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Solids 3-D with bounded tensile strength under the 
action of thermal strains. Theoretical aspects and 

numerical procedures
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Abstract. This paper is devoted to illustrate some numerical procedures to solve the boundary
equilibrium problems of three-dimensional solids that are subjected to thermal strains. The constitutive
equations take into account the bounded tensile strength of the material and they are presented in the
framework of non-linear elasticity and small strains. The associated equilibrium problem is solved
numerically by means of the finite element method and the numerical techniques, i.e. the Newton-
Raphson method and the secant method, are revised in order to assure the solution convergence of the
discretized problem. Some numerical examples are illustrated.
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1. Introduction

In the last decades, numerous authors have been devoted in modeling the response of no-tension
materials or materials with bounded tensile strength having in mind the result application to the
masonries. Only to quote the most recent, we recall the paper of Romano and Sacco (1884) and
Sacco (1990) which proposed the constitutive equations for no-tension materials via a variational
approach and suggested to solve the boundary equilibrium problem by means of the finite element
method by adopting the secant procedure.

In the same years, Del Piero (1989) revised the model and proposed the constitutive equations for
a masonry-like material under the hypotheses of small strains, no tensile strength and a normality
postulate. On the further assumption concerning the symmetry of the elastic tensor, the existence of
the strain energy density was proved. Lucchesi et al. (1994) proposed a numerical method to solve
the non-linear equilibrium problem of an isotropic body made of masonry-like material using the
finite element method. The authors used the Newton-Raphson procedure that is based on the tangent
approach recognizing its fast convergence with respect to the secant method. Furthermore, Lucchesi
et al. (1995) extended this method to solve the equilibrium problems for materials with bounded
tensile strength.

Subsequently, the model of no-tension material subjected to thermal strains was elaborated by
Padovani et al. (2000) and a complete model concerning the no-tension materials was presented by
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Lucchesi et al. (2000) in the framework of the thermodynamics and the thermoelasticity.
By following a recent work of Pimpinelli (2003), the aim of the paper is to present the

constitutive equation of an isotropic body with bounded tensile strength subjected to thermal strains
in the 3-D case and to illustrate the numerical procedures in order to solve the boundary equilibrium
problem. Without some loss of generality, the dependence of the elastic moduli on the temperature
is not made explicit.

Having in mind to solve the boundary equilibrium problem by means of the finite element
method, we present the constitutive equation in a form such that it is assured a priori the
positiveness of the tangent elastic matrix. Indeed, by following a suggestion of Padovani (2000) we
consider an approximated material depending on a parameter δ varying from zero to one. This is
accomplished modifying the constitutive equation and making linear the dependence of the stress on
the anelastic part of the deformation by means of the elasticity tensor factorized by the parameter δ.
In this way, the modified constitutive law describes the behavior of a family of isotropic materials
which, in absence of the thermal loads and for δ = 0, coincides with that described by Lucchesi et
al. (1995) whereas for δ = 1 coincides with the one linearly elastic. Of course, for δ ≠ 0, the
constitutive equations associated to materials with bounded tensile strength or, in the limit case, with
no-tensile strength, are verified only approximately. On the other hand, as we will show in the
Section 3, the assumption of δ ≠ 0 renders the constitutive law strictly monotone. In virtue of this
assumption, the numerical method based on the Newton-Raphson procedure possesses the
indispensable requirements to be convergent (see also Pimpinelli (2003)). Furthermore, the results
comparison to the secant method shows that the approximation is acceptable. 

Thus, the paper is organized as follow. In Section 2 we illustrate briefly the constitutive equation
for an isotropic material with bounded tensile strength that is subjected to thermal strain. The
constitutive equations are presented in a form such that the positiveness of the elastic tangent matrix
is assured a priori. Moreover, a shortly reference is made to the bi-modular materials whose
behavior can be modeled by the proposed constitutive equations.

In Section 3 we discuss the numerical procedures to solve the equilibrium problem by means of
the finite element method; the examined procedures are the tangent method (i.e., the Newton-
Raphson method) and the secant method. Namely, we prove that the tangent method may be
convergent only if δ ≠ 0 and, in view of the numerical instabilities emanating by the numerical
investigation, we propose a new one expression for the tangent elastic matrix which depends on the
strain eigenvectors. Moreover, the secant method is examined and we consider the secant tensor as
proposed by Romano and Sacco (1884) and Sacco (1990) furnishing its form that does not depend
on the strain eigenvectors. Furthermore, a new one secant tensor is proposed. Finally, in Section 4
we show some numerical examples.

2. The mechanical model and the modified constitutive law

In this section, we begin shortly to present the constitutive assumption for a material with
bounded tensile strength that is subjected to the thermal strains. For the details of the presentation
we remand to Pimpinelli (2003), Lucchesi et al. (2000) and Padovani et al. (2000).

