( )Ux r a∆ x–= θ π=,( )dr

0

a∆

∫=

Uy Ni[ ] Uy( )i{ } i 1 … n, ,==
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where n is the number of nodes on edge OA or OB of the respective element. Consistent with the
isoparametric formulation, coordinate of any point X(x, y) is given by

(6)

where {(X)i} are nodal coordinates. The transformation between the global and natural coordinate
system for the respective element can be obtained by using Eq. (6). Consistent with the element
shape functions, the displacement variation along OB can be expressed as function of ξ ' for non-
singular elements as

(7a)

where Uy(ξ' ) is a polynomial of order (n − 1). For 8-noded quarter-point element (QPE), the
displacement variation along OB can be expressed as

(7b)

The constants a0, a1,…., a(n−1) can be evaluated by matching the displacements at the nodes j, ( j −1),
…., (j − n + 1) in element � . A set of simultaneous equations of order n is formed, which can be
solved for obtaining the constants a0, a1,…., a(n−1).

Considering element �, stress (σyy) distribution along OA can be expressed as a function of ξ for
non-singular elements as

(8a)

where σyy(ξ) is a polynomial of order (n − 1). For 8-noded QPE element, stress distribution along
OA can be expressed as

(8b)

X Ni[ ] X( )i{ } i 1 … n, ,==

Uy ξ ′( ) a0 a1ξ ′ … a n 1–( )ξ ′ n 1–( )+ + +=

Uy ξ ′( ) a0 a1 1 ξ ′+( ) a2 1 ξ ′+( )2+ +=

σyy ξ( ) b0 b1ξ … b n 1–( )ξ
n 1–( )+ + +=

σyy ξ( ) b0 1 ξ+( )⁄ b1 b2 1 ξ+( )+ +=

Fig. 2 Typical FE mesh of crack tip region
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The constants b0, b1,…., b(n−1) can be computed by matching the nodal forces with the derived
consistent load vector from FE analysis. The nodal forces Fy, j , Fy, ( j+1),…., Fy, ( j+n−1) shown in Fig. 2
are the forces exerted at node j, ( j + 1),….., ( j + n − 1) by the structure below OA on the structure
above OA. In FEA, these forces are obtained by summing up the forces at nodes j, ( j + 1),…., ( j +
n − 1) from the elements on the edge above OA. These forces should be consistent with the stress
distribution given in Eq. (8), which can be expressed as

(9)

where Ni are shape functions of the respective element obtained by substituting η = −1. By using
the transformation between the global and natural coordinate system, dx can be expressed in terms
of dξ (Eq. 6).

By substituting the expressions for displacement and stress variation given by Eqs. (7) and (8)
respectively in CCI Eqs. (3) and (4), GI and GII can be expressed as

(10)

(11)

Hitherto, these integrals given are evaluated in closed form for several simple elements. But the
procedure becomes complicated for higher order elements and in particular for 3-D problems with
Hexa8, Hexa20 and Hexa27 solid elements. So, in the present study, Gauss integration technique
has been proposed for evaluating these integrals. For different finite elements employed in the basic
stress analysis, one may use different rules for integration. For non-singular elements the rule of
integration for accurate evaluation of these integrals can be easily worked out depending on the
value of n. For example, Guass integration rule of 2, 3 and 4 will be required for 4-noded, 8-noded/
9-noded and 12-noded elements respectively. However, for 8-noded QPE, in view of the function
chosen for σyy(ξ) (Eq. 8(b)), the required Guass integration rule has to be arrived at by conducting
numerical studies.

As it can be observed from Eqs. (5)-(11), the proposed NI-MVCCI is a generalized technique and
is independent of the type of finite elements used, except for assuming the appropriate expressions
for displacement and stress variation (Eqs. (7) and (8)). In the present study, this new procedure is
demonstrated for 4-noded, 8-noded (regular and quarter-point), 9-noded and 12-noded elements.
Closed form MVCCI equations for computing GI and GII for 4-noded and 8-noded (regular and
quarter-point) are presented in Table 1. It may be noted that the MVCCI equations for 9-noded
element will be same as that of regular 8-noded element. Closed form MVCCI equations for 12-
noded elements can easily be developed by procedures similar to that for 8-noded element. The
expressions for these elements for appropriate substitution in Eqs. (5)-(11) for computation of SERR
using NI-MVCCI technique have also been presented in Table 1.

