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Abstract. This paper deals with the modal analysis of rotational shell structures by means of the
numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The
treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly
elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of
Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in
terms of stress resultants and couples. These equations are subsequently linearized and specialized for the
rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the
longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations
in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by
means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the
one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method
in meridional direction, yielding accurate results with an extremely low computational cost and not using
the so-called “delta-point” technique.

Key words: shell of revolution; generalized differential quadrature method; modal analysis; numerical
method; dynamic analysis.

1. Introduction

Shells of revolution are common structural elements and can be found in many fields of
engineering technology. Their use spans over different branches of engineering such as pressure
vessels, cooling towers, wheels, tires and turbine engine components. The objective of the present
work is to enlighten a new efficient and accurate technique, called the G. D. Q. Method (Bellman
and Casti 1972), for the solution of the dynamic problem of shells of revolution. The present work
is based on the classic first order shear deformation theory for thin shells, as proposed by Reissner
(1969) and takes into account both for transverse shear deformability and rotary inertias. The
governing equations of motion, for the shell structure, are a set of five bi-dimensional partial
differential equations with variable coefficients. These are initially expressed in terms of forces and
couples per unit length of parametric lines of the middle surface. By introducing the constitutive

† Full Professor of Structural Mechanics 
‡ Ph. D. Student in Structural Mechanics

DOI: http://dx.doi.org/10.12989/sem.2004.17.6.789



790 Erasmo Viola and Edoardo Artioli

equations and the kinematic relationships between strain measures and displacements, the
equilibrium equations can be put in terms of generalized displacement components of the points
lying on the middle surface of the shell.

The analysis of rotational shells can be expedited by the expansion of all variables of the problem
into partial Fourier series in the circumferential coordinate θ. This achieves separation of the
dependent variables and the initial two-dimensional problem is reduced to a series of one-
dimensional problems. In the present linear formulation, the resulting governing equations are all
uncoupled and can be solved separately for each harmonic. Precisely, they can now be approximated
and solved with the aim of the numerical technique called G. D. Q. method so to give a set of
generalized eigenvalue problems, each one being characterized by a circular harmonic number. This
method, originally proposed by Bellman and Casti (1971, 1972) has recently been applied in several
fields of structural mechanics (Bert and Malik 1996) and in computational shell mechanics (Lam et al.
2000, Wu et al. 2000, Li and Lam 2001, Jiang and Redekop 2001, Ng et al. 2003). Apparently, the
interest of researchers in it is increasing, due to its great simplicity and versatility, particularly when
compared with other classical numerical methods. The present G. D. Q. procedure permits to deal
directly with the governing equations, while the same might not always hold for other approaches
such as the Finite Element method. Several comparisons with available results on specimen cases
can be done. The basic feature of the present application of this method is the prior-to-discretization
Fourier decomposition with respect to the circumferential coordinate, which leads to significative
computational costs reduction. Moreover, with the adopted G. D. Q. procedure and in the
framework of the utilized shell engineering theory, an exact imposition of boundary conditions can
be achieved. Even the relevant case of closed rotational shells (domes) is dealt with no
approximation in terms of geometric assignments in correspondence of the apex with no need of
introducing a little opening at the top of the shell. Finally, it is to be noted that in the present study
no use of the so called delta-point technique (Bert and Malik 1996, Redekop and Xu 1999) is made,
avoiding fictitious assignments in terms of boundary conditions. The G. D. Q. solution shows very
good convergence and appears as precise and accurate as that obtained by FEM analyses. As a
further confirm of the technique potentiality a complete series of shells modal shapes investigated is
presented in Appendix A. It is worth noting that, to the authors’ knowledge, this way of applying
the G. D. Q method to rotational shell structures has not been presented earlier in the technical
literature.

2. Dynamics of stress-resultants and stress-couples vectors

In the first part we will be referring to the so called first order shear deformation Reissner shell
theory (Reissner and Wan 1967, Reissner 1969). We consider the reference surface assumed for the
shell as a given surface in a vectorial form r  = r(α1, α2), where (α1, α2) are curvilinear coordinates
that will be considered orthogonal in this context for simplicity’s sake, with linear element dr · dr  =
A1

2dα1
2 + A2

2dα2
2. We also consider a second associated surface with the equation ρ = ρ(α1, α2).

