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The effective depth of soil stratum for plates resting 
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Abstract. The purpose of this paper is to determine the subsoil depth affected from the load on the
plate resting on elastic foundation using stress distribution within the subsoil that will be occurred
depending on the loading and dimension of the plate. An iterative method is developed in order to
determine the effective depth of the subsoil under the plate. Numerical examples from the technical
literature are solved by means of the method suggested herein and displacements, bending moments and
shear forces are presented in graphical and tabular forms to evaluate the effects of the limit depth
considered in the study. Results showed the efficiency and simplicity of the present approach for the plate
resting on an elastic foundation.

Key words: effective depth; plates on elastic foundation; Winkler model; Vlasov model; parameters of
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1. Introduction

Beams or plates resting on elastic foundations are very common structural forms in civil and
geotechnical engineering. Numerous works in this area of research are available in the technical
literature. Researches have been trying to develope more realistic models to solve the practical
problems with the reasonable accuracy. 

Many researchers use the Winkler model where the vertical displacement of the beam are
assumed to be proportional at every point to the contact pressure at that point to solve soil-structure
interaction problems (Hetenyi 1950). In the Winkler model, it is assumed that the foundation soil
consist of linear elastic springs which are closely spaced and independent of each other. One of the
most important shortcomings of this model is that it assumes no interaction between the springs. 

To overcome this problem, the springs in the Winkler Model are connected through a special
device at the top of the springs by some other researchers. This device includes a thin elastic
membrane; an elastic plate and a layer consisting of incompressible vertical elements that deform by
lateral shear only. Vlasov develop a two-parameter model that accounts the effect of the neglected
shear strain energy in the soil and shear forces that come from surrounding soil by introducing an
arbitrary parameter, γ, to characterize the vertical distribution of the deformation in the subsoil
(Selvaduari 1979).
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All these models are shown to lead to same differential equation. Basically all these models are
equivalent and defer only in the definition of the second parameter. The Vlasov model requires the
estimation of the γ parameter. Jones and Xenophontos (1977) established a relationship between the
γ parameter and the displacement characteristics, but didn’t suggest a computational method.
Vallabhan and Das (1988) determined the γ parameter as a function of the characteristic of the beam
and the foundation, using an iterative procedure. They named this model as modified Vlasov model
and they emphasized that the parameters are depend on the properties of the soil and the structure
as well as the type and magnitude of the loading and the depth of the soil. 

Ayvaz et al. (1998) investigated the effects of the subsoil depth, the plate dimensions and their
rations on the dynamic response of plates resting on an elastic foundation. Dalo lu et al. (1999)
investigated the effects of the subsoil depth, plate dimensions and their rations on the dynamic
response of rectangular plates on elastic foundations subjected to both uniformly distributed load
and concentrated load at the center of the plates. Vallabhan and Dalo lu (1999), using rectangular
elements developed a consistent finite element model to analyze plate resting on a layered soil
medium. But they solved the problem using three different depths of the soil stratum. Ayvaz and
Özgan (2002) analyzed the effects of the subsoil depth, the beam length, their ratio and the value of
the vertical deformation parameter, γ, within the subsoil on the frequency parameters of beams on
elastic foundations.

As seen from these studies, researches investigated the change in the soil parameters and the
internal forces with the subsoil depth. The idea of determining the subsoil depth from the stress
distribution depending on the type of the loading and dimension of the plate is an interesting way of
solving these kinds of problems. 

 

2. Development of the theory of Vlasov model

The total potential energy in the soil-structure system may be written as

(1)

where , in which Πp is the strain energy stored in the plate, Πs is the strain energy
stored in the soil and V is the potential energy of the external loads.

The subsoil considered has a finite depth with a rigid boundary at the bottom (Fig. 1). The total
potential energy in Eq. (1) can be expanded as

     (2)

where  are γxz the stresses and corresponding strains in the
subsoil, w, D, q, H are displacement of the plate in z direction, the flexural rigidity of the plate,
distributed load on the plate and depth of the subsoil respectively. The displacement of the soil in x, y
and z direction can be defined as  and . To simplify the model following Vlasov and
Leont’ev, it is assumed that, 
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(3)

(4)

and

(5)

where φ(z) is the mode shape that gives the variation of the deflection in the z direction such that
φ(0) = 1 and φ(H) = 0.

