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Free-edge effect in cross-ply laminated plates under 
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Abstract. Based on the basic equations of elasticity, free-edge effects on stresses in cross-ply laminated
plates are found by using the state space method. The laminates are subjected to uniaxial-uniform
extension plate, which is a typical example of general plane strain problem. The study takes into account
material constants of all individual material layers and the state equation of a laminate is solved
analytically in the through thickness direction. By this approach, a composite plate may be composed of
an arbitrary number of orthotropic layers, each of which may have different material properties and
thickness. The solution provides a continuous displacement and inter-laminar stress fields across all
material interfaces and an approxiamte prediction to the singularity of stresses occurring in the boundary
layer region of a free-edge. Numerical solutions are obtained and compared with the results obtained from
an alternative numerical method.
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1. Introduction

It is well known that the behavior of the structures composed of advanced composite materials are
considerably more complicated than isotropic ones. It has been recognized that composite materials
are considerably more sensitive in edge effects than isotropic ones. The high level transverse normal
and shear stresses acting in the region near free edges of a laminated composite is of great interest
to composite manufacturers and designers because the stresses can cause edge delamination and
then lead to material failure at a load that is far below the nominal failure load of the material.
Thus, a better understanding of the edge effects on such materials is of particularly important to
composite manufacturers and users. Considerable attention has been paid to free-edge effects in
composites in the last few decades. Numerical, analytical and semi-analytical approaches have been
used to characterize free edge effects in composite materials. The numerical approaches include
finite element solutions (Wang and Crossman 1977, Nailadi and Adams 2002) and finite difference
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ones (Pipes and Pagano 1970, Bhaskar et al. 2000). The analytical analyses were largely based on
higher order theories of bending (Pagano 1974, Wang and Choi 1982, Delale 1984, Becker 1993,
Huang and Chen 1994, Lindemann and Becker 2000, Chue and Liu 2001, 2002). Wang et al.
(2000) combined state space equation method with an eigen-expansion method and presented an
analytical solution. Semi-analytical solutions combined the traditional finite element method with
either an eigen-expansion method (Dong and Goetshel 1982) or the state space equation method (Ye
and Sheng 2003) have also been used to study the problem. 

Although finite element method is probably one of the most universal methods that can be applied
to problems involving any cross section and lamination profile, it is quite computationally expensive
since a large number of elements in the through-thickness direction are needed to model a multi-
layered profile. Moreever, FE analyses may sometimes unreliable, especially in the case of free-edge
analysis of multi-layered laminates where the requirement for many elements in the region of a free
edge may lead the elements divided to high aspect ratios. Because of this, for laminates having
regular cross sections, analytical methods are still preferable tools that can be used to obtain the
solutions. These methods can also be used to replace expensive numerical calculations or
experiments. However, due to the complex nature of anisotropy, many recently published results
were almost exclusively confined to examining edge effects on the basis of higher order laminated
plate or shell theories and imposing simple displacement and stress fields. The introduced
simplifications may lead to significant errors in predicting inter-laminar stresses, particularly, near
free edges of a laminate.

The state space method is considered to be an efficient and effective approach for analyzing
laminated structures. The method has been successfully used in connection with static and dynamic
analyses of laminates subjected to various load and boundary conditions (Fan and Ye 1990, Ye and
Soldatos 1994, Sheng and Fan 1997, Fan 1998, Sheng 2000, Sheng and Ye 2002). The method
takes into account all independent material constants and guarantees continuous fields of all
transverse stresses across interfaces between material layers. A comprehensive account of the
method can be found in Ye (2002). On the basis of the theory of elasticity and the state space
equation method, this paper studies free-edge effects of stresses in laminated plates. The laminate
considered in this paper is subjected to a uniform extension in one of the in-plane principal
directions. Consequently, the problem is finally reduced to a general plane strain system. All
material constants of every individual material layers are taken into account in the calculation and
the state equation of the laminate is solved analytically in the through thickness direction. The
composite plates may be composed of an arbitrary number of orthotropic layers, each of which may
have different material properties and thickness. The solution provides a continuous inter-laminar
stress field across interfaces and an approximate prediction to the singularity of stresses occurring in
the boundary layer region of a free-edge. Numerical solutions are compared with the results
obtained from an alternative numerical method.