On this second surface the coordinate curves αi = constant will in general not be orthogonal
anymore. We assume that these two surfaces, being the reference surface of the thin shell
considered, represent the same continuum, the first one being the undeformed state of the aggregate
and the second one being its deformed state. Moreover, in what follows the reference surface will be
taken conventionally as the middle surface of the shell in its undeformed state. The infinitesimal
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portion of deformed surface is sided by vectors ρ,1dα1 and ρ,2dα2 (Fig. 1). For this surface element
to be an element of a shell, we assume that its four sides are acted upon by vector forces and
moments N1A2dα2, M 2A1dα1, etc., in accordance with Fig. 1 and Fig. 2. We also assume the
existence of vector surface forces and moments qA1A2dα1dα2 and mA1A2dα1dα2. It is worth noting
that the previously defined Ni and M i vectors are internal forces and moments acting per unit of
undeformed length and that q and m are forces and moments distributed on the undeformed unitary
mid-surface area as can be deduced from Fig. 1. The algebraic vectors defined above can be written
as follows:

(1a)

(1b)

N i Nij t j Qin, M i Mij n t j× Tin+=+=

q qi t i pnn, m min t i× mnn i(+=+ 1 2),= =

Fig. 1 Undeformed and deformed configurations for the shell infinitesimal element 

Fig. 2 Internal actions components acting on shell mid-surface element boundaries
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where the first two components are directed along tangent vectors ρ,1dα1 and ρ,2dα2, while the third
one is acting along the outward normal n. It will be evident later how the previous component
representation corresponds to the strain resultants and couples one. Consideration of increments in
passing from sides αi = const. to sides αi + dαi = const. leads to a couple of vector dynamic
equations, the first concerning the balance of forces and the other the balance of moments:

(2a)

(2b)

Each of the above equations is equivalent to three scalar component equations, as will presently
be considered and represents an equilibrium equation for the shell infinitesimal element, written in
terms of internal actions defined per unit length of coordinate lines on the reference surface (Figs. 1
and 2). 

Precisely, the three scalar equations coming from Eq. (2a) are translational ones along the tangent
t1, t2 and normal n directions and the last three equations are rotational equilibrium ones, about the
same directions, respectively.

In addition to the balance Eqs. (2a-b), which are valid in the interior of the shell we also have
balance equations for the element ds of the edges of the shell. With N and M  being edge forces and
moment intensities, we have as expressions for N and M  in terms of the edge values of the stress
resultants:

(3)

In the previous, n indicates the outward normal direction of the boundary curve, tangent to shell
surface, and the summation convention for repeated subscript indices is invoked.

3. Strain-displacement relations via principle of virtual work 

Defining virtual displacements and virtual strains as sets of (infinitesimally small) kinematically
admissible arbitrary displacements and strains which, by proper association with corresponding sets
of internal forces and moments, give rise to a quantity of virtual work in a way that the equilibrium
Eqs. (2)-(3) are equivalent to an integral equation of the form (Reissner and Wan 1967):

(4)

In this integral equation, dS = A1A2dα1dα2, δr  and δϕ are virtual translational and rotational
displacement vectors and δεi and δκi are virtual strain resultant and strain-couples vectors.

The way the previous equation is usually considered is to assume that δεi and δκi are known
functions in terms of δρ, δϕ  and suitable derivatives, thereof, by means of integration by parts, in
order to eliminate derivatives of δρ and δϕ and by considering δρ and δϕ arbitrary in the interior as
well as along the boundary, satisfaction of Eqs. (2a-b)-(3) comes as necessary and sufficient a
condition for the validity of Eq. (4). 

In this paragraph, it is assumed that Eqs. (2a-b)-(3) are given a priori. In this manner they can be
utilized to eliminate q, m, N and M  in Eq. (4), with Ni and M i now being arbitrary functions.

A2N1( ),1 A1N2( ),2 A1A2p+ + 0=

A2M 1( ),1 A1M 2( ),2+ ρ,1+ A2N1( )× ρρ,2 A1N2( )× A1A2m+ + 0=

N N icos n αi,( ) M M icos n αi,( )= =

q δρ⋅ m δϕ⋅+( )dS∫ N δρ⋅ M δϕ⋅+( )∫° ds+ Ni δεi⋅ M i δκ i⋅+( )dS∫=
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Introduction of Eqs. (2a-b)-(3) into Eq. (4) gives first:

 (5)

Then, integrating by parts to eliminate derivatives of Ni and M i in Eq. (5), one obtains:

(6)

recalling that .
Considering the internal actions Ni and M i as arbitrary vector functions in Eq. (6), the virtual

strain-displacement relations are obtained:

(7)

It has to be noted that since by assumption there exists a space function ρ = ρ(α1, α2), one may
write (δρ), i = δ (ρ, i) in Eq. (7), but as long as we’ve not established the existence of a function ϕ
corresponding to the quantity δϕ in Eq. (7) we are not in a position to replace (δϕ), i by δ(ϕ, i). In
what follows and throughout the whole work some simplifications will be assumed in order to
overcome some difficulties such as the ones arising from foregoing relations of nonlinear theory.
First of all we will reduce to geometrically linear equations.