We denote by Lin the space of the second order tensors equipped by the inner product whereas we
denote by Sym, Sym+ and Sym− the subsets of Lin constituted by the symmetric, symmetric positive
semi-definite and symmetric negative semi-definite tensors, respectively.
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For a material with bounded tensile strength under the action of thermal strains, the constitutive
equations are:

(1a)

(1b)

(1c)

(1d)

where Eq. (1a) represents the unilateral constraint on the stress T, σ ≥ 0 is the tensile strength of the
material whereas Eq. (1b) is the additive decomposition of the infinitesimal strain E minus the
thermal strain Et into an elastic part Ee and into an anelastic part Ea semi-definite positive.
Furthermore, Eq. (1c) imposes the linear dependence of the stress T on the elastic strain Ee by
means of the elasticity forth order tensor C and Eq. (1d) is the normality postulate. If the material is
isotropic and the temperature variation ∆θ is small, we have:

(2a)

(2b)

where µ and λ are the Lame’s moduli which do not depend on the temperature and satisfy the
inequalities µ > 0 and 2µ + 3λ > 0. Moreover, β(θ) is the thermal expansion, αt is the linear
coefficient of the thermal expansion, I is the forth order identity tensor over the elements of Sym
whereas 1 is the identity tensor on the ordinary vector space. 

By following the scheme of the proof shown by Lucchesi et al. (1995), it is possible to
demonstrate that T and Ea are coaxial and by the isotropic properties of the elastic tensor C, T, Ee,
E and Et are coaxial too.

In order to assure the positeveness of the tangent elastic tensor and by using the arguments
illustrated by Pimpinelli (2003) we modify the constitutive Eqs. (1) such that:

(3a)

(3b)

 (3c)

where δ is a parameter which varies from zero to one and the stress T depends also on the anelastic
strain Ea. The resulting stress-strain law is illustrated in Fig. 1 in the uniaxial case.

As remarked by Pimpinelli (2003), the condition  is verified only approximately
depending on the choice of the parameter δ. By choosing δ very close to zero, the effect on the
material response is very small as we will see in the following by defining the extra stresses.

By using the representation theorem for the isotropic functions, there exist three scalar functions
β0, β1 and β2 of the principal invariants of E such that:

(4)

T σ1–( ) Sym−∈

E Et– Ee Ea+=

T C E Et– Ea–( )=

T σ1–( ) Ea⋅ 0=

C 2µI λ1+ 1⊗=

Et β θ( )1 α t θ1∆= =

T 1 δ–( )C E Et– Ea–( ) δC E Et–( )+=

C E Et– Ea–( ) σ1–[ ] Sym−∈

C E Et– Ea–( ) σ1–[ ] Ea 0=⋅

T σ1–( ) Sym−∈

T β01 β1E β2E
2+ +=
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where the coefficients βi, i = 0, 1, 2 depend in a non-linear way on the eigenvalues of E and on the
thermal expansion β (θ), respectively. Furthermore, in view of Eqs. (2), we have:

(5a)

(5b)

where Eq. (5a) is a direct consequence of Eq. (3a) and Eq. (5b) is a consequence of Eq. (4).
Moreover, the coefficients γ0 and γ1 and defined by:

(6a)

(6b)

(6c)

Thus, fixed the thermal strain Et and given a strain E, the key problem is to find the anelastic
strain Ea and the stress T, under the conditions Eqs. (3b), (c) and enforcing Eq. (5a). To this scope
let us denote by (e1, e2, e3) the eigenvalues of E such that e1 ≤ e2 ≤ e3 and by (a1, a2, a3) the
eigenvalues of Ea (principal anelastic strains) which are assumed non-negative. Furthermore, we
denote by I1, I2 and I3 the invariants of E, i.e.:

(7a)

(7b)

(7c)

Then, setting , the Eq. (3c), projected in the strain principal reference

frame, is split into a system of three equations, namely:

(8)

T 1 δ–( ) 2µ E Ea–( ) λ tr E Ea–( )1+[ ] δ 2µE λ tr E( )1+[ ] σ01–+=

T 1 δ–( ) β01 β1E β2E
2+ +( ) δ γ01 γ1E+( )+=

γ0 λ tr E β θ( )1–[ ] 2µβ θ( )–=

γ1 2µ=

σ0 2µ 3λ+( )β θ( )=

I1 tr E( ) e1 e2 e3+ += =

I1 E E⋅ e1
2 e2

2 e3
2+ += =

I3 E2 E⋅ e1
3 e2

3 e3
3+ += =

α λ
µ
--- 0 ε σ

µ
--- 0 η σ0

µ
-----=,≥=,≥=

2 e1 a1–( ) α e1 e2 e3 a1– a2– a3–+ +( ) ε η+( )–+[ ] a1 0=

Fig. 1 The uniaxial stress-strain law for a material with bounded tensile strength
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(9)

(10)

By following Lucchesi et al. (1995), Lucchesi et al. (2000) and Padovani et al. (2000), the
condition a1 = a2 = a3 = 0 defines a subset of Sym in which the behavior of the material is linearly
elastic and the condition Eq. (3b) determines it.

Specifically, in the domain:

 (11)

the behavior of the material is linearly elastic and the following relations hold:

(12a)

(12b)

(12c)

where by ti, i = 1, 2, 3 we denote the principal stress of T. Furthermore, the coefficients βi, i = 0, 1, 2
are determined equating Eq. (12a) to the components of Eq. (4) in the principal reference frame
constituted by the eigenvectors of E.