Fi Ni[ ] Tσyy ξ( )dx i 1 … n, ,=
0

a∆

∫=

GI Lt
a∆ 0→

1
2 a∆
---------- σy ξ( )Uy ξ ′( )dx

0

a∆

∫=

GII Lt
a∆ 0→

1
2 a∆
---------- σxy ξ( )Ux ξ ′( )dx

0

a∆

∫=
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3. Numerical studies

Fracture analysis of 2-D crack (mode I and II) problems has been conducted to validate the
proposed NI-MVCCI technique. Basic stress analysis of the plate has been carried out by employing
4-noded, 8-noded (regular and quarter-point), 9-noded and 12-noded finite elements. SERR has been
evaluated by using NI-MVCCI technique. For evaluating the integrals associated with NI-MVCCI
technique, Gauss integration technique has been used with rules of 2, 3 and 4 for 4-noded, 8-noded/
9-noded and 12-noded elements respectively, while for 8-noded QPE different rules have been

Table 1 MVCCI equations and expressions required for evaluation of NI-MVCCI

Element

Shape
functions 

along edge 
OB(for edge 
OA replace

ξ' by ξ)

Relation 
between
x & ξ'

Displace-
ment 

variation 
(Uy(ξ'))

along OB

Stress 
variation 
(σyy(ξ')) 

along OA

Displacement 
and force 
conditions

Relation 
between
ξ' & ξ

MVCCI 
equations

4-noded

8-noded/ 
9-noded

(end nodes)

(mid node)

ξ ' = −ξ

8-noded 
QPE

(end nodes)

(mid node)

+b1

= 4

12-noded
(end nodes)

(mid nodes)

ξ ' = −ξ

**- C11 = 33π/2 − 52; C12 = 17 − 21π/4; C13 = 21π/2 − 32; C21 = 14 − 33π/8; C22 = 21π/16 − 7/2; C23 = 8 − 21π/8

1
2
--- 1 ξ ′ξ i′+( ) a∆

2
------ 1 ξ ′+( )– a0 a1ξ ′+ b0 b1ξ+

Uy 0 at ξ ′ 1–= =
Uy Uy j 1–,  at ξ ′ 1==
Fy Fy j,  at ξ 1–= =
Fy Fy j 1+,  at ξ 1= =

ξ′ ξ–=

GI

1
2 a∆
--------- Fy j, Uy j 1–, Uy j 1–( )′,–( )[ ]=

GII

1
2 a∆
--------- Fx j, Ux j 1–, Ux j 1–( )′,–( )[ ]=

1
2
--- 1 ξ ′ξ i′+( )ξ′ξ i′

1
2
--- 1 ξ ′2–( )

a∆
2

------ 1 ξ ′+( )–
a0 a1ξ ′+
+a2ξ ′ 2

b0 b1ξ+
+b1ξ 2

Uy 0 at ξ ′ 1–= =
Uy Uy j 1–,  at ξ ′ 0==
Uy Uy j 2–,  at ξ ′ 1==
Fy Fy j,  at ξ 1–= =
Fy Fy j 1+,  at ξ 0= =
Fy Fy j 2+,  at ξ 1= =

GI

1
2 a∆
---------

Fy j, Uy j 2–, Uy j 2–( )′,–( )+

Fy j 1+, Uy j 1–, Uy j 1–( )′,–( )
=

GII

1
2 a∆
---------

Fx j, Ux j 2–, Ux j 2–( )′,–( )+
Fx j 1+, Ux j 1–, Ux j 1–( )′,–( )