4. Linearization

The equilibrium and strain-displacement relations of the linear theory can be obtained by simply
replacing in Eqs. (2) the general radius vector ρ to points on the deformed shell reference surface
by the given vector r  to points on the undeformed surface.

Changing ρ, i into r, i in Eqs. (2) changes ρ, i into r, i in Eq. (7) and therewith δεi and δκi are given
as linear combinations of (δρ), i = δ (r + u), i = δu, i and δϕ and, finally, (δϕ), i = δ (ϕ, i).

In this way we can pass directly from virtual strain-displacement relations to actual strain
displacement relations, in the following form:

(8)

We list in what follows the system of scalar strain-displacement relations which are equivalent to
the vectorial relations (8) by writing:

(9a)

(9b)

where r, i = Aiti and n = t1 × t2, with the Gauss-Weingarten differentiation formulas (Reissner and
Wan 1967):

N i δε i⋅ M i δκ i⋅+( )A1A2dα1dα2∫∫ N i δρ⋅ M i δϕ⋅+( )∫° cos n αi,( )ds+=

A2N1( ),1 A1N2( ),2+[ ] δρ⋅ A2M 1( ),1 A1M 2( ),2 ρ,1+ + A2N1( )× ρρ,2+ A1N2( )×[ ] δϕ⋅+{ }dα1dα2∫∫–

N i δε i⋅ M i δκi⋅+( )dS∫ N i δρ( ),i ρ, i+ δϕ×[ ] M i δϕ( ),i⋅+⋅{ }αi
1– dS∫=

ρ,i Ni×( ) δϕ⋅ ρρ,i δϕ×( )– Ni⋅=

α iδε i δρ( ),i ρ,i+ δϕ; αiδκ i δρ( ),i=×=

Aiεi u,i r ,i+ ϕ; Aiκ i× ϕϕ,i= =

εi εi j t j γin; κi κ i j n t j× λin+=+=

u i ui t i unn; ϕ ϕin t i× ωn+=+=
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(10a)

(10b)

In the previous, S1 and S2 are in-plane radii of curvature given by 1/S1 = −A1,2/A1A2 and 1/S2 =
A2,1/A1A2, while the Rij = Rji are the usual out-of-plane radii of curvature of the surface (Reissner
1969). Introducing Eqs. (9)-(10) into Eq. (8) gives the expressions for in-plane strain resultants εij,
transverse (shearing) strain resultants γi , bending and twisting strain couples κij and in-plane strain
couples λi (Reissner 1969):

(11a)

(11b)

(12a)

(12b)

(13)

(14)

Finally, it is to be noted that all six strain couple components (12a-b)-(14) are given in terms of
components of rotational displacements only, while four of the six strain-resultant components are
given in terms of both translational and rotational displacement components.

5. Basic simplifications of five D. O. F. shell theory

In the previous statements a fundamental concept has been ignored. In fact, no mathematical
association has been established between internal stress resultants and couples and stress
components acting on normal sections traced along coordinate directions of the reference surface of
the shell. Defining this kind of relation is basilar in order to permit some simplification to the theory
treated so far and to be able to make use of the G. D. Q. solution procedure. We admit that internal
stress resultants and couples which rise from a concept of static equivalence with stress components
represented in Fig. 3 are given by Gould (1999):

t1 1,

A1

-------
t2

S1

----- n
R11

-------;
t2 1,

A1

-------
t1

S1

-----–
n

R12

-------;
n,1

A1

------
t1

R11

-------
t2

R12

-------;–=–=–=

t1 2,

A2

-------
t2

S2

----- n
R21

-------;
t2 2,

A2

-------
t1

S2

-----–
n

R22

-------;
n,2

A2

------
t1

R21

-------
t2

R22

-------–=–=–=

ε11
u1 1,

A1

--------
u2

S1

-----–
w

R11

-------; ε22
u2 2,

A2

--------
u1

S2

----- w
R22

-------+ +=+=

ε12
u2 1,

A1

--------
u1

S1

----- w
R12

------- ω; ε21
u1 2,

A2

--------
u2

S2

-----–
w

R21

------- ω+ +=–+ +=

κ11
β1 1,

A1

---------
β2

S1

-----–
ω

R12

-------+= ; κ22
β2 2,

A2

---------
β1

S2

----- ω
R12

-------–+=

κ12
β2 1,

A1

---------=
β1

S1

----- ω
R11

------- ; κ21
β1 2,

A2

---------
β2

S2

-----–
ω

R22

-------+=–+

γ1
w,1

A1

-------
u1

R11

-------–
u2

R12

-------– β1; γ2
w,2

A2

-------
u2

R22

-------–
u1

R21

-------– β2+=+=

λ1
ω,1

A1

-------
β1

R11

-------–
β2

R11

-------+= ; λ2
ω,2

A2

-------
β2

R12

-------
β1

R22

-------–+=
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(15a)