The conditions a1 ≠ 0, a2 ≠ 0 and a3 ≠ 0 define a domain dominated by the anelastic strains. The
system obtained by Eqs. (8), (9) and (10) determines the value of a1, a2 and a3 and the semi-
positiveness of the anelastic strain Ea determines the domain:

(13a)

                       i = 1, 2, 3 (13b)

i = 1, 2, 3 (13c)

(13d)

Let us denote by  the principal extra stress. Thus, we have:

(14)

In the particular case, defined by α = 0, i.e., when the Poisson’s modulus vanishes, we obtain
 where the role played by δ results evident.

Next, setting a1 = 0, a2 ≠ 0 and a3 ≠ 0, and solving the system provided by Eqs. (9) and (10), we
find the anelastic strains and by Eq. (5a) the principal stresses. Thus, we have:

2 e2 a2–( ) α e1 e2 e3 a1– a2– a3–+ +( ) ε η+( )–+[ ] a2 0=

2 e3 a3–( ) α e1 e2 e3 a1– a2– a3–+ +( ) ε η+( )–+[ ] a3 0=

ℜ 1

E Sym; 2e1 α I1 ε η+( )–+ 0≤∈

2e2 α I1 ε η+( )–+ 0≤

2e3 α I1 ε η+( )–+ 0≤ 
 
 
 
 

=

ti 2µei λ I1 σ0–+= i 1 2 3, ,=

β0 γ0 λ I1 σ0–= =

β1 γ1 2µ, β2 0= = =

ℜ 2 E Sym; e1
ε η+

2 3α+
-----------------– 0≥∈

 
 
 

=

ai ei
ε η+

2 3α+
----------------- ,–=

ti 1 δ–( )σ δ 2µei λ I1 σ0–+( ),+=

β0 σ= γ0 λ I1 σ0–= β1 β2 0= = γ1 2µ=, , ,

ti δ( )∆ ti δ( ) ti 0( )– , i 1 2 3, ,= =

ti δ( )∆ δ 2µei λ I1 σ0 σ+( )–+[ ] , i 1 2 3, ,= =

ti δ( )∆ δ 2µei σ0 σ+( )–[ ] , i 1 2 3, ,= =
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(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

where the definition of the domain  is obtained by using in Eqs. (15) the inequalities (t1 − σ) < 0
(with δ = 0) and a2 > 0. Next, setting E = µ(2 + 3α)/(1 + α) (the Young’s modulus of the masonry),
and using Eq. (5b) and Eqs. (15d), (e), (f) we obtain the coefficients βi, i = 0, 1, 2:

(16)

For the domain , the extra stresses are:

(17)

and, in the case α = 0, we obtain  by which the expression of t1 in Eqs. (15) is exact.
As above, by setting a1 = a2 = 0 and a3 ≠ 0, it is possible to define the domain :

ℜ 3 E Sym; e1
ε η+

2 3α+
-----------------– 0, αe1 2 1 α+( )e2 ε η+( )–+ 0><∈

 
 
 

=

a2 e2
α

2 1 α+( )
----------------------e1

ε η+( )
2 1 α+( )
----------------------–+=

a3 e3
α

2 1 α+( )
----------------------e1

ε η+( )
2 1 α+( )
----------------------–+=

t1 1 δ–( ) µ
1 α+( )

------------------ 2 3α+( )e1 αε η–+[ ]
 
 
 

δ 2µe1 λ I1 σ0–+( )+=

t2 1 δ–( )σ δ 2µe2 λ I1 σ0–+( )+=

t3 1 δ–( )σ δ 2µe3 λ I1 σ0–+( )+=

ℜ 3

β0 µ
e1

2 1 α+( )ε e1 e3 1 α+( )ε e2 e3 2 3α+( ) 1 α+( )ε–[ ]–{ }– e2e3 αε η–( )+
e2 e1–( ) e3 e1–( ) 1 α+( )

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

β1

E e2 e3+( )
e2 e1–( ) e3 e1–( )

----------------------------------------- ε η+
2 3α+
----------------- e1– 

 =

β2
E

e2 e1–( ) e3 e1–( )
----------------------------------------- e1

ε η+
2 3α+
-----------------– 

 =

ℜ 3

t1∆ δ( ) δ 2µe1 λ I1 σ0–
µ

1 α+( )
------------------ 2 3α+( )e1 αε η–+[ ]–+

 
 
 

=

t2∆ δ( ) δ 2µe2 λ I1 σ σ0
+( )–+[ ]=

t3∆ δ( ) δ 2µe3 λ I1 σ σ0
+( )–+[ ]=

t1 δ( )∆ 0=
ℜ 4

ℜ 4

E Sym; αe2 2 1 α+( )e1 ε η+( )–+ 0<∈

                 αe1 2 1 α+( )e2 ε η+( )–+ 0≤

                 α I1 2e3 ε η+( )–+ 0> 
 
 
 
 

=

a3 e3
α

2 α+( )
------------------ e1 e2+( ) ε η+( )

2 α+( )
------------------–+=
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(18)

Then, by setting ψ = 2µ/(2 + α), we obtain:

(19)

Here, the extra stresses are:

(20)

and, by setting α = 0, we obtain .
Concluding, the error supplied by δ on the principal stress depends on its assumed small value

and on the Poisson’s modulus which for the masonry is small too.

2.1 Remark

The problem to model elastic materials with different behavior in tension and compression is not
new in the literature. Such a type of problem was studied by Green and Mkrtichian (1977) in the
framework of non-linear elasticity, Curnier et al. (1995) in the case of small strain and anisotropic
materials, Padovani (2000) in the isotropic case and plane strain, Exadaktylos et al. (1999) for non-
linear materials, small strain and uniaxial stress.