Substituting strain-displacement equations of elasticity into Eq. (2), with the assumptions above,
total potential energy of the plate-soil system will be 

             

(6)

k and 2t in above expression are the soil parameters and may be defined as

(7)

(8)

where  and  in which Es and νs are the modulus of elasticity

and poisson ratio of the soil stratum.
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Fig. 1 A loaded plate on elastic foundation
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Using variational principle and minimizing the total potential energy of Eq. (6) by taking
variations in w and φ yields (Turhan 1992)

  

(9)

where  and 

Since the variations δw and δφ are not equal to zero, the terms in the parentheses and boundary
conditions must be equal to zero. Therefore the field equation in the domain of the plate, Ω, can be
written as

(10)

where  is the Laplace and  is the biharmonic operators. Displacement of the soil surface
outside the plate domain will be evaluated by solving the field equation of the soil domain that will
be evaluated by equating D and q of Eq. (10) to zero. The second expression within the parentheses
in Eq. (9) is the field equation for the deformation pattern of the soil in the vertical direction. The
equation is 

(11)

with the boundary conditions φ(0) = 1 and φ(H) = 0. Solution of Eq. (11) with the given boundary
conditions yields, 

(12)

and , where γ represents the vertical deformation parameter within the subsoil.
The important point here is that the modulus of subgrade reaction, k, and the second parameter t

which represents the shear deformation of the soil, are both dependent on the vertical deformation
function φ and the depth of the soil H as can be seen in Eqs. (7) and (8). Furthermore the value of γ
varies with the displacement of the plate and the depth of the subsoil. Therefore the variables w, q,
k, 2t, H and γ are all connected to each other for a plate on elastic foundation. 

3. Application of the finite element method

In this study MZC rectangle finite element is used to develop the element stiffness matrix. Nodal
displacements at each node are
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(i = 1, 2, 3, 4) (13)

And the displacement function is  

(14)

where  is the nodal displacement vector containing all 12 components of the type shown in
Eq. (13).

The matrix [N] contains the displacement shape functions (Weawer and Johnston 1984). By
substituting Eq. (14) into Eq. (1) the stiffness matrices of the plate-soil system can be evaluated as 

(15)

where [kp], [kw] are [kv] stiffness matrix of the plate, the Winkler foundation stiffness matrix and the
second parameter foundation stiffness matrix (Vallabhan and Dalo lu 1999). 

Assembling each element stiffness matrix obtained from above equations, global stiffness matrix
is evaluated as

(16)

where ne is the total number of plate finite elements. Finally the equation to be solved is

(17)

Here [K] is the global stiffness matrix, {W} represents the global nodal displacement, and {F} is
the applied equivalent load vector of the system. Boundary conditions need to be applied before
solving equation system. The effect of the infinite soil domain outside the plate is applied as
equivalent stiffness parameters on the plate boundary. Equivalent forces due to surrounding soil
domain on the boundary of the plate are computed as a function of the displacement on the
boundary (Turhan 1992). While representing the effect of the soil domain on the plate boundary,
there are two type of stiffness to consider. One is axial stiffness related to the displacement of the
plate in the z-direction, and the other type is a rotational stiffness related to the rotation of the
plate at its edge. After the boundary forces for the discrete points are calculated, it is necessary to
concentrate the continuous boundary forces into equivalent boundary forces at the nodes of the
finite element. 

3.1 The iterative procedure

In this model the solution technique is an iterative process dependent on the γ parameter. By
assuming an approximate value of γ initially, the values of k and 2t are calculated using Eqs. (7) and
(8). These values are used into Eq. (17) and the deflection of the plate are evaluated. Then using
these values, the new value of γ is again calculated. The procedure is repeated until two successive
values of γ are approximately equal. Further details can be found in the references Vallabhan and
Das (1988, 1991).
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4. Determination of the effective depth of the subsoil

As mentioned before, an approach has been developed for the evaluation of stresses in the subsoil
below the plate. Based on the approach, a computer program also has been developed to calculate
stresses at different subsoil depth under rectangular area.

According to this approach, vertical stress at a depth z under a corner of the area subjected to
uniform load can be evaluated as

(18)

where A and B are dimensions of the plate in the y and x directions respectively, z is the soil depth
where the stress is being calculated. 

