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Abstract. An artificial neural network (ANN) application is presented for flexural and axial vibration
analysis of elastic beams with various support conditions. The first three natural frequencies of beams are
obtained using multi layer neural network based back-propagation error learning algorithm. The natural
frequencies of beams are calculated for six different boundary conditions via direct solution of governing
differential equations of beams and Rayleigh’s approximate method. The training of the network has been
made using these data only flexural vibration case. The trained neural network, however, had been tested
for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-
C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in
the training set. The results found by using artificial neural network are sufficiently close to the theoretical
results. It has been demonstrated that the artificial neural network approach applied in this study is highly
successful for the purposes of free vibration analysis of elastic beams. 
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1. Introduction

During the past ten years there has been a growing interest in algorithms, which rely on analogies
to natural processes. The emergence of massively parallel computers made these algorithms of
practical interest. These well-known algorithms and techniques in this class include artificial neural
networks, genetic algorithms, fuzzy logic, evolution algorithms and simulated annealing. Although
all these techniques have been adapted to the structural analysis, design and optimization problems,
artificial neural networks (ANN) applications are much more general and found its application in
every field of engineering problems. A neural network is a technique that seeks to build an
intelligent program using models that simulate the working network of the neurons in the human
brain. In contrast to conventional computers, which are programmed to perform specific tasks, most
neural networks must be trained. They learn new associations, patterns, and functional dependencies.
Artificial neural networks have been used widely in the field of structural analysis in recent years.
Pioneering studies by Adeli and Yeh (1989), Adeli and Park (1995) Adeli and Hung (1995), and
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Ghaboussi et al. (1991) showed that neural networks can be applied successfully to the analysis of
structural engineering problems. The first structural engineering application of ANNs is known the
study of Adeli and Yeh (1989). Several other researchers have applied neural networks (Park and
Adeli 1997), mostly back-propagation algorithms (Hani and Ghaboussi 1998, Wu et al. 1992, Chen
et al. 1995). Authors have been suggested a fuzzy based neural network, hybrid artificial intelligent
techniques and applied the analysis of plates and shells (Civalek 1998a, 1998b, 1998c, 1999a,
1999b, Ülker and Civalek 2001). Yun et al. (2001, 1998a) recently developed an ANN approach for
joint damage assessment of structures. Furthermore, Yun and his co-workers (Yun et al. 1997, 2000)
investigated the substructural identification using neural networks. Recently, Ghaboussi and Lin
(1998) developed a new methodology for generating artificial earthquake accelerograms using neural
networks. Stochastic neural networks approach for generating multiple spectrum compatible
accelerograms is also given by Lin and Ghaboussi (2001). In the present study, natural frequencies
of elastic beams are obtained using the ANN that adopts the back-propagation algorithm to train the
network.

2. Artificial Neural Networks (ANN)

The general structure of a generic neuron is shown Fig. 1. A typical cell has three major regions:
the cell body, which is also called the soma, the axon and the dendrites. The axon of a typical
neuron makes a few thousand synapses with other neurons. Dendrites receive information from
neurons through axons. The axon-dendrite contact organ is called a synapse. The synapse is where
the neuron introduces its signal to the next neuron. McCullough and Pitts (1943) proposed a simple
model of a biological neuron as a binary threshold unit as shown below (Fig. 2). Specially, the

Fig. 2 McCullough - Pitts model of a biological neuron

Fig. 1 A typical biological neuron and its elements
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model neuron computes a weighted sum of its inputs from other units given by,

(1)

where Netj is the total input of the jth neuron, Oi is the input for this node, Wji is the weighting
coefficient, N is the number of the inputs for this node.

3. Back-propagation neural networks

Among the various neural network paradigms available, back-propagation networks are by far the
most widely utilized for its relatively simple mathematical proofs and efficient generalization
capabilities. The back-propagation training algorithm is an iterative gradient algorithm designed to
minimize the mean square error between the actual output of a multi-layer feed-forward perceptron
and the desired output. Although back-propagation is a trained algorithm, it is generally used and
well known as a type of ANNs. For the most commonly used activation functions, the value of the
derivative can be expressed in terms of the value of the function. One of the most typical functions
is the binary sigmoid function, which has range of (0, 1) and is defined as

(2)

where xj is the weighted summation of the total input. Back-propagation networks are typically
trained using the generalized delta rule, application of which involves the calculation of the network
output, a comparison of this output with desired output, the calculation of an error, and a backward
propagation of this error in order to correct future outputs. In this process, each neuron updates the
weights of its input connections in such a way that the error associated with its own output
activation is decreased. Like a perceptron, a back-propagation network typically starts out with a
random set of weights.

