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Abstract. The substance of the use of the derived non-linear creep constitutive equations under variable
stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is
outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to
investigate the creep strain increments of cables an experimental set-up was originally designed and a
series of tests were carried out. Attention is turned to the individual main steps in the production and
application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the
kernel functions, selection and definition of constitutive equation and to the comparison of the resulting
values considering the product and the additive forms of the approximation of the kernel functions. To
this purpose, the parametrical study is performed and the results are presented. The constitutive equations
of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of
stochastic variable load history and prediction of realistic time-dependent response (current deflection and
stress configuration) of structures with cable elements. By means of suitable stress combination and its
gradual repeating various loads and times effects can be modelled.

Key words: non-linear creep of steel rope; creep test; constitutive equation of creep under variable
stress; kernel functions; parametrical study. 

1. Introduction

The transition from various empirical expressions for creep and relaxation of engineering
materials and primitive computational tools to the application of dramatically growing potential of
the rheology and computer technology affects, among others, the development of the constitutive
equations for non-linear time-dependent materials. It can be expected that simplistic rheological
models will be gradually diminish and much more sophisticated methods will be developed.

Many analytical and numerical models have been developed to describe the mechanical behaviour
of cables (Huang and Vinogradov 1996, Costello 1997, Raoof and Kraincanic 1998, Labrosse et al.
2000, Evans et al. 2001, Lefik and Schrefler 2002). Mathematical physical models of a cable as a
system of interacting wires are presented. Roshan Fekr et al. (1999), Nawrocki and Labrosse (2000)
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and Jiang et al. (2000) proposed finite element models. More detailed description of the individual
published works is presented in the first part of the paper (Kmet 2004). Many suggested methods do
not involve the rheological properties. 

To assess the structural reliability and serviceability performance of today’s large span structures
with the high strength tension cable elements, the general and accurate rheological models and
constitutive equations of cable time-dependent behaviour must be available. Such models have to be
considered for the following aspects:

a) Realistic consideration of cable properties, taking into account non-linear stress strain time
relations.

b) The effect of imposed stress or strain originated during the previous time interval.
c) Variations of the imposed stress or strain.
d) The effect of the loading time, when the stress or strain is imposed.
More studies on the creep and relaxation of the steel wire and synthetic fibre cables have been

carried out experimentally and theoretically (Nakai et al. 1975, Husiar and Switka 1986, Leech
1987, Guimaraes and Burgoyne 1992, Leech et al. 1993, Conway and Costello 1993, Banfield and
Flory 1995, Kaci 1995, Leech 2002, Banfield et al. 2003), but only few theoretical approaches on
the non-linear rheologic behaviour of the cables under varying loading history have been done
(Kmet 1989, 1994, Kmet and Holickova 2000).

In the first part of the present paper (Kmet 2004), the mathematical derivations of the general
constitutive equations for non-linear creep and relaxation of the tension elements such as the steel
wire and synthetic fibre cables under one-step and the variable stress or strain inputs using the
product and two types of additive approximations of the kernel functions were derived and
presented. The time-dependent material constants − kernel functions determined from the results of
one-step creep or relaxation tests were used for the description of constitutive equations for variable
stress or strain history. 

The potential of the derived non-linear constitutive equations using the approximation methods for
determination of the kernel functions for variable loading history as a powerful tool for the practical
simulations is described and emphasized in the present part of the paper. The illustrative examples
based on the experimental and theoretical investigation of non-linear creep of steel spiral strand rope
under single and variable stress history demonstrate the application of the presented theoretical
expressions. Attention is turned to the individual main steps in the production and application
procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel
functions, selection and definition of constitutive equation and to the comparison of the resulting
values considering the product and the additive forms of the approximation of the kernel functions.
To this purpose, the parametrical study is performed and the results are presented. 

In order to investigate the creep strain increments of the steel cables and verify the derived
equations, an experimental set-up was originally designed and a series of tests were carried out
(Holickova 1997, Kmet and Holickova 2000).