2. State space equation approach for laminated plates

2.1 An single-layered plate

Consider an arbitrarily thick plate with a constant thickness h. The displacements in x, y and z
directions are denoted by u, v and w, respectively. Suppose the plate is subjected to a uniform
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extension in one of the principal directions in the x-y plane. For example, the plate is subjected to a
uniform strain in the y direction. If the plate is made of a linearly elastic orthotropic material whose
material axes of orthotropy coincide with the axes of the adopted co-ordinate system, there exist the
following fundamental equations. 

(a) Stress-strain relations

(1)

where Cij are stiffness coefficients.
(b) Equilibrium equations

(2)

(c) Strain-displacement relations

(3)

Considering that the plate is subjected to a uniform extension in the y direction, it is assumed that

(4)

In addition, we can further assume that displacement v is only related to y, i.e., . As a
result, we can conclude from Eqs. (1), (3) and (4) that  and the other six variables
u, w, σxz, σzz, σxx, σyy are all independent of y.

To facilitate the following deduction process, let 
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σxx

σyy

σzz

σyz

σxz

σxy 
 
 
 
 
 
 
 
 
 
  C11  C12  C13  0  0  0

C12  C22  C23  0  0  0

C13  C23  C33  0  0  0

0  0  0  C44  0  0

0  0  0  0  C55  0

0  0  0  0  0  C66

εxx

εyy

εzz

εyz

εxz

εxy 
 
 
 
 
 
 
 
 
 
 

=

∂σxx

∂x
----------

∂σxy

∂y
----------

∂σxz

∂z
----------+ + 0=

∂σxy

∂x
----------

∂σyy

∂y
----------

∂σyz

∂z
----------+ + 0=

∂σxz

∂x
----------

∂σyz

∂y
----------

∂σzz

∂z
----------+ + 0=











εxx
∂u
∂x
------= , εyy

∂v
∂y
-----= ,      εzz

∂w
∂z
-------=

γyz
∂w
∂y
------- ∂v

∂z
-----+= , γxz

∂u
∂z
------ ∂w

∂x
-------+= , γxy

∂u
∂y
------ ∂v

∂x
-----+=






εyy
∂v
∂y
----- ε0 constant,  γyz

∂v
∂z
----- ∂w

∂y
-------+ 0= = , γxy

∂u
∂y
------ ∂v

∂x
-----+ 0= == = =

v v y( )=
σyz σxy 0= =

α ∂ ∂x, C1 C13– C33⁄= , C2 C11 C13
2– C33⁄= , C3⁄ C12 C13C23– C33,⁄= =

C4 C22 C23
2– C33, C5 C23 C33⁄–= , C7 1 C33⁄= , C8 1 C55⁄=⁄=



380 Hongyu Sheng and Jianqiao Ye

From the third equation of Eq. (1) and Eq. (3), the following relation is obtained

(6)

Substituting Eq. (6) into Eq. (1), the two in-plane stresses can be calculated by

(7)

Inserting Eq. (7) into the first and third equations of Eq. (2) and considering Eq. (6) as well as the
fifth equation of Eq. (1), we can obtain the following first order non-homogenous partial differential
equation system

(8)

Assume the following displacement and stress fields for the solution of the problem;

(9)

(10)

where ξ = mπ/Lx, Lx is the length of the plate in the x direction and U(0)(z) is an unknown boundary
displacement function that can be determined by imposing traction free conditions along free edges
and we’ll discuss this problem in details in later section.

