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Abstract. In the earlier application of the spline finite strip method(FSM), the uniform B3-spline
functions were used in the longitudinal direction while the conventional interpolation functions were used
in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of
the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-
periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell
and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline
FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis
and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method,
the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom
for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction
allows the selective local refinement to improve the accuracy of solution at the connections or at the
location of concentrated load. A number of numerical tests were performed to prove the accuracy and
efficiency of the present study.

Key words: non-periodic B-spline function; stress-resultant shell; a non-symmetric spline finite strip
method.

1. Introduction

As the finite strip method(FSM) uses a higher-order polynomials in the longitudinal direction, it is
possible to analyze a type of structures, such as box girder bridges, using a smaller number of
degrees of freedom in comparison with the finite element method. These finite strip methods can be
categorized into (1) the semi-analytical finite strip method and (2) the spline finite strip method
according to the function type used for its formulation. The semi-analytical finite strip method uses
a trigonometric function series in the longitudinal direction which satisfy the end conditions of a
strip a priori and simple polynomials in the other direction. However, the use of trigonometric
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function series is disadvantageous when used for the problems where the derivatives of the function
are required to be discontinuous since the trigonometric function series are continuously
differentiable. On the other hand, the spline functions do not have this problem and moreover, a
suitable spline function with the required continuity(or discontinuity) conditions can be always
found (Cheung 1983). When the uniform B3-splines are used for the isoparametric spline finite strip
method, the shape function does not satisfy the Kronecker delta properties at the end boundary.
Therefore, the special treatments such as the modified B3-splines and transformation method are
required to satisfy the boundary conditions (Cheung et al. 1993, 1995). As a treatment of this
problem, the non-periodic B3-spline for description of both the displacement and the geometry was
introduced (Cheung et al. 2001). The two major advantages of non-periodic B-splines are that the
additional information such as the end tangential vectors is not required to define the geometry of
shell and that the shape function satisfies the Kronecker delta properties at the end boundary. In
spite of these advantages, since all the nodes in the strip formulated based on non-periodic splines
are equally spaced along the longitudinal direction, there are some limitations for local refinement
which is necessary for the accurate stress evaluation at the locations of concentrated or patch
loading, abrupt changes of geometry and material properties, internal supports, etc..

The main purpose of this study is to develop a non-symmetric spline finite strip method for the
effective solution to the problem that the interior nodes of the strip are not regurarly spaced along
the longitudinal direction. The finite strip element proposed in this study has non-symmetrically
spaced interior nodes in the longitudinal direction of strip that is efficient to generate locally dense
node distribution for the analysis of the stresses at the locations where the high stress concentration
exists.

The efficiency and accuracy of the proposed method are demonstrated through a series of
numerical examples. 

2. Non-periodic B-splines 

The basic spline curves can be represented in terms of B-spline functions as

(1)

where p(x) is a spline curve and φi,k represents the i-th B-spline function of order k. αi is a set of
control points (or parameters) which are the curve defining vector. 

The i-th B-spline function φi,k is defined by the following recursive equation 

(2a)

and

(2b)

where the knot vector is (xi , ..., xi+k).
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The non-periodic B-spline function is defined by the recursive form expressed as Eq. (2). For
example, if B3-spline series has repeated knot vector values at the boundary (end) point, the extra
sections beyond the end points have all zero lengths, and thus both initial and final knots become
multiple knots with a multiplicity of 4 which is equal to the order of B3-spline. In the non-periodic
B3-spline series as shown in Fig. 1, the use of multiple knots at the boundary enables that the
Kronecker delta property is satisfied and thus the real values of the field variables, not parameters,
can be directly obtained at the boundary. Therefore, the boundary conditions can be treated more
easily than the periodic B-spline function (Cheung et al. 2001). 

3. Formulation of shell strip with non-symmetrically spaced nodes

To define the geometry of strip and local axis, a resultant stress shell is divided into several strips
first. The formulation of stiffness matrix and the load vector of a strip is based on six degrees of
freedom per node i.e., three independent rotational DOFs, θx, θy, θz and three translational DOFs,
u, v, w (Fig. 2). A non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of
freedom for a shell were employed in this study (Hong 2001). The non-symmetric finite strip has
non-symmetrical numbers of sections and nodes in two nodal lines which define a curve defining
polygon of an arbitrary number of vertices. 

In this study, the geometry of the C0 degenerated shell strip is defined in terms of functions of
mid-surface.