2. Experimental program and theoretical background

To describe numerically and investigate the creep behaviour of the steel cables under arbitrary
single and variable stress levels, the realization of constant input tests is inevitable. To this purpose,
the creep tests of the cables were carried out under a constant load - constant uniaxial tension force.
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Since the cables would be tested under a high tension, the load bearing capacity of the test
equipment became a factor in setting the size of specimens.
Fulfilment of three basic decisions following requirements: 

a) introduction of the real high tensile loading of the tested specimen,
b) placement of the cable specimen in the vertical position,
c) required length of the tested cable specimen,

influenced the design of the test equipment, the accuracy and the real response of measurement and
test.

Even though the uniaxial tensile test is simple in its principle, in this case it turned out to be quite
difficult to realize it technically taking into account all the above requirements.

The equipment that can keep a specimen with the length of 3000 mm under a constant tension
load for the duration of the test (35 days) was designed and built. Fig. 1 shows the principle and the
scheme of the experimental equipment. An appropriate loading system helps keep the specimen,
vertical positioned between a passive anchorage and an active one, under constant tension load.
Both anchorages are put inside a very stiff steel frame, which ensures that any stress is negligible
enough to induce any displacement that could interfere with those of the specimen tested. In the
certain place of one of the two columns of the frame, there is connected the arm of the lever
mechanism by means of an unmovable hinged attachment. A passive anchorage creates a stiff
transversal beam situated in the top part of the frame. The second movable support − active
anchorage of a lever arm creates the tested specimen − a cable structural element with a cast-in

Fig. 1 Scheme of the test equipment. 1-test frame, 2-tested rope specimen, 3-lever arm, 4-weight
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socket terminals in the both of the ends. An interdependent connection of a specimen with the
active and passive anchorages is ensured by means of the stiff anchor transverse beams with special
arrangement. A required constant load of the test specimens is obtained by means of a suitable
placement of a dead weight on the lever of the creep tester mechanism.

The special clamping device - sockets for a placement of the measuring instruments of the
extension of the specimens were designed. The sockets prevent sliding between a specimen and the
measuring instruments and enable slewing of a cable specimen under a tension load. The sockets
help eliminate any torsion displacement influences on the test results. 

The values of the length increments − extension were simultaneously recorded and stored on a
disk in the choice time intervals by the data-logging system driven by a microcomputer. During each
creep test, contraction was measured and recorded temperature to evaluate its influence on the creep
strain increments. 

The specimen tested is a steel spiral strand rope with the open construction of type 1 + 6 + 12
(one core wire and 6 wires in the first and 12 wires in the second layer) with the rated diameter of
Dr = 16 mm and the rated cross − sectional area of Ar = 148,1 mm2. The rope has the mechanical
characteristics as follows: the rated tensile load carrying capacity of Nr = 202,9 kN and the rated
tensile strength of the wires of 1370 Nmm−2. The cable specimens were cut of a new produced
cable with the length of 100 m and were terminated with the cast-in socket terminals filled with
zinc at the both ends. The cable specimens were initially stretched for a certain loading degree,
where relatively small permanent strains occur after their unloading. This procedure is usually used
before an introduction of a cable in a structure (European prestandard 2002). During the initial
stretching, the cable was loaded within the time interval of 30 minutes by the force of 148 kN. This
value represents the force of 17% bigger than is the force corresponding to the rope design strength. 

The creep tests were carried out gradually under the constant uniaxial load levels that were
equalled to 23%, 50% and 85% of the cable rated carrying capacity (Holickova 1997). The three
tested stress levels σA, σB and σC were determined from the ratio σr = Nr /Ar of the cable rated
carrying capacity in tension Nr and the rated cross-sectional area Ar. For the experimentally
investigated constant stress levels

σA, B, C = (23% ; 50% ; 85%)σr = 315,1 Nmm−2 ; 685,0 Nmm−2 ; 1164,4 Nmm−2  (1)

the three corresponding average values of the creep strain increments εA(t), εB(t) and εC(t) (for the
number of the tests i = 1, 2, ..., N under each of the stress levels) are known