Introducing Eq. (9) into Eq. (8) yields

(11)

where 

(12)

(13)

and [G] is the 4 × 4 matrix shown in Eq. (8). Substituting Eq. (10) into Eq. (11) and expanding also
the x co-ordinate in vector {B} into a Fourier series, as follows
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(14)

one has the following non-homogenous state equation for an arbitrary value of m

(15)

where

(16)

(17)

(18)

(19)

The solution of Eq. (15) can easily be found as Fan (1998), Ye (2002)

(20)

In particular, at z = h,

(21)

where  is called transfer matrix that can be calculated either analytically or numerically.
For example, let λ1, λ2, λ3, λ4 be the eigenvalues of [G] and [P] be a matrix composed of the
associated eigenvectors. From linear algebra, we have.
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2.2 A thick laminated plate

Consider a thick laminated plate which is composed of N orthotropic layers (See Fig. 1), the state
space equation of the j-th layer is obtained as

(24)

In order to find the final solution of the problem, we must solve first the unknown displacement
function, U(0)(r), appearing in Eqs. (18) and (19). If the layers of the laminate are all sufficiently
thin, it is reasonable to assume that the displacement U(0)(r) within the thin layer is linearly
distributed in the z direction, i.e.,

(25)

where  and  are the values of  at the upper and bottom surfaces of the j-th thin layer.
If a layer is not sufficiently thin, we can divide it into several thin sub-layers. Hence, two types of
material interfaces are distinguished in the laminate, i.e., the fictitious interfaces which separate sub-
layers with the same material properties and the real ones that separate sub-layers composed of
different materials. Upon choosing a suitably large value of N, each individual sub-layers becomes
sufficiently thin and, as a result, Eq. (25) is considered to be adequate. The solution of Eq. (24) for
an arbitrary sub-layer can easily be found from Eqs. (20)-(23). With appropriate continuity
requirements imposed at all the real and fictitious interfaces, an approximate solution for the entire
laminate can be obtained. Also, the solution can be found to the required accuracy by increasing the
total number of the thin layers.
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Fig. 1 Nomenclature of a laminated rectangular plate
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The solution of Eq. (24) is 

(28)

According to the continuity conditions at all interfaces, one has 

(29)

By using Eqs. (28) and (29) recursively, a relationship between the state vectors on the upper and
bottom surfaces of the plate is established as follows

(30)

where (31)

(32)

 and  are, respectively, the state vectors at the upper and bottom surfaces of
the laminate. Upon using the traction free conditions at the upper and bottom surfaces, the following
stress conditions are obtained: 
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Substituting Eq. (33) into Eq. (30) yields the following linear algebra equations:
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In order to impose the above traction free conditions at the two free edges, we introduce Eq. (9)
into Eq. (7). As a result, the two in-plane stresses are expressed as follows:

(36)

After substituting Eq. (13) into Eq. (35), we obtain for the j-th sub-layer

(37)

It can be seen from Eqs. (4) and (10) that  are satisfied automatically at the free
edges (x = 0 and x = Lx). The remaining boundary condition to be satisfied at the free edges is
σxx = 0. Due to symmetry, we only need to impose the condition at x = 0. Thus, from Eq. (37), we
obtain the following condition 

(38)

It has been mentioned in the previous section that Eq. (34) contains unknown constants  and
( j=1, 2, …, N). To solve for the constants, we first consider the continuity of U(0)(r) at the

interface between the j-th and the ( j+1)-th sub-layers. From Eq. (25), the following relationship is
obtained

(39)

Hence, there exist only (N + 1) independent unknown constants. In order to solve these constants
and also the two displacement components of the upper surface (see Eq. 34), the traction free
condition (38) must be satisfied at the edges of all interfaces, including the fictitious and material
interfaces. This can be done by introducing z-coordinates of the interfaces, zj, into Eq. (38). This
process yields (N + 1) independent linear algebra equations. Along with the two equations from
Eq. (34), the two displacement components and the (N + 1) unknown constants can finally be
solved. Once the equation system is solved, all the displacements and stresses can be obtained by
bring back the solutions to the state space equations shown in the previous sections.

4. Examples of free edge effects in laminated plate 

To validate the present method, numerical calculations are carried out for a four-layered cross-ply
laminate ([0/90]s) and the following elastic constants are assumed

C11 = C33 = 15300 N/mm2 C22 = 140000 N/mm2 C44 = C55 = 5900 N/mm2

C12 = C23 = 3900 N/mm2 C13 = 3300 N/mm2 (40)

The geometry of the plate is a/h = 10. The plate has two opposite free edges in the x direction and
the other two edges are subjected to a uniform extension that induces a constant strain ε0 in the y
direction. In order to obtain an accurate results near the free edges, we must take sufficiently large
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numbers of series term m in Eq. (13) and the thin layers N in Eq. (25). Fig. 2 and Fig. 3 show,
respectively, the convergence rate of interlaminar stresses against m and N. It can be seen from the
figures that the convergence of σzz is faster than σxz. Even for the shear stress, the difference
between the results form m = 200 and m = 800 are not significant, considering the fact that stress
singularity occurs in the region. All the results in the reminder of the paper are obtained using
N = 40 and m = 600. 