(15b)

where h is the shell thickness and ζ is the coordinate along the normal to the reference surface (Fig. 3).
In this way, assuming the symmetry of the stress tensor, the components Mij, Mji, Nij and Nji can be
considered equal two by two with acceptable approximation and the sixth scalar equation coming
from the system (2) is identically satisfied. The above mentioned equation is a rotational equilibrium
one and, being of no use, puts in evidence how its dual degree of freedom (rotation ω about the
normal-to-mid-surface axis) is of no use itself, in defining the displacement field and, therefore, can
be discarded.

Accordingly, the remaining stress resultants and couples are grouped as follows:

(16)

Only five dynamic equilibrium equations remain: 

 (17a)

(17b)

(17c)

N11

N12

Q1

σ11

τ12

τ1n

1
ς

R22

-------+ 
  dς;

M11

M12

σ11

τ12

ς 1
ς

R22

-------+ 
  dς;

h 2⁄–

h 2⁄

∫=
h 2⁄–

h 2⁄

∫=

N22

N21

Q2

σ22

τ21

τ2n

1
ς

R11

-------+ 
  dς;

M22

M21

σ22

τ21

ς 1
ς

R11

-------+ 
  dς

h 2⁄–

h 2⁄

∫=
h 2⁄–

h 2⁄

∫=

R α1 α2 t, ,( ) N11 N22 N12 M11 M22 M12 Q1Q2[ ]T=

A2N11( ),1 A1N12( ),2 A1 2, N12 A2 1, N22–+ +[ ] Q1 A1A2( ) R11( )⁄( ) q1A1A2+ + ρhA1A2 ∂2u1 ∂t2⁄( )=

A2N12( ),1 A1N22( ),2 A2 1, N12 A1 2, N11–+ +[ ] Q2 A1A2( ) R22( )⁄( ) q2A1A2+ + ρhA1A2 ∂2
u2 ∂t

2⁄( )=

A2Q1( ),1 A1Q2( ),2+[ ] N11 A1A2( ) R11( )⁄( )– N22 A1A2( ) R22( )⁄( )– qnA1A2+ ρhA1A2 ∂2
un ∂t

2⁄( )=

Fig. 3 Internal stress components acting on shell element coordinate sections
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(17d)

(17e)

and only five degrees of freedom are sufficient to fully define the motion of a point lying within the
shell. On the right hand sides of Eq. (17), appropriate terms (Reddy 1984) have been introduced to
account for the translational and rotary inertias. In the above system, the first three equations are
equilibrium ones along tangents to coordinate lines t1, t2 and and along the normal n direction,
respectively; while the last two are rotational equilibrium equations about coordinate tangential
directions. The strain-displacements relationships simplify too, assuming that strain mixed
components are approximately equal and that only 1/R11 and 1/R22 are not null. Then, only eight
independent components remain:

(18a)

(18b)

(19a)

(19b)

(20)

grouped in the algebraic vector ε:

(21)                            

When the fundamental equations are obtained, for this generally shaped shell structures, the
specialized equations for the rotational case will be derived, assuming a proper coordinate system
(α1, α2, ζ ).

The displacement field assumption that is retained is that the three displacement components
along the coordinate directions U1(α1, α2, ζ ), U2(α1, α2, ζ ), Un(α1, α2, ζ ), are locally defined by
the displacements of points lying on the reference surface (Fig. 4). In fact, we have:

(22a)

(22b)

(22c)

A2M12( ),1 A1M22( ),2– A2 1, M12– A1 2, M11 Q2A1A2 m2A1A2–+ +– 1 12⁄( )ρh3A1A2 ∂2β2 ∂t2⁄( )=

A2M11( ),1 A1M12( ),2 A1 2, M12 A2 1, M22– Q1A1A2– m1A1A2+ + + 1 12⁄( )ρh
3
A1A2 ∂2β1 ∂t