(2)

in a time t of the test time interval within <0 ; 35> days. 
By the application of the constitutive equations in the form of polynomial of third order the

courses of the creep strain increments can be formulated as follows

(3)
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If the experimental creep strains from the three tests are described as functions of time by
appropriate mathematical expressions (see Eq. (7) in the next chapter) and introduced on the left-
hand side of Eqs. (3), these three equations may be solved simultaneously for the time functions
F1(t), F2(t) and F3(t). Then from the known three stress levels σA, σB and σC and values of the creep
strains εA(t), εB(t) and εC(t) in the studied time t, the unknown values of constants F1(t), F2(t) and
F3(t) − in the corresponding time t, after solution of system of Eqs. (4) are obtained, which can be
written in the form

(4)

Constants, i.e., values of the kernel functions F1(t), F2(t) and F3(t) are the time dependent
characteristics of physical properties of the investigated cables.

If values of the kernel functions F1(t), F2(t) and F3(t) are introduced into the non-linear creep
constitutive equation of the third order, as follows 

(5)

the expressions for a calculation of the cable creep strain increments for an arbitrary stress σ from
the tested stress interval <σA, σC> are obtained.

For the constitutive creep equation of the second order is necessary the system of two algebraic
Eq. (3) as follows

 

 (6)

and the other procedure is analogous.
The above approach is used for a numerical determination of the creep curves.

3. The cable creep curves calculated according to the constitutive equations and
experimental data

By means of the constitutive equations of the third (Eq. (5)) and the second order (first two
members in Eq. (5)), the creep curves − the creep strains in the corresponding time were calculated.

The tested stress interval <σA, σC> was divided into the partial stress subintervals with the
increment of 5% of (Nr /Ar). In general, we can take into account the complete stress interval
(application of the third order constitutive equation), or only the certain subintervals of stresses
<σA, σB>, <σB, σC> and <σA, σC> (application of the second order constitutive equations) according
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Fig. 2 Creep strain curves determined by use of the constitutive equation in the form of polynomial of third
order with the stress interval within the boundaries of 23% to 85% of Nr/Ar

Fig. 3 Creep strain curves determined by use of the constitutive equation in the form of polynomial of second
order with the stress interval within the boundaries of 23% to 50% of Nr/Ar

to the orientation on high or low loading levels. The creep strain increments determined for
corresponding stress interval by the constitutive equations in the form of the polynomial of third and
second order are shown in Fig. 2 to Fig. 5. The experimentally obtained curves are marked. 

By a regression analysis of the experimentally and theoretically obtained data the optimal
approximation creep function in logarithmic form was found, as follows

(7)

If one introduce in Eq. (7) time in days, the obtained strain is in ‰. The values of the coefficients
of approximation functions and courses of approximation creep curves for the stress levels of 25

ε t( ) a b tln+=
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until 50% of (Nr /Ar) are presented in Table 1 and shown in Fig. 6.
The results can be summarized as follows:
a) The creep curves quantitatively correspond to the initial stress levels with a significant influence

of non-linear behaviour. The creep strain increments increase gradually with the increased
tensile loads.

b) The clearances between wire layers have an important influence on the creep strain values of
the cable. By the use of the initial stretching of the cable structural elements, the creep strain

Fig. 4 Creep strain curves determined by use of the constitutive equation in the form of polynomial of second
order with the stress interval within the boundaries of 50% to 85% of Nr/Ar

Fig. 5 Creep strain curves determined by use of the constitutive equation in the form of polynomial of second
order with the stress interval within the boundaries of 23% to 85% of Nr/Ar
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increments under the individual stress levels are reduced owing to a reduction of the clearances.
In a case of the creep under the smaller stress levels the influence of the initial stretching of a
cable is so significant, that the creep strain increments are already stabilized in the initial parts
of the primary creep. For the stress levels of 50% of (Nr /Ar), there is a stabilizing process of
the creep strain increments moved in the part of secondary creep. The creep strain increments
under the stress levels of 85% of (Nr /Ar) (the stress level significantly exceeds the stress under
the initial stretching) are considerable.

c) The experimentally obtained creep strains under the constant stress levels enable by means of
the constitutive creep equations to determine the creep strain increments also for an arbitrary
stress which lies inside of the tested stress interval.