The distributions of the intrelaminar stresses σxz/ε0 and σzz/ε0 at 0/90 interface in the vicinity of
the free edge are compared with those obtained by Wang et al. (2000) and Ye and Sheng (2003) and
shown in Fig. 4. According to the classic plate theory, the shear stress σxz and normal stress σzz are
uniformly zero for the symmetrically laminated plate with cross-ply layers. Fig. 4 shows, however,
that these stresses approach to zero only for x > 1.5h. Hence, the boundary layer zone in this case is
localized to the region of a distance of about 1.5h from the free edge. Fig. 5 shows the distribution
of in-plane stress σxx/ε0 and the comparisons with those obtained by Wang et al. (2000). It is also
observed the stress σxx/ε0 approaches a constant value in the region of x > 1.5h. Hence, we can
conclude from above results that the stress disturbance area only occurs near the free edge. It can be
seen from the figures that the present results agree very well with the comparisons except σxz in the
region very close to the free edge. This is due to that fact that Wang’s results do not satisfy the
traction free conditions at x = 0, where Wang et al. (2000) using a linear combination of eigen
expansions to express stresses and displacements and then determine unknown coefficients using the
principle of virtual work. Thus, the free-edge boundary conditions were only satisfied in the sense
of average stresses. According to the Saint-Venant principle this approximation may not give idea
result for stresses near a free edge.

Finally, we consider the influences of lamination on the distribution of σxz and σzz of four plates

Fig. 2 Convergence of interlaminar stresses for
[0/90]s laminate against different m with
N = 40

Fig. 3 Convergence of interlaminar stresses for
[0/90]s laminate against different N with
m = 600
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having two, four, six and eight antisymmetric cross-ply layers, respectively. The laminates have the
same material and geometric properties as shown in Eq. (40), The distribution of the stresses are
shown in Figs. 6 and 7.

Fig. 4 Comparisons of interlaminar stresses for
laminate [0/90]s 

Fig. 5 Comparisons of in-plane stresses for laminate
[0/90]s 

Fig. 6 Distributions of interlaminar stresses along
upper 0/90-interface against different lay-ups

Fig. 7 Distributions of interlaminar stresses along the
mid-surface against different lay-ups
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From Figs. 6 and 7 it can be seen that the boundary layer effect becomes less significant as the
number of material layers increases. It is also interested to notice from Fig. 7 that the interfacial
shear stresses at the middle interfaces of (0/90) and (0/90)2 plates change directions along the entire
length in the x direction, while as the number of material layers increases, e.g., for the (0/90)3 and
(0/90)4 plates, the stress only changes direction in the vicinity of the free edge and then approaches
a constant as it decays towards the interior zone of the composites.

5. Conclusions

An analytical method based on a state space representation of displacements and transverse
stresses has been presented to solve free-edge stresses in cross-ply laminated plates subjected to a
uniform extension. Numerical examples were given to show the applications of the method to the
stress analysis of free edge effects.

Numerical tests and comparisons have been carried out to validate the method. By comparing with
a three-dimensional eigen-expansion method (Wang et al. 2000), it was observed that the present
method could provide accurate results. In the vicinity of free edges, the obtained results showed
good approximation to stress singularities.

Since the recursive formulation (see Eqs. 30-32) was used to derive the state equations of
laminated plates, the dimension of the final state equations (see Eq. 34) did not depend on the
number of layers of the laminate. As a consequence, this method is particularly suitable to solve
free-edge stress problems of multi-layered plates. The method always provides continuous
distributions of both displacements and transverse stresses across the thickness of a laminate. The
method and the obtained results can also be used to provide benchmark tests for validating new
theories, numerical solutions and finite element codes, especially when dealing with stress
singularities or material discontinuities.
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