The Back-propagation algorithm is summarized below:
Weight Initialization: Set all weights and node thresholds to small random numbers. Note that the

node threshold is the negative of the weight form the bias unit.
Calculation of Activation: 1-The activation level of an input unit is determined by the instance

presented to the network.
2-The activation level Oj of a hidden and output layer is determined by

 (3)

where Wji is the weight from an input Oi, θj is the node threshold, F is a sigmoid function that was
defined above in Eq. (2). 

Weight Training: 1- Start at the output units and work backward to the hidden layers recursively.
Adjust weights by 

(4)

Netj OiWji

i 1=

N

∑=

F xj( ) 1
1 exp xj–( )+
------------------------------=

Oj F WjiOi∑ θj–( )=

Wji t 1+( ) Wji t( ) Wji∆+=
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where Wji(t) is the weight from unit i to unit j at time t (or t th iteration) and ∆Wji is the weight
adjustment.

2-The weight change is computed by

(5)

where α is a trial-independent learning rate (0 < α < 1) and δj is the error gradient at unit j.
Convergence is sometimes faster by adding a momentum term (Rumelhart et al. 1986);

(6)

where β is known momentum term.
3-The error gradient is given by: For the output units;

(7)

where Tj is desired (target) output activation and Oj is the actual output activation at output unit j.
For the hidden units;

 (8)

where δk is the error gradient at unit k to which a connection points from hidden units j. Repeat
iterations until convergence in terms of the selected error criterion. The well-known error criterion
(Adeli and Hung 1995, Fausett 1994, Zurada 1992) is defined as average error and given by;

(9)

where P is the total number of instances.

4. Dynamic analysis of beams

Significant advancement has been made in the past two decades in the development and
application of the theory to dynamic analysis of structures. This has been brought about for
primarily two reasons: a better understanding of the physical principles involved and the ever-
increasing advances in computer technology providing faster executing times, grater accuracy and
large storage capacity at a smaller cost. Analysis and design of engineering structures such as;
bridge, dam, tall building, nuclear power plant constructed subjected to dynamic loads involve
consideration of time-dependent inertial forces. The resistance to displacement exhibited by a
structure may include forces that are functions of the displacement and the velocity. As a
consequence, the governing equations of motion of the dynamic system are generally linear and
nonlinear partial differential equations that are extremely difficult to solve in mathematical terms
(Paz 1997). The dynamic analysis of beams for free or forced vibration has been analyzed by
various numerical techniques, such as finite difference, finite element, and Rayleigh-Ritz, by this

Wji∆ αδjOi=

Wji t 1+( ) Wji t( ) αδjOi β Wji t( ) Wji t 1–( )–[ ]+ +=

δj Oj 1 Oj–( ) Tj Oj–( )=

δj Oj 1 Oj–( ) δkWkj
k
∑=

Ea
1

2P
------- Tj Oj–( )2

j
∑

p
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time. General introduction and detailed solution of the beam vibration problems can be found in the
related references (Meirovitch 1986, Thomsan and Dahleh 1988, Paz 1997, Craig 1981).

4.1 Lateral (flexural) vibration

Consider the lateral vibration of a thin uniform beam. The governing differential equation of
motion for free vibrations (Paz 1997):

(10)

where EI is the flexural rigidity of beams is a constant, ρ is the material density, and A is the cross-
sectional area of the beam. One method of solving this equation is by separation of variables. It can
be assumed that the solution of the governing equation of beams may be expressed as the product
of a function of position Ψ (x) and a function of time β (t) that is,

 (11)

where ψ(x) is the function of x and β(t) is a function of time t. By substituting Eq. (11) into Eq. (10)
and separating variables,

(12)

where dot denotes time derivatives and roman denote x derivatives, and m = ρA. The two sides of
the differential equation above will be equal to each other only if both are equal to the same
constant. Thus,

(13a)

and

(13b)

At this point, we assume a solution of the Eq. (13b) of the form

 (14)

 (15)

Finally, by using the result above, Eq. (13a) is written as

(16)
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where

The solution of Eq. (16) is 

(17)

By substituting the Eq. (14) and Eq. (17) into Eq. (11), the general solution is given by (Clark
1972):

 (18)

where A, B, C, and D are coefficients which depend on the boundary conditions of the beam.
Another approximate method that is widely used in the vibration analysis of beam is the Rayleigh’s
method. In this method, a deflection function is chosen which satisfy the beam boundary conditions.
For the ϕk(x) displacement function, the frequencies of the beam is defined as

 (19)

where ϕk(x) is the kth mode shape function.