4. Numerical illustration and verification of the constitutive equations of non-linear
creep under variable stress

In this section, the results obtained from the constant one-step creep tests and derived constitutive
equations are used to describe the non-linear rheologic behaviour of the cables under the variable

Table 1 Coefficients a and b of the approximation function for the corresponding stress levels

% of (Nr /Ar) a b

25 0,2257021 0,0008617
30 0,2796912 0,0041336
35 0,336852 0,0083302
40 0,3971127 0,0134981
45 0,4604037 0,0196521
50 0,5267743 0,0267673

Fig. 6 Approximation functions of the creep curves in the stress interval within the boundaries of 25% to 50%
of Nr/Ar
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input stress and to compare the non-linear constitutive equations with the product and additive forms
of approximation of the kernel functions proposed in the first part of the paper (Kmet 2004). These
equations are applied to predict the creep behaviour of a tested spiral strand rope under three and
two-step stress. 

4.1 Example 1

The example will show how to determine the creep strain in the required time t = 1000 minutes
of the rope subjected to variable loading history, i.e., three stress increments ∆σ0 = 342,5 Nmm−2,
∆σ1 = 68,5 Nmm−2 and ∆σ2 = 137 Nmm−2 (to demonstrate the applicability of derived equations
deliberately are selected the stresses under which the creep were not tested) which gradually affect
in the time subintervals <t0, t1>, <t1, t2> and <t2, t3> respectively, where t0 = 0 minutes, t1 = 900
minutes, t2 = 990 minutes and the upper limitation t3 = 10,000 minutes. 

The input parameters of the rope such as stresses, time intervals and creep strain increments are
selected or calculated from one-step creep tests as follows.

For the three constant stress levels σA = 342,5 Nmm−2, σB = 465,8 Nmm−2 and σC = 698,7 Nmm−2

from the test interval can be experimentally and numerically obtained the creep strain increments
εA(t), εB(t) and εC(t) respectively in the investigated times, e.g., t = 10, 100, 1,000 and 10,000
minutes, which are inside the time of the test. The concrete input values of example are presented in
Table 2. The corresponding kernel functions calculated according to Eq. (4) are presented in Table 3. If
we introduce the values of obtained kernel functions in the non-linear constitutive equations of third
order (Eq. 5), we can determine the cable creep strain for an arbitrary stress σ from the stress
interval <σA, σC>.

The following procedure is used for application of the constitutive equations with the product and
additive forms of approximation of kernel functions to predict creep behaviour of cables under three
step stress impulses: 

The global time interval <t0, t3> (see Fig. 1 in first part of the paper, Kmet 2004), in which one-
step creep curves are known is divided into the three time subintervals <t0, t1>, <t1, t2> and <t2, t3>.
In the concrete case of the example e.g., t0 = 0 minutes, t1 = 900 minutes, t2 = 990 minutes and the
upper limitation t3 = 10 000 minutes. In these intervals affect the constant stresses σ0 = ∆σ0 in the
time interval <t0, t1>, σ1 = σ0 + ∆σ1 in <t1, t2> and σ2 = σ1 + ∆σ2 in the time interval <t2, t3>. The
choice stress σ = 548 Nmm−2 from the defined interval we divide into the three stress increments
∆σ0 = 342,5 Nmm−2, ∆σ1 = 68,5 Nmm−2 and ∆σ2 = 137 Nmm−2 which gradually affect in the time
subintervals presented above (see second line in Table 4). Then, the constant stresses in the
individual time intervals obtained the values as follows σ0 = ∆σ0 = 342,5 Nmm−2 in the time
interval <t0, t1>, σ1 = σ0 + ∆σ1 = 342,5 + 68,5 = 411 Nmm−2 in <t1, t2> and σ2 = σ1 + ∆σ2 = 411 +
137 = 548 Nmm−2 in the time interval <t2, t3>.