=

1
2
--- 1 ξ ′ξ i′+( )ξ′ξ i

1
2
--- 1 ξ ′2–( )

a∆
4

------ 1 ξ ′+( )2 a0 a1 1 ξ ′+( )+
a2 1 ξ ′+( )2+

b0 1 ξ+( )⁄

b2 1 ξ+( )+

Uy 0 at ξ ′ 1–= =
Uy Uy j 1–,  at ξ ′ 0==
Uy Uy j 2–,  at ξ ′ 1==
Fy Fy j,  at ξ 1–= =
Fy Fy j 1+,  at ξ 0= =
Fy Fy j 2+,  at ξ 1= =

1 ξ+( )2

+ 1 ξ′+( )2

GI

1
2 a∆
---------

C11Fy j, C12Fy j 1+, C13Fy j 2+,+ +( )
Uy j 1–, Uy j 1–( )′,–( )

=

+ C21Fy j, C22Fy j 1+, C23Fy j 2+,+ +( )
Uy j 2–, Uy j 2–( )′,–( )

**

GII

1
2 a∆
---------

C11Fx j, C12Fx j 1+, C13Fx j 2+,+ +( )
Ux j 1–, Ux j 1–( )′,–( )

=

+ C21Fx j, C22Fx j 1+, C23Fx j 2+,+ +( )
Ux j 2–, Ux j 2–( )′,–( )

**

1
16
------ 1 ξ′ξ i′+( )

1– 9ξ ′2+( )

9
16
------ 1 9ξ′ξ i′+( )

1 ξ ′2–( )

a∆
2

------ 1 ξ ′+( )–
a0 a1ξ ′+

+a2ξ ′2 a3ξ ′3+

b0 b1ξ+
+b2ξ 2

+b3ξ 3

Uy 0 at ξ ′ 1–= =
Uy Uy j 1–,  at ξ ′ 1 3⁄–==
Uy Uy j 2–,  at ξ′ 1 3⁄==
Uy Uy j 3–,  at ξ ′ 1==
Fy Fy j,  at ξ 1–= =

Fy Fy j 1+,  at ξ 1 3⁄–= =
Fy Fy j 2+,  at ξ 1 3⁄= =
Fy Fy j 3+,  at ξ 1= =

GI

1
2 a∆
---------

Fy j, Uy j 3–, Uy j 3–( )′,–( )+
Fy j 1+, Uy j 2–, Uy j 2–( )′,–( )+
Fy j 2+, Uy j 1–, Uy j 1–( )′,–( )

=

GII

1
2 a∆
---------

Fx j, Ux j 3–, Ux j 3–( )′,–( )+

Fx j 1+, Ux j 2–, Ux j 2–( )′,–( )+
Fx j 2+, Ux j 1–, Ux j 1–( )′,–( )

=
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employed. Plane strain conditions have been assumed at the crack tip to compute SIF by using
SERR value obtained using NI-MVCCI technique.

3.1 Example-1: Rectangular plate with center crack under uniaxial tension

A rectangular plate with center crack subjected to uniaxial tensile loading (mode I) as shown in
Fig. 3 has been analysed to compute SERR and SIF at the crack tip. One quarter of the plate with
symmetric boundary conditions has been idealized. FE idealization of the plate using 4-noded
element is shown Fig. 4. Table 2 presents SERR and SIF values obtained in the present study along
with the results obtained by using MVCCI technique (closed form equations) and the finite plate
solution available in the literature (Rooke and Cartwright 1976). The variation of SIF with respect to
∆a/a and W/a is shown in Fig. 5.