4.2 Axial vibration

In the case of axial vibration, the governing equation of motion is given by (Craig 1981)

(20)

As similar to the lateral vibration, the solution of the above Eq. (13) is given by 

(21)

where where A1 and A2 are coefficients which depend on the boundary conditions of the beam and
. In the present study, the training set had been obtained by using the Rayleigh’s and

analytical method.

5. Training and architecture of the developed network

The architecture of the neural network used in this study is shown in Fig. 3. It is widely known
that one hidden layer is general sufficient for back-propagation networks. A single hidden layer

λ4 mω2
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network is also easier to train. The network is feed-forward, multi-layer neural network which have
ten input nodes in the input layer, and three output nodes in the output layer. One hidden layer with
five nodes, however, had been used in the developed network. In the input layer; six neurons are
used for support conditions that was known as the axial, vertical, and rotational displacement
capability of each support. These values may be either 1 or 0, and given in Table 5 as similar the
matrix-displacement method, and four neurons to defined the material and geometrical properties of
the beam. For the unknown frequencies, three nodes are used in the output layer. Totally 13
different parameters are defined in the input layer as indicated; k, m, I, E, L, Lmax, A, au, av, aθ, and
bu, bv, bθ. These are known respectively; the stiffness of the beam, mass per unit length, moment of
inertia, modulus of elasticity, length, maximum length in the training set, cross- sectional area of the
beam and support conditions. The output variables were the first three natural frequencies of the
beam as indicated ω1, ω2, ω3. The stiffness coefficients can be easily found in the literature
(Thomsan and Dahleh 1998). Some of these are shown in Table 1. Support conditions are defined as
form the binary code and its given in Table 5. 

The selection of number of nodes in the hidden layer is an important factor in the architecture of
the network. The number of neurons of the hidden layer is recommended to be at least greater than
square root of the sum of the number of neurons in the input and output layer (Eberhart and
Dobbins 1990), or usually selected as the mean value of the number of the input and output nodes
plus the input nodes. More complicated networks use dynamic node growing in the hidden layer.
We used the first criterion in this study. In this paper, the network with one hidden layer having five
nodes is good enough to model the title problem. The training set contains input and output (target)
vectors. The input and output data had been normalized so that the maximum value is 1.
Normalization of the data can often be as simple as either dividing the values by the maximum
value or by subtracting the minimum value and then dividing the values by the range, which is the
maximum value minus the minimum value. In this study, we use the first of them for normalization
procedure. 

Fig. 3 Architecture of the developed multi-layer network
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6. Numerical examples

Flexural and axial vibrations of beams with different boundary conditions are considered. The
neural network architecture for the vibration analysis had been trained only flexural vibration
conditions. A total of 36 training data sets were presented to the developed neural network. In the
testing phase 7 samples were used. All these data are obtained via Rayleigh’s method and analytical
solutions of the governing equations of flexural vibration of beams with six different boundary
conditions. A summary of these data is shown in Table 2. The number of samples usually depends
on the characteristics of the problem. In some cases, a large amount of samples does not guarantee
that a network can learn better than with smaller samples. The minimum and maximum values for
the input data are given in this table. The 10-6-3 and 10-7-3 configuration was also trained for a
random distribution of 40 training sets. For these cases, the errors were increased. These
configurations are not suitable. The final architecture denoted as 10-5-3 with 10 nodes in input
layers, 5 nodes in hidden layer, and 3 nodes in output layer. The neural network was converged at
the end of the about 24000 iterations for training data set. It took approximately 6 minutes for
training on a standard PC using an artificial neural networks program. This program has developed
by the author using C+ programming language (Ülker and Civalek 2001). After the training of the
network the momentum term and learning rate values are obtained as 0.82 and 0.86. At the end of
the training, the neural network has been tested for cantilever beam (C-F) and both end free (F-F) in
the axial vibration conditions. The results found by using ANN are sufficiently close to the exact
results. The absolute error of the network is obtained as 2.7% in this case. The obtained results are
given in Table 3. In case the flexural vibration, the trained network has been tested for the both end
clamped (C-C) and guided-pinned (G-P) support conditions. The results are given in the Table 4 for
the first three frequencies. The absolute error of the network is obtained as 1.68% for ω3 in this
case. The variation of the average error with the number of iterations was shown in Fig. 4 for the
various momentum rates. The best solution is obtained for the momentum rate of 0.82. Initially, the
momentum and learning rate values were 0.3. 