Table 2 Creep strains of the rope for three constant stress levels in the studied times

Stress σ Creep strains in time t

(Nmm−2) ε(t) (‰) 10 (min) 100 (min) 1,000 (min) 10,000 (min)

σA = 342,5 εA(t) 0,02 0,05 0,07 0,1
σB = 465,8 εB(t) 0,06 0,09 0,12 0,16
σC = 698,7 εC(t) 0,4 0,6 0,77 0,84
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Using the non-linear creep constitutive equations with the product and additive forms of
approximation of the kernel functions (see Eq. (14) for product and Eq. (22) for additive form in
first part of the paper Kmet 2004) the creep strain increments of cable in the choice time t = 1000
minutes will be investigated (it means for time from the subinterval <t2, t3>). The necessary
numerical values of the kernel functions in the corresponding times that occur in the constitutive
equations we determine from Table 3, it means from the values obtained from one-step creep
curves. The kernel functions have the values as follows

F1(t) = F1(1000) = 1,48698.10−3 N−1mm2, and similarly F2(t) = F2(1000), F3(t) = F3(1000),

F1(t − t1) = F1(1000 − 900) = F1(100) = 1,12307.10−3N−1mm2, and similarly

F2(t − t1) = F2(1000 − 900) = F2(100), F3(t − t1) = F3(1000 − 900) = F3(100),

F1(t − t2) = F1(1000 − 990) = F2(10) = 4,60239.10−4N−1mm2, and similarly

F2(t − t2) = F2(1000 − 990) = F2(10),

F3(t − t2) = F3(1000 − 990) = F3(10). (8) 

After introducing the known values of the kernel functions (values in the required times are
presented in Table 3) and stresses into the corresponding constitutive equations of non-linear creep
of cable the creep strain ε (t) in the investigated time t = 1000 minutes can be calculated. For the
individual types of the constitutive equations valid as follows 

- product form of the approximation of the kernel functions (Eq. (14) in first part of the paper,
Kmet 2004)

(9)

for .
- additive form of the approximation of the kernel functions (Eq. (22) in first part of the paper,

Kmet 2004)

+

  

(10)

for .

ε 1000( ) F1 1000( ) σ0∆ F1 100( ) σ1∆ F1 10( ) σ2∆+ + +=

F2 1000( )[ ]1 2⁄ σ0∆ F2 100( )[ ]1 2⁄ σ1∆ F2 10( )[ ]1 2⁄ σ2∆+ +{ }
2

+

F3 1000( )[ ]1 3⁄ σ0∆ F3 100( )[ ]1 3⁄ σ1∆ F3 10( )[ ]1 3⁄ σ2∆+ +{ }
3

+

t2 t< t3≤

εc 1000( ) F1 1000( ) σ0∆ F1 100( ) σ1∆ F1 10( ) σ2∆+ +=

F2 1000( ) σ0∆ F2 100( ) σ1∆ F2 10( ) σ2∆+ +[ ] σ0∆ σ1∆ σ2∆+ +( )+ +

F3 1000( ) σ0∆ F3 100( ) σ1∆ F3 10( ) σ2∆+ +[ ] σ0∆ σ1∆ σ2∆+ +( )2+

t2 t< t3≤

Table 3 Values of the kernel functions in the investigated times

Values of kernel functions in time t

FK(t) 10 (min)  100 (min) 1,000 (min) 10,000 (min)

F1(t) (N−1mm2) 4,60239.10−4 1,12307.10−3 1,48698.10−3 1,61311.10−3

F2(t) (N
−2mm4) −2,45589.10−6 5,23213.10−6 −6,81587.10−6 −7,00086.10−6

F3(t) (N
−3mm6) 3,74489.10−9 6,94691.10−9 8,96657.10−9 9,17820.10−9
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In the case of product form of approximation of the kernel functions, we obtain the creep strain of
ε(1000) = 0,2209‰ and in the case of additive form ε(1000) = 0,2082‰ (see last two columns of
second line presented in Table 4). In the second column and second line of presented table is state
in order to compare the results also the value of creep strain under one-step creep (calculated
according to Eq. (5)), it means under the constant one-stress level σ = 548 Nmm−2, which is equal
ε(1000) = 0,2436‰.