The stresses occurred under center of the plate can be evaluated using superposition rule (Fig. 2).
The stress under point O due to the uniform load on the area ABCD may be obtained from various
rectangles as follows,

As seen from the above expression, the stress under the center of the plate is obtained by adding
the stresses for these four small rectangles (Spangler 1963, Uzuner 1992).

5. Numerical examples

A convergence study is thought to be useful to decide the number of elements to be used in the
finite element mesh. The number of elements is increased until the maximum displacement and
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Fig. 2 Point under the center of the area subjected to uniformly distributed load
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the bending moment values calculated from the last two finite element meshes are almost equal.
It is concluded that results have acceptable error when using equally spaced 9 elements for
quarter plate.

5.1 Numerical example-1

In order to check the accuracy of this approach; the plate on the elastic foundation solved by
Vallabhan et al. (1991) and Çelik and Saygun (1999) for various soil depth is considered. The same
problem is analyzed by using the presented method and results are presented in tabular and
graphical forms. The properties of the plate-soil system are as follows. The modulus of elasticity of
the subsoil is 68950 kN/m2, the poisson ratio of the subsoil is 0.25, the modulus of elasticity of the
plate is 20685000 kN/m2, the poisson ratio is 0.20, the thickness of the plate is 0.1524 m, the
dimensions are 9.144 × 12.192 m and uniformly distributed load on the plate is 23.94 kN/m2.

For this example, the effective depth of the subsoil is evaluated as 36 m. The problem is solved
using modified Vlasov model initially. The displacements and the bending moments occurred in the
middle of the plate are given in Table 1 and the variation of the displacements, the bending
moments and the shear forces along the centerline of the plate are plotted in Fig. 3 for different
values of subsoil depth such as 3.048, 9.144, 15.204, 36, 113 and 357. As it can be seen from Table 1,
the changes in the displacement and the bending moment are not significant for the higher values of
subsoil depth beyond H = 36 m. It is seen in Fig. 3 that the curves are very close to each other for
H = 36 m and the higher values of the depth of the subsoil.

Table 1 Soil parameters, maximum displacements and the bending moments of the plate on elastic foundation
subjected to uniformly distributed load using the Vlasov model

H (m) Ref k (kN/m3) 2t (kN/m) γ w (cm) Mx (kNm)

3.048 V.S.D. 27206 26904 0.5724 0.0872 0.0529
Çelik, Saygun 27192 26826 0.5766 0.0853 0.0445
Present Study 27206 26858 0.5707 0.0873 0.0344

6.096 V.S.D. 13757 50282 0.9297 0.1524 0.3113
Çelik, Saygun 13757 50410 0.9194 0.1526 0.2880
Present Study 13743 50628 0.8993 0.1533 0.2638

9.144 V.S.D. 9430 69506 1.2644 0.1890 0.4224
Çelik, Saygun 9377 70586 1.2064 0.1893 0.4109
Present Study 9342 71302 1.1674 0.1909 0.3799

15.24 V.S.D. 6366 94732 1.9419 0.2070 0.4892
Çelik, Saygun 5964 104664 1.6193 0.2212 0.4671
Present Study 5948 105134 1.6044 0.2240 0.4253

36.00 Present Study 3464 166480 2.8930 0.2408 0.3690

113.00 Present Study 3164 180310 8.6422 0.2407 0.3521

357.00 Present Study 3164 180307 27.3035 0.2407 0.3521
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Later, the same example is analyzed using the Winkler foundation model for the same subsoil
depth. The modulus of subgrade reactions to be used in the Winkler model are taken from Table 1.
As it can be seen from Table 2 and Fig. 4, the value of the displacements are not changed much for
the higher values of subsoil depth beyond H = 36 m. 

Fig. 3 Variation of displacement, bending moment, and shear force of the plate for various values of subsoil
depth for uniformly distributed load using the Vlasov model
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Further, the example is extended for various dimension of the plate in order to see the effects of
the plate dimensions on the effective depth of subsoil. The length of the plate is taken as 12.192,
24.384, 36.576, 48.768, 60.960 and 73.152 while the width is kept constant as 9.144 m and the
Vlasov model used for the calculation. The results are presented in Table 3. The effective depth of
the plate is increasing with the increasing length of the plate as expected.