2⁄( )=

ε11
u1 1,

A1

--------
A1 2,

A1A2

-----------u2

un

R11

-------; ε22
u2 2,

A2

--------
A2 1,

A1A2

-----------u1
un

R22

-------+ +=+ +=

ε12 ε12 ε21+
u2 1,

A1

--------
A1 2,

A1A2

-----------u1
u1 2,

A2

--------
A2 1,

A1A2

-----------u2–+–= =

κ11
β1 1,

A1

---------
A1 2,

A1A2

-----------β2; κ22
β2 2,

A2

---------
A2 1,

A1A2

-----------β1+=+=

κ12 κ12 κ21+
β2 1,

A1

---------
A1 2,

A1A2

-----------β1–
β1 2,

A2

---------
A2 1,

A1A2

-----------β2–+= =

γ1 β1

un,1

A1

-------
u1

R11

-------–+= ; γ2 β2

un,2

A2

-------
u2

R22

-------–+=

ε ε11ε22ε 12κ11κ22κ12γ1γ2[ ]T
=

U1 α1 α2 ζ, ,( ) u1 ζβ1, u1+ u1 α1 α2,( ) U1 α1 α2 0, ,( )= = =

U2 α1 α2 ζ, ,( ) u2 ζβ2, u2+ u2 α1 α2,( ) U2 α1 α2 0, ,( )= = =

Un α1 α2 ζ, ,( ) un, un un α1 α2,( ) Un α1 α2 0, ,( )= = =
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from which it can be seen that for the tangential displacements U1 and U2 is assumed a pattern
linearly varying through the thickness, depending on the local normal to mid-surface rotations about
the coordinate directions β1 and β2, while a constant pattern of the normal translation Un along the ζ
coordinate is hypothesized.

In this way, in order to determine the complete assessment of displacements throughout the shell
structure, five degrees of freedom (u1, u2, un, β1 and β2) pertaining to the reference surface are to be
obtained (Fig. 4). Then, we have the vector of the reference surface generalized displacements:

(23)

and the dual algebraic vector of mid-surface distributed loads components:

(24)

where q1, q2 and qn are forces acting on mid-surface unit area, while m1 and m2 are distributed
couples per unit length of parametric lines, each corresponding to β2 and β1 rotations respectively
(Fig. 4). 

6. Constitutive equations 

The shell material assumed in this paper and in the numerical examples presented is a mono-
laminar linearly elastic isotropic one. Accordingly, the following constitutive equations relate
internal stress resultants and couples with strain components on the middle surface (Gould 1999): 

(25a)

(25b)

(25c)

where E is Young modulus, ν is the Poisson ratio and E1 = Eh/2(1 − ν2), E2 = νE1, E3 = (1 − ν)E1/2,
E4 = Eh3/[12(1 − ν2)], E5 = νE4, E6 = (1 − ν)E4/2, E7 = λE3. λ is a transverse shearing factor such
that λ = 5/6.

u α1 α2 t, ,( ) u1 u2 un β1 β2[ ]T=

q α1 α2 t, ,( ) q1 q2 qn m1 m2[ ]T=

N11 E1ε11 E2ε22; N22+ E2ε11 E12ε22; N12 E3ε 12=+= =

M11 E4κ11 E5κ22; M22+ E5κ11 E4κ22; M12 E6κ12=+= =

Q1 E7γ1; Q2 E7γ2= =

Fig. 4 Displacements, rotations and reciprocal load intensities defined upon shell element mid-surface 
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7. Specialization to rotational geometry and fundamental system

When the shell is rotational, the shape of the reference surface is completely assigned by the
cartesian equation of the meridional curve f (Z, R) = 0 or R = R(Z) (Fig. 5(a)). In this case, a fine
choice for coordinate lines on the reference surface, is to take meridians and parallel circles,
respectively. The radii of curvature R11 = R1(Z) = Rφ and R22 = R2(Z) = Rθ = R(Z)/sinφ(Z) become
meridian radii of curvature and grand-normal radii respectively, while R = R(Z) is the parallel radius
of the shell. Each of the three kind of radii of curvature depend on the Z coordinate only. 

The following geometric relationships are valid (Figs. 5(a)-(b)):

(26a)

(26b)

(26c)

A suitable system of curvilinear coordinates, then, is to assign (α1, α2) (Z, θ) where Z is a
vertical abscissa measured from a proper origin on the axis of revolution, while θ measures the
longitudinal angle in the horizontal plane (Figs. 5(a)-(b)). Using this coordinate system, the Lamè
parameters take the following form:

(27a)

(27b)

and the equilibrium Eqs. (17a-e) become (Reddy 1984):

(28a)

R11 Z( ) R1 Z( )
1 R,Z( )2+[ ]

3 2⁄

R,ZZ

----------------------------------- Rφ Z( )= = =

R22 Z( ) R2 Z( ) Rθ Z( ) R sinθ⁄= = =

cosφ Z( ) R,Z RA1( )⁄=

≡

A1 Z( ) 1 R,Z( )2+[ ]
1 2⁄

=

A2 Z( ) R Z( )=

RN,φ( ),Z A1Nφθ( ),θ R,ZNθ–+[ ] A1Qφ R Rφ⁄( ) q1RA1+ + ρhA1R ∂2
u ∂t

2⁄( )=

Fig. 5 Shell of revolution. (a) meridian section (b) parallel section 
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(28b)