On the base of a comparison of the results, it is evident that the cable affected under higher initial
constant stress level during the whole time interval (creep under constant one-step stress history)
shows higher creep strain than the cable which was affected with gradually increasing stress (creep
under varying stress history). This stress reaches the value σ = 548 Nmm−2 only in the last time
subinterval.

4.2 Example 2

The second example will show how to determine the creep strain in the required time t = 100
minutes of the rope subjected to variable loading history - two stress increments ∆σ0 = 342,5 Nmm−2

and ∆σ1 = 205,5 Nmm−2 which gradually affect in the time subintervals <t0, t1> and <t1, t2>, where
t0 = 0 minutes, t1 = 90 minutes and the upper limitation t2 = 200 minutes (see second line presented
in Table 5). 

Table 4 Creep strains of the rope in the studied time t = 1000 min under one and three stress levels. Times
t0, t1, t2 and t3 of the individual time subintervals are considered as follows t0 = 0 min, t1 = 900 min,
t2 = 990 min and t3 = 10,000 min

One stress level Three stress levels Product form Additive form

σ ∈ <t0, t3> ε(t) ∆σ0 ∈ <t0, t1> ∆σ1 ∈ <t1,t2> ∆σ2 ∈ <t2, t3> ε(t) ε(t)

(Nmm−2) (‰) (Nmm−2) (Nmm−2) (Nmm−2) (‰) (‰)

479,5 0,1334 342,5 68,5 68,5 0,1294 0,1202
548 0,2436 342,5 68,5 137 0,2209 0,2082
548 0,2436 342,5 137 68,5 0,2221 0,2153
685 0,7024 342,5 68,5 274 0,5568 0,5520
685 0,7024 342,5 274 68,5 0,6052 0,6062

Table 5 Creep strains of the rope in the studied time t = 100 min under one and two stress levels. Times
t0, t1 and t2 of the individual time subintervals are considered as follows t0 = 0 min, t1 = 90 min and
t2 = 200 min

One stress level  Two stress levels Product form Additive form

σ ∈ <t0, t2> ε(t) ∆σ0 ∈ <t0, t1> ∆σ1 ∈ <t1, t2> ε(t) ε(t)

(Nmm−2) (‰) (Nmm−2) (Nmm−2) (‰) (‰)

 466 0,009 342,5 123,5 0,09 0,08
548 0,1874 342,5 205,5 0,1773 0,1662

616,5 0,3115 342,5 274 0,296 0,285
685 0,5471 342,5 342,5 0,465 0,4568
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The kernel functions have the values as follows

(11)

Substituting the needed values of the kernel functions presented in Table 3 and values of stress
increments into Eq. (13) and Eq. (21) (see first part of the paper, Kmet 2004), the resulting concrete
forms of the constitutive equations for calculation the creep strain of the rope according to the type
of the approximation of the kernel functions are as follows 

- product form (Eq. (13) in first part of the paper, Kmet 2004)

(12)

for ,
- additive form (Eq. (21) in first part of the paper, Kmet 2004)

(13)

for .
In the case of the product form of approximation of the kernel functions, we obtain the creep

strain of ε(100) = 0,1773‰ and in the case of additive form ε(100) = 0,1662‰ (see last two
columns of second line presented in Table 5). In the second column and second line of presented
table is state in order to compare the results also the value of creep strain increment under one-step
creep, it means under the constant one-stress level σ = 548 Nmm−2, which is equal ε(100) =
0,1874‰. For the calculation, the non-linear creep constitutive equation of the second order was
used (see first two members of Eq. (5)).

Presented numerical applications have a limited interest for the concrete type of investigated
cable and loading, i.e., stress history. But on the other hand proposed constitutive equations of non-
linear creep and approximation computational models for determination of the kernel functions
have the general applicability for the arbitrary tested synthetic and steel cables under various stress
history. 