Table 1 Some of stiffness coefficients for the network training

Beam support and vibration type Stiffness

Axial vibration

Cantilever beam (flexural vibration)

Simply supported beam (flexural vibration)

Both end Clamped (flexural vibration)

Clamped - hinged (flexural vibration)

k EA
L

-------=

k 3EI
L3

---------=

k 48EI
L3

------------=

k 192EI
L3

---------------=

k 768EI
7L3

---------------=



Flexural and axial vibration analysis of beams with different support conditions 311

Table 2 Intervals of the sampling data for training

Parameter Minimum Maximum

m (kg·sn2/cm) 0.1 350
L (cm) 40 800
A (cm2) 24 15000
I (cm4) 72 45000000

k (kg/cm) 0.3 175
E (kg/cm2) 280 24000000

Table 3 Comparison of frequencies (ωk)a for axial vibration case

Free-Free (Case-9)
(L = 150 cm)

Clamped-Free (Case-2) 
(L = 100 cm)

Exact results 
 (Paz 1997)

ANN
results

Absolute error
(%)

Exact results
(Paz 1997)

ANN
results

Absolute error
(%)

ω1 0.02094 0.020855 0.40 0.01570 0.01548 1.40
ω2 0.04188 0.04178 0.24 0.04712 0.04584 2.70
ω3 0.06283 0.06182 1.60 0.07853 0.07824 0.37

aωk = Tabulated value · EA( ) m⁄

Table 4 Comparison of frequencies (ωk)a for flexural vibration case

Clamped-Clamped (Case-1)
 (L = 100 cm)

 Guided-Pinned (Case-6)
(L = 100 cm)

Exact
results *(10−3)

(Paz 1997)

ANN
results *(10−3)

Absolute
error
(%)

Exact
results *(10-3)

(Hurty et al. 1964)

ANN
results *(10-3)

Absolute
error
(%)

ω1 0.4734 0.4698 0.76 0.1571 0.1565 0.38
ω2 0.7853 0.7912 0.75 0.4712 0.4700 0.25
ω3 1.0996 1.0985 0.1 0.7852 0.7733 1.68

aωk = Tabulated value · EA( ) m⁄

Fig. 4 Comparison of errors and iteration numbers with momentum term 
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Table 5 Support conditions of the beams 

Support A
(au, av, aθ )

Support B
(bu, bv, bθ)

Case-1
Clamped- Clamped
(Tested for flexural 

vibration case)
(0,0,0) (0,0,0)

Case-2
Clamped- Free

(Tested for axial 
vibration case)

(0,0,0) (1,1,1)

Case-3
Clamped- Pinned

(Trained for flexural 
vibration case)

(0,0,0) (0,0,1)

Case-4
Pinned- Pinned

(Trained for flexural 
vibration case)

(0,0,1) (0,0,1)

Case-5
Guided- Free

(Trained for flexural 
vibration case)

(0,1,0) (1,1,1)

Case-6
Guided- Pinned

(Tested for flexural 
vibration case)

(0,1,0) (0,0,1)

Case-7
 Clamped- Guided

(Trained for flexural 
vibration case)

(0,0,0) (0,1,0)

Case-8
Guided- Guided

(Trained for flexural 
vibration case)

(0,1,0) (0,1,0)

Case-9
Free- Free

(Tested for axial 
vibration case)

(1,1,1) (1,1,1)

Case-10
Pinned- Free

(Trained for flexural 
vibration case)

(0,0,1) (1,1,1)
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7. Conclusions

The primary purpose of this study is to illustrate the use of a back-propagation neural network to
predict the frequencies of the beams. The designed neural network is a three layer feed-forward
neural network consisting of 10 nodes in input, 5 nodes in hidden, and 4 nodes in output layers and
was trained by back-propagation algorithm. Neural networks are capable of describing, input-output
functional relations, even when a mathematically explicit formula is unavailable. To create such
mappings, it suffices to present a neural network with a set of known input-output pairs. During the
training process, the interconnection weights of all neurons in the network are computed according
to the applied learning rule. It should be noted that once the network was trained, the time required
for a given set of input results was nearly instantaneous in PC. 

The success of neural network implementation is dependent not just on the quality of the data
used for training, but also on the type and structure of the neural network adopted, the method of
training, and the way in which both input and output data are structured and interpreted. It has been
demonstrated that the ANN approach applied in this study is highly successful for the purposes of
frequency analysis of elastic beams. This network can also be used for frequency analysis of
different type structures such as plates, shells or frames by doing an easy arrangement of the
network topology. However, ANN algorithms cannot, of course, replace totally the conventional
numerical techniques, such as finite elements, finite differences and boundary element methods.
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