We would emphasize that, in the case of no-tensile strength and in absence of thermal strain, the
modified constitutive Eq. (5a) is not only the expression of a numerical stabilization procedure but it
is able to describe the behavior of the bi-modular materials where the stress-strain law is shown in
Fig. 2 in the case of the uniaxial strain.

When the Poisson’s modulus vanishes (α = 0), Eq. (5a) provides exact results for the material
response in function of the assumed value of the parameter δ and these results are in accord to those

t1 1 δ–( ) µ
2 α+( )

------------------ 4 1 α+( )e1 2αe2 αε 2η–+ +[ ]
 
 
 

δ 2µe1 λ I1 σ0–+( )+=

t2 1 δ–( ) µ
2 α+( )

------------------ 4 1 α+( )e2 2αe1 αε 2η–+ +[ ]
 
 
 

δ 2µe2 λ I1 σ0–+( )+=

t3 1 δ–( )σ δ 2µe3 λ I1 σ0–+( )+=

β0 ψ
2αe1

2
e3 e1 e2 2e3 2 3α+( ) 2 α+( )ε–[ ] e3 αε 2η– 2e3α–( )+{ } e3 e2 e3–( ) 2e2α αε 2η–+( )+ +

2 e3 e1–( ) e3 e2–( )
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------–=

β1
ψ

e3 e1–( ) e3 e2–( )
----------------------------------------- α I2 2e3

2 2 3α+( )e1e2 e1 e2+( ) ε η+( )–+ +[ ]=

β2
ψ

e3 e1–( ) e3 e2–( )
----------------------------------------- α I1 2e3 ε η+( )–+[ ]–=

t1 δ( )∆ δ 2µe1 λ I1 σ0–+( ) µ
2 α+( )

------------------ 4 1 α+( )e1 2αe2 αε 2η–+ +[ ]–
 
 
 

=

t2 δ( )∆ δ 2µe2 λ I1 σ0–+( ) µ
2 α+( )

------------------ 4 1 α+( )e2 2αe1 αε 2η–+ +[ ]–
 
 
 

=

t3 δ( )∆ δ 2µe3 λ I1 σ σ0
+( )–+[ ]=

t1 δ( )∆ t2 δ( )∆ 0= =
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supplied by Padovani (2000). When the Poisson’s modulus is not equal to zero, Eq. (5a) describes
the behavior of a model which may be adopted as an alternative to that one provided by Padovani
(2000).

3. The numerical solution procedures

In this section, we illustrate the numerical procedures which can be adopted to solve the boundary
equilibrium problem of a masonry subjected to thermal strain by using the finite element method. In
the framework of the iterative methods, we consider the Newton-Raphson method based on the
tangent elastic operator and the direct method, i.e., the secant approach. For such methods, some
properties of the elastic operator will be discussed in order to analyze the convergence of the
numerical method.

3.1 The Newton-Raphson method

As well known, the Newton-Raphson method is based on the residual load redistribution and uses
the tangent elastic stiffness. For the isotropic materials, the tangent operator was obtained by
Lucchesi et al. (1995) by deriving Eq. (4) respect to the total strain E. Here, we consider the
derivative of Eq. (5b) made respect to E. Thus setting:

      

      

(21)

α1 1 δ–( )
∂β0

∂I1

-------- δλ+= α2 1 δ–( )2
∂β0

∂I2

--------=

α3 1 δ–( )2
∂β1

∂I2

--------= α 4 1 δ–( )3
∂β0

∂I3

--------=

α5 1 δ–( )3
∂β1

∂I3

--------= α 6 1 δ–( )3
∂β2

∂I3

--------=

α7 1 δ–( )β1 δ2µ+= α8 1 δ–( )β2=

Fig. 2 The uniaxial stress-strain law for a bi-modular material
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we obtain:

(22)

where G = E2 and  is the tensor product between two second-order tensors such that:

 (23)

We have recomputed the derivatives of the coefficients βi, i = 0, 1, 2 made respect to the invariants
Ii, i = 1, 2, 3 of E finding that they depend on the thermal strain only by the coefficient β2; thus, the
expressions shown in the paper of Lucchesi et al. (1995) still hold.

As announced in the previous Section, we prove that the tangent elastic tensor defined by Eq. (22)
is positive definite when δ > 0. By following Ogden (1997), Chapter 6 and Appendix, the
positiveness of the tangent elastic tensor is equivalent to require the positiveness of the engineering
tangent elasticity matrix Dref expressed in the principal frame constituted by the eigenvectors of the
strain E or the stress T:

(24)

where ti, i = 1, 2, 3 and ei, i = 1, 2, 3 are the principal stress and strain, respectively.
Thus, by the inequalities on the Lame’s moduli and on α, it is easy to show that in the region 

the elastic tensor is positive definite. In the region , by using Eq. (13c), we obtain:

(25)

DET α11 1⊗ α2 1 E⊗ E 1⊗+( ) α3E E⊗ α4 1 G⊗ G 1⊗+( )+ + + +=

α 5 E G⊗ G E⊗+( ) α 6G G⊗ β7I β8 1 ⊗ E E ⊗ 1+( )+ + +

⊗

A ⊗ B( )C ACBT A B C, ,∀= Lin∈

Dref[ ]