5. Parametrical study

The analogous procedures are used for the parametrical study. The constitutive equations with
product and additive form of the approximation of the kernel functions are applied to predict the
creep behaviour of a tested spiral strand rope under one, two and three step stress. In this study, the
influence of the following variable quantities is investigated: 

F1 t( ) F1 100( )= , F2 t( ) F2 100( )= , F3 t( ) F3 100( ),=

F1 t t1–( ) F1 100 90–( ) F1 10( )= = , F2 t t1–( ) F2 100 90–( ) F2 10( ),= =

F3 t t1–( ) F3 100 90–( ) F3 10( )= =

ε 100( ) F1 100( ) σ0∆ F1 10( ) σ1∆ F2 100( )[ ]1 2⁄ σ0∆ F2 10( )[ ]1 2⁄ σ1∆+{ }
2

+ + +=

F3 100( )[ ]1 3⁄ σ0∆ F3 10( )[ ]1 3⁄ σ1∆+{ }
3

+

t1 t< t2≤

εc 100( ) F1 100( ) σ0∆ F1 10( ) σ1∆ F2 100( ) σ0∆ F2 10( ) σ1∆+[ ] σ0∆ σ1∆+( )+ + +=

F3 100( ) σ0∆ F3 10( ) σ1∆+[ ] σ0∆ σ1∆+( )2+

t1 t< t2≤
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a) size of the stress increment in the time subinterval, 
b) length of the time subinterval, in which stress affects,
c) number of the stress levels − creep under one stress level, two and three stress levels,
d) form of the approximation of the kernel functions.
The individual stresses σ (constant stress levels for one-step creep) and the varying stress

increments ∆σ0 and ∆σ1 affected in the time subintervals <t0, t1> and <t1, t2>, respectively, are for
the case of two stress levels presented in Table 5. For the time values of the individual subintervals
valid as follows t0 = 0 minutes, t1 = 90 minutes and t2 = 200 minutes. Thus the lengths of the time
subintervals in which a stress with the corresponding level affects are predetermined. Gradually the
maximum stress values and the values of the stress increments were changed. 

The obtained results, i.e., the creep strains of cable in the studied time t = 100 minutes calculated
according to Eq. (12) (product form of approximation) and Eq. (13) (additive form of approximation)
are for the two stress levels presented in Table 5 and shown in Fig. 7. Also the results of one stress
creep (stress σ affects in whole interval <t0, t2>) are presented in the table and shown in the figure.
In Fig. 7, the global constant stresses σ0 and σ1 affected in the individual time subintervals as
follows σ0 = ∆σ0 in the time subinterval <t0, t1> and σ1 = σ0 + ∆σ1 in the subinterval <t1, t2> are
presented. The sum of the varying stress increments in the individual time subintervals is equal to
the stress level under one-step creep affected in the whole time interval. One line in the tables and/
or one column in the figures mean one independent example.

The parametrical study for varying three stress levels is followed. The individual stresses σ
(constant stress levels for one-step creep) and the varying stress increments ∆σ0, ∆σ1 and ∆σ2

affected in the time subintervals <t0, t1>, <t1, t2> and <t2, t3>, respectively are for the case of three
stress levels presented in Table 4. For the time values of the individual subintervals valid as follows
t0 = 0 minutes, t1 = 900 minutes, t2 = 990 minutes and t3 = 10,000 minutes. 

Fig. 7 Creep strains of the rope in the studied time t = 100 min under one and two stress levels (the values of
the first, second and fourth line presented in Table 5). Times t0, t1 and t2 of the individual time
subintervals are considered as follows t0 = 0 min, t1 = 90 min and t2 = 200 min
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The obtained results, i.e., the creep strains of cable in the studied time t = 1000 minutes calculated
according to Eq. (9) (product form of approximation) and Eq. (10) (additive form of approximation)
are for the three stress levels presented in Table 4 and shown in Fig. 8 (the values of the first, third

Fig. 8 Creep strains of the rope in the studied time t = 1000 min under one and three stress levels (the values
of the first, third and fifth line presented in Table 4). Times t0, t1, t2 and t3 of the individual time
subintervals are considered as follows t0 = 0 min, t1 = 900 min, t2 = 990 min and t3 = 10,000 min

Fig. 9 Comparison of the creep strains under the varying three stress levels, gradually affected in the time
subintervals with the variable lengths
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and fifth line presented in Table 4 are used) and Fig. 9. Also the results of one stress creep (stress σ
affects in whole interval <t0, t3>) are presented in the table and shown in the figures. In Fig. 8 and
Fig. 9, the global constant stresses σ0, σ1 and σ2 affected in the individual time subintervals as
follows σ0 = ∆σ0 in the time interval <t0, t1>, σ1 = σ0 + ∆σ1 in <t1, t2> and σ2 = σ1 + ∆σ2 in the
time interval <t2, t3> are introduced. 