Fig. 4 Displacements along the centerline of the plate subjected to uniformly distributed load obtained with
Winkler model 

Table 3 Effective depth of the subsoil, soil parameters and maximum displacements of the plate for various
dimensions

Length of the 
plate (m)

Effective depth 
H (m)

k
(kN/m3)

2t
(kN/m) γ w

(cm)

12.192 36 3464 166480 2.8930 0.2408
24.384 45 2557 227305 2.6025 0.3127
36.576 51 2170 269288 2.4597 0.3426
48.768 55 1962 299054 2.3661 0.3638
60.960 58 1831 321447 2.3055 0.3737
73.152 61 1728 341273 2.2756 0.3802

Table 2 Soil parameters, maximum displacements and the bending moments of the plate on elastic foundation
subjected to uniformly distributed load using the Winkler model

H (m) Ref k (kN/m3) w (cm) Mx (kNm)

3.048 Present Study 27206 0.0879 0.0000
6.096 Present Study 13743 0.1741 0.0000
9.144 Present Study 9342 0.2562 0.0000
15.24 Present Study 5948 0.4024 0.0000
36.00 Present Study 3465 0.6849 0.0000
133.00 Present Study 3164 0.7566 0.0000
357.00 Present Study 3164 0.7566 0.0000
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Fig. 5 Geometry and loading of the foundation plate

Table 4 Soil parameters, maximum displacements and the bending moments of the plate on elastic foundation
subjected to concentrated load using the Vlasov model 

H (m) Ref k (kN/m3) 2t (kN/m) γ w (cm) Mx (kNm)

5 Present Study 20147 43487 1.3162 0.4570 512.23
Çelik, Saygun 19733 45803 1.1180

10 Present Study 10298 83142 1.4756 0.7127 513.40
Çelik, Saygun 10087 86696 1.3270

15 Present Study 7161 116011 1.7176 0.8378 504.34

30 Present Study 4397 178230 2.5585 0.9420 475.53

88 Present Study 3702 207483 6.7860 0.9551 460.55

250 Present Study 3701 207498 19.2774 0.9551 460.54

Table 5 Soil parameters, maximum displacements and the bending moments of the plate on elastic foundation
subjected to concentrated load using the Winkler model

H (m) Ref k (kN/m3) w (cm) Mx (kNm)

5 Present Study 20147 0.3056 420.80
10 Present Study 10298 0.6510 323.91
15 Present Study 7161 1.0365 268.35
30 Present Study 4397 1.9338 199.51
88 Present Study 3702 2.3960 177.97
250 Present Study 3701 2.3967 177.94
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5.2 Numerical example-2

As a second example, the plate under a vertical column load as shown in Fig. 5 is analyzed. The
displacement, the bending moments, the shear forces and soil parameters are presented in Table 4,

Fig. 6 Variation of displacement, bending moment, and shear force of the plate for various values of subsoil
depth for concentrated load using the Vlasov model
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Fig. 6 for the Vlasov Model, Table 5, Fig. 7 for the Winkler model. The modulus of elasticity of
the subsoil is 80000 kN/m2, the poisson ratio of the subsoil is 0.125, the elasticity modulus of the
plate is 20000000 kN/m2, the poisson ratio is 0.16, the thickness of the plate is 0.6 m, and the

Fig. 7 Variation of displacement, bending moment, and shear force of the plate for various values of subsoil
depth for concentrated load using the Winkler model
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dimensions are 11.6 × 11.6 m. 
The effective depth of the subsoil is computed as 88 m for the example. Studying Table 4, Table 5,

Fig. 6, Fig. 7, it can easily be seen that taking the depth of the subsoil as H = 88 m and considering
as a rigid boundary at the bottom will be sufficient for the analysis since the difference in the values
of the displacements, the bending moments and the shear forces are negligible for the higher values
of the subsoil depth.

6. Conclusions

Determination of the effective depth of the soil stratum for a plate resting on an elastic foundation
was aimed in the study. An iterative method is developed in order to evaluate the internal forces of
the plate on an elastic foundation as well as the effective depth of the soil stratum under the plate.
The stress distribution within the soil medium depending on the loading and the dimensions of the
plate is evaluated for the purpose, and the effective depth of the soil stratum is calculated. It can be
concluded that using a deeper depth of soil stratum doesn’t affect the results much but taking a
shallow depth may result with an unrealistic solution if there is not a relatively rigid foundation at a
certain depth.
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