∂t1

∂e1

--------  
∂t1

∂e2

--------   
∂t1

∂e3

--------   0  0  0  

∂t2

∂e1

--------  
∂t2

∂e2

--------   
∂t2

∂e3

--------   0  0  0  

∂t3

∂e1

--------  
∂t3

∂e2

--------   
∂t3

∂e3

--------   0  0  0  

0  0  0  
1
2
---

t1 t2–
e1 e2–
---------------  0  0  

0  0  0  0  
1
2
---

t1 t3–
e1 e3–
---------------  0  

0  0  0  0  0  
1
2
---

t2 t3–
e2 e3–
---------------  

=

ℜ 1

ℜ 2

Dref[ ] δµ

2 α+( )  α   α   0  0  0  

α   2 α+( )  α   0  0  0  

α   α   2 α+( )  0  0  0  

0  0  0  1  0  0  

0  0  0  0  1  0  

0  0  0  0  0  1  

=
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Then, it is evident that the elastic tensor is positive definite if and only if δ > 0. Next, we consider
the strain E belonging to ; we obtain:

(26)

and, when E belongs to , we have:

 

  

(27)

In these case too, we see that the tangent elastic tensor is positive definite if and only if δ > 0.
From a numerical point of view, if a node of the mesh is connected by elements for which the
elasticity matrix is not definite positive then the global stiffness matrix become singular and the
equation system cannot be solved.

Furthermore, we observe that if the positiveness of Dref holds, then, for the convexity of Sym,
Eq. (5a) is strictly monotone in the interior points of , i = 1, 2, 3, 4, i.e.:

(28)

that is an equivalent condition to assure that the energy is a strictly convex function in the regions
, i = 1, 2, 3, 4, of Sym.

ℜ 3

Dref
11 1 δ–( )E δµ 2 α+( )+=

Dref
12

Dref
21 δµα, Dref

13 δµα= = =

Dref
22 δµ 2 α+( ), Dref

23 δµα==

Dref
33 δµ 2 α+( )=

Dref
44 µ 1 δ–( )

2 3α+( )e1 ε η+( )–
2 e1 e2–( ) 1 α+( )

--------------------------------------------------- µδ+ 0>=

Dref
55 µ 1 δ–( )

2 3α+( )e1 ε η+( )–
2 e1 e2–( ) 1 α+( )

--------------------------------------------------- µδ+ 0>=

Dref
66 µδ 0>=

ℜ 4

Dref
11 1 δ–( )4µ 1 α+( )

2 α+
------------------------- δµ 2 α+( )+=

Dref
12

Dref
21 1 δ–( ) 2µα

2 α+
------------- δµα,+= = Dref

13
Dref

31 δµα= =

Dref
22 1 δ–( )4µ 1 α+( )

2 α+
------------------------- δµ 2 α+( ),+= Dref

23
Dref

32 δµα= =

Dref
33 δµ 2 α+( ),= Dref

44 µ 0>=

Dref
55 1 δ–( )µ

2 α+( )
--------------------

4 1 α+( )e1 2αe2 2 ε η+( )–+
2 e1 e3–( )

-------------------------------------------------------------------------- µδ+ 0>=

Dref
66 1

2
---

t2 t3–
e2 e3–
--------------- 1 δ–( )µ

2 α+( )
--------------------

4 1 α+( )e2 2αe1 2 ε η+( )–+
2 e2 e3–( )

-------------------------------------------------------------------------- µδ+ 0>= =

ℜ i

T* T–( ) E* E–( )⋅ 0,  E* E≠ Sym∈>

ℜ i
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Finally, defining the derivative of Eq. (5b) respect to E:

 (29)

we note that the first part of Eq. (29) is positive semi-definite whereas the second part is positive
definite if δ > 0. Therefore, if δ > 0, then DET is positive definite.

Lucchesi et al. (1996) proposed a different expression of the tangent elastic tensor which
deduction is based on the derivatives of the eigenvalues and eigenvectors of the stress tensor T
respect to the total strain E. The obtained expression, which requires a strong mathematical
apparatus, depends explicitly on the eigenverctors of the strain E and on the principal strains ei,
i = 1, 2, 3. An alternative result can be obtained in a very simple way. 

Having in mind that the stress tensor T and the strain E are coaxial, the key idea is to use the
tangent elastic matrix described in the principal reference system frame constituted by the
eigenvectors of the strain E and rotate it in the given reference system frame.