(28c)

(28d)

(28e)

with the following substitution:

 (29)

and

(30) 

The strain-displacement relationships reduce to:

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

 (31g)

(31h)

with 

(32)

and

(33)

The preceding sets of Eqs. (28a-e) and (31a-h) can be further specialized if the shell of revolution
has a particular meridian shape. In fact one has:

• circular plates specializations: 1/Rφ = 1/Rθ = 0, Z R(Z)
• conical shells specializations : 1/Rφ = 0, R(Z) = Ru − Ztgα (α: opening angle, Ru base radius) 
• spherical shells specializations: Rφ = Rθ = const. = a, R(Z) = [a2 − (a − Z)2]1/2 

RNφθ( ),Z A1Nθ( ),θ R,ZNφθ–+[ ] Qθ A1sinφ( ) q2RA1+ + ρhA1R ∂2v ∂t2⁄( )=

RQφ( ),Z A1Qθ( ),θ+[ ] A1Nφ– R Rφ⁄( ) Nθ A1sinφ( )– qnRA1+ ρhA1R ∂2
w ∂t

2⁄( )=

RMφθ( ),Z A1Mθ( ),θ– R,ZMθZ– A1 2, Mφ RA1Qθ RA1mθ–+ +– 1 12⁄( )ρh
3
A1R ∂2βθ ∂t

2⁄( )=

RMφ( ),Z A1Mφθ( ),θ R,ZMθ– RA1Qφ– RA1mφ+ + 1 12⁄( )ρh
3
A1R ∂2βφ ∂t

2⁄( )=

q Z θ t, ,( ) qφ qθ qn mφ mθ[ ]T q1 q2 qn m1 m2[ ]T= =

R Z θ t, ,( ) Nφ Nθ Nφθ Mφ Mθ Mφθ Qφ Qθ[ ]T N11 N22 N12 M11 M22 M12 Q1 Q2[ ]T= =

εφ 1 A1⁄( ) u,Z w Rφ⁄+( )=

εθ 1 R⁄( ) v,θ cosφu sinφw+ +( )=

ε φθ 1 A1⁄( ) v,Z( ) 1 R⁄( ) u,θ cosφv–( )+=

κφ 1 A1⁄( ) βφ Z,( )=

κθ 1 R⁄( )βθ θ, cosφ R⁄( )βφ+=

κ φθ 1 A1⁄( )βθ Z, 1 R⁄( ) βφ θ, cosφβθ–( )+=

γφ βφ w,Z A1⁄ u Rφ⁄–+=

γθ βθ 1 R⁄( ) w,θ sinφv–( )+=

u Z θ t, ,( ) u v w βφ βθ[ ]T u1 u2 un β1 β2[ ]T= =

ε Z θ,( ) εφ εθ ε φθ κφ κθ κφθ γφ γθ[ ]T ε11 ε22 ε 12 κ11 κ22 κ12 γ1 γ2[ ]T= =

≡
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Introducing the kinematic Eqs. (31a-h) into the constitutive relations (25a-c) and then substituting
the obtained modified constitutive equations into the set of equilibrium Eqs. (28a-e) leads to the
following new set of equations of motion, expressed in terms of displacements components of
points lying on the reference surface:

(34a)

(34b)

(34c)

(34d)

(34e)

or else in matrix notation:

 (35)

The differential operator of elasticity L and the matrix M can be found in detail in Artioli and
Viola (2003), for the shell types treated in this paper. 

Last, a proper set of boundary conditions is to necessary, in order to get a well posed problem.
The following are the types of boundary edges presented in the numerical examples examined in the
following:

• free edge: Nφ = Nφθ = Qφ = Mφ = Mφθ = 0 (36a)
• simply supported edge : u = v = w = Mφ = βθ = 0 (36b) 
• clamped edge: u = v = w = βφ = βθ = 0 (36c) 

and can easily be re-written in terms of displacement components only, as we have done for the
equilibrium equations.

8. G. D. Q. technique fundamentals

The Differential Quadrature Method (D. Q. M.), originated by Bellman and Casti (1971, 1972) is
an efficient numerical method for the rapid solution of linear and nonlinear partial differential
equations. As an approximate technique, the G. D. Q. method is based on the concept that the
values of the derivatives of a function can be approximated by weighted linear sums of the function
values at all sampling points within the domain under consideration.

Shu and Richards (1992) slightly modified the original procedure by a recurrence relationship
useful in finding the various weighting coefficients for any order derivatives. Their method rids the
original D. Q. method of ill conditioning which had plagued the previous method. Since then, there
have been many publications on both the theoretical development and the engineering application of
the method. An excellent review paper contributed by Bert and Malik (1996) summarized a detailed
reference list on D. Q. M. applications to several fields of engineering numerical analysis. 