The influence of the varying three stress levels on the resulting creep strain, with the lengths of
the time subintervals in which a stress with the corresponding level affects is illustrated in Fig.9.
Product and additive form of the approximation of the kernel functions are considered. Fourth and
fifth line of the values presented in Table 4 is used.

From comparison of numerical results presented in Table 4, Table 5 and shown in Fig. 7, Fig. 8
and Fig. 9, which are obtained by use of the constitutive equations with the product and additive
form of an approximation of the kernel functions under two (Eq. (12) for product and Eq. (13) for
additive form of approximation) and three-stress levels (Eq. (9) for product and Eq. (10) for additive
form of approximation) as well as by use of the constitutive equation of non-linear creep under one-
step stress (Eq. (5)) follows, that proposed rheological constitutive equations, which serve to
calculation and prediction of the creep behaviour of cable under one-step and variable stress history,
are sufficiently accurate. The obtained values indicate and confirm the influence of the stress
increment size and time subinterval length, in which the stress affects, on the resulting quantity of
creep strain. The analysis of the results confirms logical and physical correctness of the obtained
constitutive equations. By reason of this are these constitutive equations suitable for practical using
in a design of the cable structural elements and tension structures with the time dependent
properties. The results obtained by the creep constitutive equations with the product and additive
forms of approximation of the kernel functions do not differ significantly, it means that for
rheological analysis arbitrary from them can be used. The creep strains obtained by the use of the
constitutive equation with product form of the approximation of the kernel functions are a little
larger than that obtained by the additive form of approximation. Therefore, the results obtained by
the use of the constitutive equations with product form of the approximation of the kernel functions
lie on the more safety side. From point of view of the number of an algebraic operation constitutive
equation with additive form approximation of the kernel functions is simpler.

6. Conclusions

The substance of the use of the derived non-linear creep constitutive equations under variable
stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application
is outlined using the results of one-step creep tests of the steel one-strand cable as an example. In
order to investigate the creep strain increments of cables, an experimental set-up was originally
designed and a series of tests were carried out. 

On the base of the experimental results and theoretical approaching the approximation values of
the time-dependent kernel functions in the product and additive forms and the concrete types of the
creep constitutive equations for the investigated cable were obtained and verification of the derived
constitutive equations were performed. 

The results from one-step creep tests and from the numerical experiments have been implemented
in the non-linear creep constitutive equations of the steel cables under a variable stress history. The
product and additive forms of approximation of the kernel functions were used in the constitutive



606 S. Kmet and L. Holickova

equations to simulate variable stress history from the single step creep tests. Resulting response
determined according to these forms of approximation are compared. Both results are of very good
agreement. The useful information about the creep behaviour of the cables under variable stress
levels was obtained from the analysis. 

The constitutive equations of non-linear creep of cable under variable stress history offer a strong
tool for the real simulation of stochastic variable load history in comparison to the one step creep
constitutive expressions. The derived equations can be implemented in a suitable way into the
discrete non-linear computational transformation models and existing software. It enables to make a
quick rheological structural analysis and obtain real response characteristics of the constructions
with cable structural elements (current deflection and stress configuration). By means of suitable
stress combination and its gradual repeating various times and loads effects can be modelled.

The derived concrete forms of the constitutive equations enable to predict and assess non-linear
creep rheologic behaviour of the cables for variable stress history by using the kernel functions
determined only from one-step constant creep tests, what is the main advantage. The analogous
methodology can be used for the synthetic fibre cables with non-linear rheological properties as well
as for the other types of the uniaxial tension structural elements affected under single and variable
loading history.
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