Let us denote by l, m and n the eigenvectors corresponding to the principal strains ei, i = 1, 2, 3
and denote by Q the matrix which maps the vector of the engineering components of the strain ε
onto the engineering vector of the principal strains e such that e = Qε. Thus:

(30)

Next, let us define by QT the matrix which maps the engineering components of the principal
stress t onto the vector of the engineering components of the stress σ such that . Then:

(31)

Finally, if Dref is the tangent elasticity matrix expressed in the principal reference frame constituted
by the eigenvectors of the strain E, then the tangent engineering elasticity matrix D expressed in the
given reference system frame is:

(32)

DET 1 δ–( )DE β01 β1E β2E
2+ +( ) δ λI11 1⊗ 2µI+( )+=

e1

e2

e3

0 

0 

0 

l1
2  l2

2  l3
2  l1l2  l1l3  l2l3

m1
2  m2

2  m3
2  m1m2  m1m3  m2m3

n1
2  n2

2  n3
2  n1n2  n1n3  n2n3

2l1m1  2l2m2  2l3m3  l2m1 m2l1+   l1m3 m1l3+   l2m3 m2l3+

2l1n1  2l2n2  2l3n3  l2n1 n2l1+   l1n3 n1l3+   l2n3 n2l3+

2m1n1  2m2n2  2m3n3  m2n1 n2m1+   m1n3 n1m3+   m2n3 n2m3+   

E11

E22

E33

2E12

2E13

2E23

=

σ QTt=

T11
 

T22
 

T33
 

T12

T13

T23

l1
2  m1

2  n1
2  2l1m1  2l1n1  2m1n1

l2
2  m2

2  n2
2  2l2m2  2l2n2  2m2n2

l3
2  m3

2  n3
2  2l3m3  2l3n3  2m3n3

l1l2  m1m2  n1n2  l1m2 m1l2+   l1n2 n1l2+   m1n2 n1m2+

l1l3  m1m3  n1n3  l1m3 m1l3+   l1n3 n1l3+   m1n3 n1m3+

l2l3  m2m3  n2n3  l2m3 m2l3+   l2n3 n2l3+   m2n3 n2m3+

t1
 

t2
 

t3
 

0 

0 

0 

=

D QTDref Q=
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3.2 The secant method

The secant method for no-tension materials was presented firstly by Romano and Sacco (1984)
and Sacco (1990) which provided an explicit form for the secant operator. For it, an alternative form
was presented by Alfano et al. (2000) in the isotropic case of the plane stress/strain.

The secant method is based on the definition of a symmetric fourth-order tensor (function of the
actual strain E) such that if T is the stress tensor corresponding to the strain E then:

(33)

There is not a criterion on which to choice the more convenient form of the secant operator and,
on the suggestion of Alfano et al. (2000), we consider the following expression:

(34)

where α1 = λ, α7 = 2µ and α2, α3 and α6 to be determine. In view of the definition (33) and by the
aid of Eq. (4) we have:

(35)

Thus, by equating term to term and solving the system, we obtain:

(36)

where the coefficients βi, i = 0, 1, 2 have been determined previously.
It remains to show the conditions on which the elasticity secant tensor is positive definite. This is

an open question to which, actually, the answer is only of a numerical type. Indeed, in the case of
the bounded tensile strength, several numerical investigations, i.e., the extraction of the eigenvalues
by the secant elasticity matrix, have shown the positiveness of the secant tensor.

Romano and Sacco (1984) and Sacco (1990) proposed the following form of the secant elasticity
tensor:

(37)

where it is easy to verify that the condition  is fulfilled.
Notice that Eq. (37) holds for a general anisotropic material subjected to thermal strain and that

its explicit form depends on the eigenvectors of the elastic strain E as was shown by Romano and
Sacco (1984) in the case of the isotropy. In this case, it is possible to place Eq. (37) into an
alternative elegant form. Indeed, let us consider the non linear function ℘  that maps the strain E
onto the anelastic strain Ea. 

T CEt– CsecE+=

Csec α11 1⊗ α 2 1 E⊗ E 1⊗+( ) α3E E⊗ α6E2 E2⊗ α7I+ + + +=

β01 β1E β2E
2

+ + σ01– α1I11 α2 I21 I1E+( ) α3I2E α6I3E
2 α 7E+ + + + +=

α2
1
I2

---- β0 σ0 λ I1–+( )=

α3
1
I2

---- β1 2µ–
I1

I2

---- β0 σ0 λ I1–+( )–=

α6
β2

I3

-----=

Csec C
CEa CEa⊗

CEa E⋅
----------------------------–=

T CEt– CsecE+ C E Ea– Et–( )= =
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Since E and Ea are coaxial, then the function ℘  is isotropic and there exist three scalar functions
ωi, i = 0, 1, 2 of the invariants of E such that:

(38)

Splitting Eq. (38) into the reference frame constituted by the eigenvectors of the strain E and
equating to the principal anelastic strains, we obtain a system that determines the coefficients ωi,
i = 0, 1, 2. Thus, for the region , by Eqs. (13b) we obtain the following system:

(39)

by which:

(40)

Thus:

(41)

and

(42)

Furthermore:

(43)

Ea ω01 ω1E ω2E
2

+ +=

ℜ 2

ω0 ω1e1 ω2e1
2

+ + e1
ε η+

2 3α+
-----------------–=

ω0 ω1e2 ω2e2
2

+ + e2
ε η+

2 3α+
-----------------–=

ω0 ω1e3 ω2e3
2

+ + e3
ε η+

2 3α+
-----------------–=

ω0
ε η+

2 3α+
-----------------–= , ω1 1= , ω2 0=

If E ℜ 3:∈ ω0
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2 1 α+( ) e1 e2–( ) e1 e3–( )
----------------------------------------------------------------------------------------------------------------------------------------------------=

ω1
αe1 e2 e3+( ) 2e1

2 1 α+( ) e2 2e3 1 α+( ) ε– η–[ ] e3 ε η+( )–+ +
2 1 α+( ) e1 e2–( ) e1 e3–( )

------------------------------------------------------------------------------------------------------------------------------------------------------------=
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4. The numerical examples

The proposed numerical method has been implemented on an existing structural FEM code named
Solver that is distributed and commercialized in Italy by a software house.