(3)x Nij ξ η,( )qij
j 1=

2

∑
i 1=

n

∑ tVt+=

Fig. 1 Non-periodic B3-spline series in strip element
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where 

(4)

and where Vt is the unit vector normal to the shell mid-surface at each integration point, t is the
linear coordinate in the range −h/2 < t < h/2 in the normal-to-mid-surface direction and h is the
thickness at the integration point. x = (x, y, z) and qij = (x, y, z)ij are the i-th curve defining vectors of
the j-th nodal line of the strip. Lj is the linear Lagrangian polynomial and φi,4 is the non-periodic
B3-spline function. The definitions of displacement and strain field can be found in the previous
study of authors (Choi et al. 2001).

To obtain the element stiffness matrix for elastic analysis, the total potential energy of the shell
strip is given by

(5)

where W is the potential energy of applied load and the rigidity matrices Dm, Db, Ds are associated
with the membrane, bending, and transverse shear strain, respectively.

By the principle of stationary potential energy for equilibrium, the membrane, bending, shear, and
drilling rotational contribution to the material stiffness matrix is derived as

(6)

The strain by the drilling DOFs associated with the in-plane rotation of the mid-surface can be
expressed as (Choi et al. 2003). 

Nij ξ η,( ) Lj ξ( )φi 4, η( )=

Π 1
2
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Fig. 2 Strip geometry and coordinates system
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(7)

where θt is the drilling rotation of shell mid-surface in the local coordinate systems. The potential
energy of the shell strip derived by the drilling DOFs is given as

(8)

And the rotational stiffness matrix can be expressed as 

(9)

where

 (10)

where Φ is the penalty constant which has only a minimum influence on the results of plane
problems. However, an inappropriate choice of Φ may result in erroneous solution for structures
with curved geometry (Chroscielewski et al. 1997). Since there is no precise method to decide the
value of Φ, the value of Φ is chosen to be 1.0 based on the numerical experiments performed by
previous study of authors (Hong 2001).

In computing strip matrices, the selectively reduced integration scheme is used which is also
helpful to avoid shear locking (Zienkiewicz et al. 1971). Table 1 gives the selectively reduced
integration rule for linear shell strip. The integration rule is given as the number of rows of
Gaussian points in the ξ direction by the corresponding number in the η direction in each section.

When the reduced integration scheme is used in evaluating the stiffness of drilling part to avoid
the over-constrained situation similar to the shear locking, five spurious zero-energy modes which
cause the singularity problem may be invoked if the strips are coplanar (Choi et al. 2001, 2002,
Kim 2003, Kebari et al. 1991). Therefore, the selectively reduced integration scheme is adopted
only for computing shear stiffness in this study. Thus, the number of zero energy modes invoked by
the selectively reduced integration can be reduced to one. Moreover, this zero energy mode is non-
communicable and therefore it can be removed when at least two strips are used together (Cheung
et al. 2001).
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Table 1 Integration rules

Stiffness Membrane 
stiffness

Bending 
stiffness

Shear 
stiffness

Drilling 
stiffness

Zero energy 
modes

Selectively 
reduced 2 × 4 2 × 4 1 × 3 2 × 4 1*

* : Non communicable mode
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4. Integration method for a strip with non-symmetrically spaced nodes 

Fig. 3(a) shows the conventional finite strip element which has symmetrically spaced nodes in
both nodal lines. The non-symmetric spline finite strip element proposed in this study is also shown
in Fig. 3(b). This non-symmetric spline finite strip element can be effectively applied for the
selective local refinement to obtain more accurate results in the region of high stress concentration. 

Fig. 3 Strip element

Fig. 4 Numerical integration points of strip



A non-symmetric non-periodic B3-spline finite strip method 253

As shown in Fig. 4, a single strip with ten symmetric interior nodes in the longitudinal direction
has seven sections (or segments) and the numerical integration to compute the strip stiffness is
carried out within each section (Hong 2001). However, in the non-symmetric spline finite strip
element shown in Fig. 5(a), the two nodal lines have different numbers of nodes, and therefore, the
number of sections to be integrated are different for two nodal lines. Thus integration should be
performed for each nodal line first and then results for both nodal lines can be combined to form
the stiffness of entire strip as shown in Fig. 5(b).