In what follows it is meant to give a short resume of basic concept of a convenient formulation of
the technique in argument which will be applied to the modal analysis of shells of revolution.

L11u L12v L13w L14βφ L15βθ+ + + + ρhRu·· qφR–=

L21u L22v L23w L24βφ L25βθ+ + + + ρhRv·· qθR–=

L31u L32v L33w L34βφ L35βθ+ + + + ρhRw·· qnR–=

L41u L42v L43w L44βφ L45βθ+ + + + ρh3 12⁄( )Rβ··θ mθR–=

L51u L52v L53w L54βφ L55βθ+ + + + ρh3 12⁄( )Rβ··φ mφR–=

Lu q+ Mu··=
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The fundamental concepts underlying the G. D. Q. method are that a continuous function can be
approximated by a higher-order polynomial in the overall domain and that a derivative of a function
with respect to a variable at any discrete point can be put in the form of a weighted linear sum of
function values at all discrete points chosen in the overall domain of that variable.

Assuming a 2-D function, on a regular rectangular domain, the derivatives of the generic function
f (Z, θ) at a point (Zi, θi) have the following representation:

(37a)

(37b)

(37c)

where  and  can represent a general unknown function of the problem.
Aik and Bjl are the so-called weighting coefficients of the partial derivatives, with respect to the Z

and θ coordinates, respectively. The values assumed by the weighted coefficients (w.c.) are chosen
so to give exact values of derivatives for a particular class of functions, called test or trial functions.
Therefore, the values Aik and Bjl are dependent on the kind of trial functions as well as on the
distribution of sampling points on the domain.

The method of determining the coefficients is available from some references in the literature and
can be summarized as follows. 

Let N be the number of points chosen on the domain, then the Lagrange polynomials can be put
in the following form (Redekop and Xu 1999):

(38)

where i = 1, 2,…, N and, 

Substitution of Eq. (38) into Eqs. (37a-c) gives the general form for the “first-order” w.c.:

(39a)

(39b)

where i, k = 1, 2, …, N.
A recurrence formula for these coefficients has been obtained for the general  coefficients, by

Shu and Richards (1992) and reads as follows:

∂ rf Z θ,( )
∂Zr

---------------------
Zi θj,( )

Aik
r( )fkj

k 1=

N1

∑=

∂sf Z θ,( )
∂θs

---------------------
Zi θ j,( )

Bjl
s( )fij

l 1=

N2

∑=

∂ r s+ f Z θ,( )
∂Zr∂θs

--------------------------
Zi θj,( )

Aik
r( )Bjl

s( )fkl
l 1=

N2

∑
k 1=

N1

∑=

fi j f Zi θj,( )= f Z θ,( )

g Z( ) M Z( )
Z Zi–( )M Zi( ),Z

-------------------------------------=

M Z( ) Z Zj–( )
j 1=

N

∏=

Aik
1( ) M Zi( ),Z

Zi Zk–( )M Zk( ),Z

---------------------------------------- i k≠( )=

Aii
1( ) M Zi( ),ZZ

2M Zi( ),Z

---------------------=

Aik
r( )
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(40a)

(40b)

where i, k = 1, 2, …, N.
Finally, in the present paper, the following two sampling-points-choosing rules are presented: 

(41)

which gives a so-called cosine distribution of the points along the domain , and a
uniform distribution onto the domain [a, b]:

(42)

9. Fourier expansion of problem variables

A useful technique for separation of variables is offered by Fourier series (Gould 1985). Dealing
with shells of revolution, every dependent variable of the problem can be interpreted as a 2π
periodic continuous function with respect to the θ coordinate. Accordingly, only a partial Fourier
series expansion is sufficient:

(43a)

(43b)

(43c)

(43d)

In the above,  and  are diagonal matrices of the following form:

(44a)

(44b)

and the time-dependency of problem variables has not been specified still.
The technique hereby exposed is integrally taken by the shells of revolution ring finite element

analysis and has a very powerful application to the problem in argument, where it’s applied a priori
to the formulation of the fundamental equations of equilibrium in terms of generalized displacements. 