In the numerical examples we use an eight-nodes finite element that is based on the formulation
of Simo and Rifai (1990) extended to the 3-D case in the framework of the assumed strain method
by using the incompatible displacement field of Wilson et al. (1973). The details on the formulation
of the finite element will be illustrated in a forthcoming paper and, at this stage, one can refer to the
paper of Pimpinelli (2003) for the case 2-D.

In order to illustrate the effectiveness of the numerical method developed in the preceding
sections, we perform some numerical simulations. We begin to consider a rectangular block
subjected to a trapezoidal load and to a thermal load. The second example considers a cantilever
beam made of a bi-modular material subjected to a constant curvature. The same example is
analyzed under a constant curvature and under a uniform thermal strain in the cases of no-tensile
strength and bounded tensile strength, respectively. In order to show the effects of the thermal
strains on the stress state of a masonry structure, firstly a double-clamped masonry wall under the
actions of the self weight, a uniform load and a thermal load is analyzed and next it is performed an
analysis on a clamped masonry arc subjected to the self weigh, a concentrated load and to a
temperature variation.

4.1 The rectangular block

This is a rectangular block in plane stress state supported by a rigid plane. A trapezoidal load, as
shown in Fig. 3, loads the block that is subject to a thermal strain too. The material is assumed with
no-tensile strength.

The block is discretized first into fifty brick finite elements and next into two hundred elements.
The calculation is performed by using the tangent method as provided by Lucchesi et al. (1995)
with a relative error on the displacements ε = 1.0 × 10−5 and by using our secant method (see Eq. (34))
with a relative error on the displacements ε = 1.0 × 10−4. The analytic solution is shown in paper of
Pimpinelli (2003) as well as the data used for the example.

The results analysis are presented in Table 1 which shows that they are in agreement to the

Fig. 3 The rectangular block
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analytical values and that the refinement of the mesh has not a meaningful effect on the solution.
The use of the coarse mesh is sufficient to fully describe the behavior of the loaded block.
Moreover, the convergence ratio for the secant method is very slow and it is not possible to force
the tolerance to small values. The comparison between the tangent method (approximated for the
presence of the assumed small value of δ) and the secant method (virtually exact) does not show
significative differences in terms of displacements and stress. Thus, the approximated tangent
method is effective in the convergence ratio too.

In Fig. 4 we illustrate the top block displacement versus the nodal points location.

4.2 The cantilever beam

This is a cantilever beam that is subjected to a constant curvature and the geometry is shown in

Table 1 The rectangular block

Displacements v (m) × 10−4 and stress σ (GPa) × 10−3

50 elements 200 elements Theoretical

Method Tangent Secant Tangent Secant

v(x = 0, y = a)
v(x = a, y = a)
v(x = 2a, y = a)
σY(x = 0, y = a)
σY(x = a, y = a)
σY(x = 2a, y = a)
σX(x = 0, y = a)
σX(x = a, y = a)
σX(x = 2a, y = a)
n. of. iterations

−20.004
−19.660
−10.004
−1.0014
−1.0007
−9.77E−4

−0.009988
−0.1086
−0.0107

13

−19.918
−19.525
−9.8925
−0.9994
−0.9923
−4.90E−3

−1.54E−7

−0.00015
−0.0032

89

−19.997
−19.631
−9.9984
−0.9975
−1.0023

−3.3128E−6

3.9954E−7

−0.0039
−0.000028

14

−19.986
−19.564
−9.9555
−0.9999
−0.9962
−1.60E−3

−1.053E−6

−0.00087
−0.00027

148

−20.0
−20.0
−10.0
−1.00
−1.00

0
0
0
0
=

Fig. 4 The rectangular block. Top displacements
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Fig. 5. The proposed example is necessary to test the performance of the proposed numerical
method in bending dominated situations. We assume the following geometrical data: L = 10.0 m,
h = 2.0 m, th = 1.0 m.

We begin consider the first case for which we assume that the beam is constituted by a bi-modular
material and we study it by considering the following data:

Ec = 1500 GPa, Et = 750 GPa, ν = 0.0, δ = 0.50, ε = 10−5

where Ec is the Young’s modulus in compression and Et is the Young’s modulus in traction obtained
by setting δ = 0.5. The beam is discretized in 20 × 4 × 1 brick elements. 

Notice that for this kind of problem, two principal strains are ever equal to zero (different by zero
for the double precision computer machine) and this fact has produced a numerical instability in the
equation system during the iterative process. In order to avoid such a type of instability is was
necessary to assume a small value of the Poisson’s ratio. Furthermore the same example was
examined by using our proposed tangent elasticity matrix and the convergence was assured. The
results analysis are presented in Table 2 by which we note that our proposed numerical method
provides exact results.

Then, we have considered the following data:

E = 1500 GPa, ν = 0.25, αt = 0.00025(oC)−1, ∆θ = 200oC, δ = 0.001, ε = 10−5

and, by assuming σ = 0 and for a constant curvature χ = 0.0010, we obtain q = 1.50 GPa. Furthermore
we have considered the case σ = 0.75 GPa.