Fig. 3 Rectangular plate under uniaxial tension

Fig. 4 FE Idealization of rectangular plate (Quarter symmetry)
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Table 2 SERR and SIF for rectangular plate with center crack under uniaxial tension (Comparison for
different rules of Gauss integration for NI-MVCCI) (∆a/a = 0.05 and W/a = 5)

Gauss
rule

4-noded element 8-noded element 9-noded element 8-noded QPE
12-noded element

∆a/a = 0.15 ∆a/a = 0.05

GI KI GI KI GI KI GI KI GI KI GI KI

2 0.06529 25.5524
(0.15)*

0.10303 32.09787 0.09473 30.7777 0.04675 21.6224 0.33447 57.8336 0.36255 60.2120

3 0.06531 25.5559
(0.13)*

0.06539 25.5708
(0.08)*

0.06612 25.7138 0.13197 36.3271 0.14124 37.5824

4 0.06578 25.6480 0.06579 25.6505
(0.24)*

0.07160 26.7588
(4.57)*

5 0.06567 25.6253

6 0.06561 25.6151

7 0.06559 25.6097

8 0.06557 25.6069

9 0.06556 25.6050

10 0.06556 25.6038
(0.05)*

MVCCI 0.06529 25.5524 0.06531 25.5559 0.06539 25.5708 0.06554 25.6005 0.06579 25.6505 0.07160 26.7588

KI: 25.59 − with finite plate correction (Rooke and Cartwright 1976), 25.07 − infinite plate solution.
* − % deviation from analytical KI

Fig. 5 Variation of SIF for rectangular plate with center crack (Mode I)
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3.2 Example-2: Rectangular plate with edge crack under uniaxial tension

A rectangular plate with an edge crack subjected to uniaxial tensile loading (mode I) as shown in
Fig. 3(b) has been analysed to compute SERR and SIF at the crack tip. FE idealization as shown in
Fig. 4 has been used in the studies, considering half symmetry, with appropriate changes for the
boundary conditions. Table 3 presents SERR and SIF values obtained in the present study along
with the results obtained by using MVCCI technique and the finite plate solution available in the
literature (Rooke and Cartwright 1976). The variation of SIF with respect to ∆a/a and W/a is shown
in Fig. 6.

3.3 Example-3: Rectangular plate with center crack under shear load

A rectangular plate with a center crack subjected to shear load (mode II) has been analysed to
compute SERR and SIF at the crack tip. The plate geometry and attributes are the same as that of
example-1. FE idealization as shown in Fig. 4 has been used in the studies, considering quarter
symmetry, with appropriate changes for the loading and boundary conditions. Table 4 presents
SERR and SIF values obtained in the present study along with the results obtained by using
MVCCI technique and the finite plate solution available in the literature (Rooke and Cartwright
1976). The variation of SIF with respect to ∆a/a and W/a is shown in Fig. 7.

Table 3 SERR and SIF for rectangular plate with edge crack under uniaxial tension (Comparison for different
rules of Gauss integration for NI-MVCCI) (∆a/a = 0.05 and W/a = 5)

Gauss
rule

4-noded element 8-noded element 9-noded element 8-noded QPE
12-noded element

∆a/a = 0.1 ∆a/a = 0.05

GI KI GI KI GI KI GI KI GI KI GI KI

2 0.10917 33.0411
(3.98)*

0.20508 45.2856 0.17188 41.4578 0.07813 27.9509 0.52002 72.1124 0.76660 87.5558

3 0.11529 33.9546
(1.32)*

0.11577 34.0254
(1.12)*

0.11724 34.2339 0.72711 85.2706 0.13669 36.9716

4 0.11666 34.1548 0.11839 34.4072
(0.01)*

0.12368 35.1681
(2.20)*

5 0.11646 34.1253

6 0.11636 34.1122

7 0.11632 34.1051

8 0.11629 34.1015

9 0.11628 34.0991

10 0.11626 34.0975
(0.92)*

MVCCI 0.10917 33.0411 0.11529 33.9546 0.11577 34.0254 0.11623 34.0932 0.11839 34.4072 0.12368 35.1681

KI: 34.41 − with finite plate correction (Rooke and Cartwright 1976), 28.08 − semi-infinite plate solution
* − % deviation from analytical KI
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Table 4 SERR and SIF for rectangular plate with center crack under shear load (Comparison for different
rules of Gauss integration for NI-MVCCI) (∆a/a = 0.05 and W/a = 20)