In order to calculate the Jacobian matrix for the stiffness matrix of a strip, the spline function and
its derivative values should be estimated at each Gauss point within each section along the both
nodal lines. In the conventional symmetric spline finite strip element, the number of nodes on two
nodal lines and also the numbers of sections are same. The global positions of knots in a strip can
be established in order that the largest knot number should be same to the number of sections to be
integrated. Therefore, the spline function and its derivative values can be obtained by transforming
the local coordinates of the Gauss points in each section into the corresponding global knot values.
However, since the numbers of nodes on two nodal lines are different from each other in the non-
symmetric spline finite strip element, a new method to obtain the spline function and its derivative
values at each Gauss point is necessary. The mapping and unit normalization at the two nodal lines
are the basic ideas of the new method proposed in this study. The method is outlined as follows
(Fig. 6) (Kim 2003). 

1) Transform the local coordinates of Gauss points  in each section into the
corresponding values of knots in global system which range from 0 to the number of sections to
be integrated in two nodal lines as 

(11)

where ξ : Local coordinates of Gauss point 
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ξ 1+( )

2
----------------- nsect1 1–( )+=

t2
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2
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1– ξ 1≤ ≤( )

Fig. 5 Integration method for non-symmetric spline finite strip element
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For example, the local coordinate of the first Gauss point of the third section on the upper
nodal line in Fig. 6 (point A between knots 2 and 3) ξ = −0.861 becomes t1 = 2.0694 in the
global system.

2) Normalize the transformed Gauss point in two nodal lines in the global system as 

(12)

where     nsect 1 : Number of sections to be integrated for nodal line 1
nsect 2 : Number of sections to be integrated for nodal line 2

The value of 2.0694 in the above example is now divided by the number of sections to be
integrated in the nodal line 1, (i.e., 7) to obtain the normalized local coordinates of point A as
2.0694/7 = 0.2956.

3) Evaluate the shape function and its derivative values at each normalized Gauss point as
following

(13)

(14)
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Fig. 6 Precise mapping method for each nodal line
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(15)

(16)

where ( j) denotes the order of derivatives.
Since the value of Gauss point is normalized, the B3-spline function should be generated by
normalizing knots in two nodal lines as shown in Fig. 7.

4) Calculate the Jacobian matrix J, its determinant and the Cartesian derivatives of the shape
function as following relation.

(17)

5) Estimate the stiffness of a non-symmetric spline finite strip element by using the Jacobian
matrix.
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Fig. 7 B3-spline for normalized knots for each nodal line
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5. Numerical examples

5.1 Cantilever box

The cantilever box with a length of 10.0 m was analyzed to examine the basic behavior of spline
FSM with non-symmetrically spaced interior nodes (Kim 2003). As shown in Fig. 8(a), the
cantilever beam is clamped at one end and free at the other end. The elastic modulus and Poisson’s
ratio used for the analysis are 2 × 106 t/m2 and 0.0, respectively. The shape of cross-section of the
beam and strip divisions are shown in Fig. 8(b). The beam is subjected to two load conditions, i.e.,
two vertical unit loads at the free end of the box and two unit loads acting in the opposite direction
to generate twisting force at the end. 

Two models were selected as shown in Fig. 9 for the comparison purpose. Model 1 is the strip
element with symmetric nodes and model 2 is the strip element with non-symmetric nodes which is
more refined at the four corner connections. Tests were carried out with two loading conditions for
each model to illustrate the efficiency of spline FSM with non-symmetrically spaced knots. Test

Fig. 8 Cantilever box
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cases were summarized according to the number of nodes used in the longitudinal direction (Table 2).
The total degrees of freedom were maintained same for symmetric and non-symmetric models
during the tests. 

*(n1, etc.): Number of nodes used in the longitudinal direction

Fig. 9 Analytical models

Table 2 Analytical cases

Test cases Models
Nodes on nodal line Degrees of 

freedom Remarks
n1 n2 n3

Case 1
Symmetric 5 - -

480 Coarse mesh
Non-symmetric - 4 8

Case 2
Symmetric 11 - -

1056 Fairly refined mesh
Non-symmetric - 9 17

Case 3
Symmetric 21 - -

 2016 Refined mesh
Non-symmetric - 16 36

Case 4
Symmetric 31 - -

 2976 More refined mesh
Non-symmetric - 27 43

Table 3 Deflection at free end (Load condition 1)
                                                                 (unit :×10−2 cm)

Vertical displacement Normalized values

    Meshes

Models

Coarse 
mesh

(480 dof)