The theoretical vertical displacement of the cantilever end section at the point C is ν = + 

= 0.10 m and the deflection of the middle plane (x-z) is presented in Fig. 6.

χL2

2
---------

α t θh∆
2

---------------

Fig. 5 The cantilever beam

Table 2 The bi-modular cantilever beam

Displacements u (m) and stress σ (GPa)

Computed Theoretical

uy(C) 0.050 0.050
ux(C) 0 0
σx(B) 0.7500 0.75
σx(A) −1.5000 −1.50
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In these cases too, the method proposed by Lucchesi et al. (1995) fails whereas our proposed
tangent method reaches the convergence in few iterations. Indeed, also having adopted the corrective
factor δ, we have found a negative term on the diagonal of the tangent elastic matrix. This is not
attributed to the method of Lucchesi et al. (1995) but only to a numerical instability related to the
computer precision. Moreover the examples were examined by using the secant method (virtually no
approximated) and the results analysis are illustrated in Table 3. As we see, there is not a
significative difference between the two methods, but the tangent method is very fast.

4.3 The masonry clamped wall

This is a masonry wall which is clamped at the left and right edges: the geometry is shown in Fig. 7.
We assume the following data:

Fig. 6 The deflection of the cantilever beam

Table 3 The cantilever beam under the action of the thermal load

Displacements u (m) and stress σ (GPa)

σ = 0               σ = 0.75

Tangent Secant Theoretical Tangent Secant Theoretical

uy(C) 0.09952 0.099795 0.10 0.9987 0.9986 0.10
ux(C) 0.4999 0.4999 0.50 0.500 0.5000 0.50
σx(B) 0.00179 −2.8482E-6 0 0.7508 0.7499 0.75
σx(A) −1.5029 −1.5023 −1.50 −1.5034 −1.5032 −1.50
n. of iterations 8 68 = 4 17
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L = 4.0 m, h = 2.0 m, th = 0.20 m, γ = 18000 N/m3, E = 1.0 GPa, q = 1.0 KPa
σ = 100.0 KPa, ν = 0.25, αt = 0.00001(oC)−1, ∆θ = −15oC, δ = 0.005

The block is discretized into 20 × 10 × 1 brick finite elements and it is analyzed firstly on the
action of the self weight and the uniform load q and then in presence of the thermal load too. The
results of the analysis are presented in Table 4.

This example is instructive to understand the meaningful modifications that the thermal strains can
produce on the stress state in the masonry walls. Indeed, by Table 4, we observe that the effect of
the thermal load increases, in absolute value, both the value of the stress σx at the top and the
bottom of the clamped wall. The effects of the thermal strains on the static of the masonry
structures will be more evident in the following example

4.4 The masonry arc

The masonry arc, which geometry is illustrated in Fig. 8, is clamped at the edges and it is
subjected to the self weigh and to a concentrated load P. We assume that the temperature at the act
of the construction is θ = 20oC and we want analyze the effect of the temperature decrement up to
zero. We assume the following data:

Ri = 600 cm, Re = 680 cm, th = 30 cm, γ = 1800 daN/m3, E = 30000 daN/cm2

P = 800 daN, σ = 0.10 daN/cm2, ν = 0.25, αt = 0.00001(oC)−1, δ = 0.0005

For symmetry reasons, only half arc is analyzed discretizing it into 8 × 4 × 1 brick elements and in

Fig. 7 The clamped wall

Table 4 The clamped wall

Displacements u (m) and stress σ (KPa)

∆θ = 0 ∆θ = −15oC

uy(A) −1.26E-4 −2.81E-4

σx(A) −42.73 −58.67
σx(B) 42.72 100.400
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Fig. 9 are shown the curves relating the vertical displacement and the minimum principal stress
t1(daN/cm2) at the point A of the structure versus the temperature.

By Fig. 9 we see that the vertical displacement v at the point A is very small compared to the
total displacement when the temperature goes to zero. Furthermore, the principal stress t1 change its
nominal value from 2.86 daN/cm2 under the loads at θ = 20oC to 15.63 daN/cm2 at θ = 0oC and the
ratio is approximately 5.46. Thus, the temperature variations can compromise the equilibrium of the
structure if the compressive principal stresses exceed the compressive strength of the material. In
order to evaluate these aspects, a more sophisticated constitutive 3-D model can be formulated
taking into account the compressive strength of the material (see Lucchesi et al. (1996)) and using
the results obtained by the present paper.

Fig. 8 The masonry arc

Fig. 9 The masonry arc. The displacement and the principal stress at the point A
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5. Conclusions

We have presented constitutive equations and numerical methods to study structural problems
concerning bodies made of masonry-like materials with bounded tensile strength in presence of
thermal strains. By setting δ > 0, we have shown that the tangent elasticity tensor is positive definite
and thus the Newton-Raphson proposed numerical method is stable and convergent. Moreover, the
numerical examples show that the method is effective too. The use of the eight-node finite element
based on the model by Simo and Rifai (1990) contributes to reduce the equations system number
and to obtain a considerable accuracy respect to the use of a twenty-four nodes element.

Furthermore, the convergence rate is fast respect to the secant method and the approximation due
to the assumed values of the parameter δ is negligible. Finally, the illustrative examples show that
the analysis results obtained by the proposed numerical methods, are in agreement with the
theoretical solution.
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