Gauss 
rule

4-noded element 8-noded element 9-noded element 8-noded QPE 12-noded element

GII KII GII KII GII KII GII KII GII KII

2 0.06123 24.7441
(1.30)*

0.10205 31.9454 0.09863 31.4059 0.07965 28.2225 0.33862 58.1913

3 0.06101 24.7001
(1.48)*

0.06206 24.9109
(0.63)*

0.06108 24.7152 0.25891 50.8831

4 0.06095 24.6894 0.05874 24.2372
(3.32)*

5 0.06089 24.6768

6 0.06087 24.6719

7 0.06086 24.6691

8 0.06085 24.6677

9 0.06085 24.6668

10 0.06084 24.6662
(1.61)*

MVCCI 0.06123 24.7441 0.06101 24.7001 0.06206 24.9109 0.06083 24.6645 0.05874 24.2372

KII: 25.10 − with finite plate correction (Rooke and Cartwright 1976), 25.07 − infinite plate solution
* − % deviation from analytical KI

Fig. 6 Variation of SIF for rectangular plate with edge crack (Mode I)
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3.4 Discussion of results

It is observed from the studies that SIF computed in the present study by employing NI-MVCCI
technique along with 4-noded, 8-noded, 9-noded and 12-noded elements are generally in close
agreement with the reference solutions for all the problems considered. In all the cases, except for
singular QPE, NI-MVCCI technique serves the purpose of performing MVCCI exactly with
appropriate rules of Gauss integration. NI-MVCCI technique using 9-point integration along with 8-
noded QPE at the crack tip produced results within 1% of the reference solution for all the cases.
For this element, lower order of integration is acceptable if one is willing to accept higher deviation
with respect to reference solution.

NI-MVCCI technique shows excellent convergence for 4-noded, 8-noded and 9-noded elements as
∆a/a → 0. It is interesting to note that 9-noded element performs well and converges faster than the
other two elements to the reference solution as ∆a/a → 0. 9-noded Lagrangian element was not used
much in the past, but the present study shows that it performs better than 8-noded Serendipity
element. This can be attributed to better stress recovery with 9-noded element. 12-noded element
shows a significant deviation (3 to 4 percent) from reference solution as ∆a/a → 0. Here too, the
reason appears to be inaccurate stress recovery in 12-noded isoparametric element. In all the cases
the infinite plate solutions are achieved for W/a is of the order of 20.

4. Conclusions

NI-MVCCI technique for computing SERR and SIF using for 2-D crack problems has been
proposed. NI-MVCCI is a generalized technique and will remove the dependence of MVCCI

Fig. 7 Variation of SIF for rectangular plate with center crack (Mode II)
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equation on the type of finite elements employed in the basic stress analysis. NI-MVCCI is a post-
processing technique to FEA for computing SERR and SIF. The efficacy of NI-MVCCI technique
has been demonstrated for 4-noded bilinear, 8-noded Serendipity (regular & quarter-point), 9-noded
Lagrangian and 12-noded cubic isoparametric finite elements. Based on the numerical studies
conducted on cracked plate panels the following conclusions are drawn:

• SIF computed in the present study by employing 4-noded, 8-noded (regular & quarter-point), 9-
noded and 12-noded elements generally compare well with the reference solutions.

• For 8-noded QPE Gauss integration rule of 9 is recommended for evaluation of SERR and SIF
within 1% accuracy using NI-MVCCI technique.

• As ∆a/a → 0, results with 8-noded (regular and QPE) and 9-noded elements converge well to
the reference solution. Post-processing from the results with 9-noded element is superior
compared to 4-noded, 8-noded (regular) and 12-noded elements.

• In general SIF obtained employing 8-noded (regular and QPE) and 9-noded elements converge
to the analytical solution for an infinite plate as W/a is of the order of 20. SIF obtained
employing 4-noded element has about 2% deviation from the infinite plate solution for W/a =
20.

• There is scope for development of NI-MVCCI technique for 3-D crack problems and cracked
stiffened and unstiffened plate/shell structural components subjected to bending and shear loads.
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