Fairly 
refined 
mesh

(1056 dof)

Refined 
mesh

(2016 dof)

More 
refined 
mesh

(2976 dof)

Coarse 
mesh

(480 dof)

Fairly 
refined 
mesh

(1056 dof)

Refined 
mesh

(2016 dof)

More 
refined 
mesh

(2976 dof)

Symmetric 0.51049 0.51145 0.51185 0.51193 0.9972 0.9991 0.9998 1.0000
Non-symmetric 0.51131 0.51185 0.51189 0.51194 0.9988 0.9998 0.9999 1.0000

FEM
(15552 dof)
(FESA [9])

0.51194 1.0000
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Table 4 Twisting at free end (Load condition 2)
                                                                               (×10−3)

Twisting Normalized values

Meshes

Models

Coarse 
mesh

(480 dof)

Fairly 
refined 
mesh

(1056 dof)

Refined 
mesh

(2016 dof)

More 
refined 
mesh

(2976 dof)

Coarse 
mesh

(480 dof)

Fairly 
refined 
mesh

(1056 dof)

Refined 
mesh

(2016 dof)

More 
refined 
mesh

(2976 dof)

Symmetric 0.22691 0.23696 0.24060 0.24158 0.9376 0.9792 0.9942 0.9982
Non-symmetric 0.23301 0.23893 0.24103 0.24158 0.9629 0.9873 0.9960 0.9983

FEM
(15552 dof)
(FESA [9])

0.24200 1.0000

Fig. 10 Convergence Curve
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The numerical results for each load condition are presented in Table 3 and Table 4, together with
the reference values by FEM. Table 3 shows the vertical displacement and its normalized values at
free end for two models. Table 4 presents the twisting and its normalized values of box, computed
by considering the relative displacement of box section at free end. The convergence curves for two
models are presented in Fig. 10. As shown in these figures, the more improved results are obtained
by the non-symmetric spline strip element than those by the symmetric spline strip element.

5.2 Fam and Turkstra’s curved box girder bridge

The structure shown in Fig. 11 is a plexiglass model studied extensively by Fam and Turkstra
(Fam et al. 1975, 1976). The elastic modulus and Poisson’s ratio are 400,000 psi and 0.36
respectively. The supports are modeled as rigid diaphragms, where no vertical movements are
permitted. The bridge model is circularly curved in plan with a centerline radius of 51 in. The girder
is subjected to a single concentrated load of 20 lb at midspan over the outer web. 

The analytical modeling for transverse and longitudinal direction is shown in Fig. 12 in which the
entire bridge is divided into 20 strips. The smaller strip widths were used near the box corners due
to the high stresses and steep stress gradients at the box corner. In the symmetric spline FSM, all
strips are divided into 18 equal sections in the longitudinal direction. However, in non-symmetric
spline FSM, meshes are refined by the means of non-symmetric knot spacing at the location of
concentrated load as shown in Fig. 12. 

The results were compared with those of Fam and Turksta’s experiment and their finite element
analysis. The vertical displacements of the top flange at the location of the interior and exterior
webs for half span are shown in Fig. 13. The transverse distribution of longitudinal membrane stress
at midspan is shown in Fig. 14. As can be seen in these figures, the spline FSM with non-
symmetrically spaced knots can pick up the peak stress values at the location of concentrated load
more accurately.

Fig. 11 Geometry and section dimensions for Fam and Turkstra’s model
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Fig. 12 Analytical model

Fig. 13 Vertical displacement of flange for half span



A non-symmetric non-periodic B3-spline finite strip method 261

6. Conclusions

A non-symmetric spline finite strip method is presented in this study. This has been achieved
based on the extension of authors’ previous studies that are the non-periodic B3-spline and a stress-
resultant finite strip with drilling degrees of freedom for a shell strip. The development of the non-
symmetrically spaced interior nodes in the longitudinal direction of strip can generalize the concept
of non-periodic B-spline FSM and improve the accuracy of the stress evaluation in the region of
high stress gradients by generating locally dense node distribution. As can be seen from the
numerical examples, the introduction of non-symmetrically spaced nodes makes it possible to
generate the selective local refinement to improve the accuracy of solution in the region of stress
concentration that may not be possible with the conventional symmetrically spaced strip.

More improved results were obtained by the non-symmetric B3-spline finite strip method
compared with those obtained by other solutions for various structures. 

Fig. 14 Longitudinal membrane stress at midspan
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