Aik
r( ) r Aik

r 1–( )Aik
1( ) Aik

r 1–( )

Zi Zk–( )
--------------------– i k≠( )=

Aii
r( ) Aik

r( )

k 1=
k i≠

N1

∑–=

Zi
1 cos i 1–( )π N 1–( )⁄[ ]–

2
--------------------------------------------------------------- b a–( ), i 1 2 … N, , ,= =

Z a b,[ ]∈

Zi
i 1–( )
N 1–( )

----------------- b a–( ), i 1 2 … N, , ,= =

u Z θ t, ,( ) F1
n θ( )un Z t,( ) where un Z t,( ) un vn wn βφ

n βθ
n[ ]T

=
n 0=

∞

∑=

R Z θ t, ,( ) F2
n θ( )Rn Z t,( ) where Rn Z t,( ) Nφ

n Nθ
n Nφθ

n Mφ
n Mθ

n Mφθ
n Qφ

n Qθ
n[ ]T

=
n 0=

∞

∑=

ε Z θ t, ,( ) F2
n θ( )εεn Z t,( ) where εn Z t,( ) εφ

n εθ
n εφθ

n κφ
n κθ

n κφθ
n γφ

n γθ
n[ ]T

=
n 0=

∞

∑=

q Z θ t, ,( ) F1
n θ( )qn Z t,( ) where qn Z t,( ) qφ

n qv
n qw

n mφ
n mθ

n[ ]T
=

n 0=

∞

∑=

F1
n F2

n

F1
n diag cosnθ sinnθ cosnθ sinnθ cosnθ( )=

F2
n diag cosnθ cosnθ sinnθ cosnθ cosnθ sinnθ cosnθ sinnθ( )=
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The static and kinetic variables of the problem, now, can be conveniently looked at both as simple
functions or as a truncated sum of harmonic terms. As will be seen later, substitution of the series
expansions within fundamental sets of equilibrium, kinematic and constitutive equations leads to a
simplification of the problem. 

In fact, as a series of terms can be deduced from (43a-d), equally a series of dynamic equilibrium
equations can be derived, each characterized by an harmonic number n and each to be solved
separately.

Omitting the various mathematical calculations and introducing the expansions (43a-d) into the
equilibrium (28a-e), kinematic (31a-h) and constitutive (25a-c) equations too, one obtains a series of
fundamental systems (34a-e), in terms of internal reference surface displacements n-harmonic
components only (Artioli and Viola 2003):

(45a)

(45b)

(45c)

(45d)

(45e)

or, in matrix notation:

(46)

Obviously, an analogous treatment can be applied to the boundary conditions (36a-c) and a series
of harmonic boundary conditions sets are obtained, each one characterized by the harmonic number n.

Finally, in order to apply the G. D. Q. solution procedure to the harmonic equations of motions
we first delete all the distributed forces terms in order to obtain a free vibration system and assume
an harmonic time dependency of the mid-surface displacement harmonic circular components with
frequencies ω: 

(47)

being i the imaginary unit.
The G. D. Q. technique is applied to the above mentioned system of equilibrium equations,

keeping in mind that Eqs. (45a-e) and corresponding sets of boundary conditions contain derivatives
with respect to the longitudinal coordinate Z only. 

The resulting governing systems, for the dynamic case, respectively, take the following form:

(48)

K11
n un K12

n vn K13
n wn K14

n βφ
n K15

n βθ
n+ + + + ρhRu··n qφ

nR–=

K21
n un K22

n vn K23
n wn K24

n βφ
n K25

n βθ
n+ + + + ρhRv··

n
qθ

nR–=

K31
n un K32

n vn K33
n wn K34

n βφ
n K35

n βθ
n+ + + + ρhRw··

n
qn

nR–=

K41
n un K42

n vn K43
n wn K44

n βφ
n K45

n βθ
n+ + + + ρh

3 12⁄( )Rβ··θ
n

mθ
nR–=

K51
n un K52

n vn K53
n wn K54

n βφ
n K55

n βθ
n+ + + + ρh3 12⁄( )Rβ··φ

n
mφ

nR–=

K nun qn+ M nu··n=

un Z t,( ) un vn wn βφ
n βθ

n[ ]T
un Z( )ei ωn

t un vn wn β φ
n β θ

n[ ]
T

= = = ei ωn
t

K bb
n

10 10×
  K bd

n

10 5N× 10–

K db
n

5N 10– 10×
  K dd

n

5N 10– 5N× 10–

ub
n

10 1×

ud
n

5N 10–

ωn( )
2

M bb
n

10 10×
  M bd

n

10 5N× 10–

M db
n

5N 10– 10×
  M dd

n

5N 10– 5N× 10–

ub
n

10 1×

ud
n

5N 10–

– 0=
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where the subscripts b and d stand for boundary and domain, respectively, in a way that b-
equations represent the discretized boundary conditions which are valid only for the points lying
on constrained edge of the shell; while d-equations are proper equilibrium equations discretized
onto points of the interior of the domain. Hence, in Eq. (48), only submatrix M dd is not made of
zeroes.

The equilibrium equations, in a such a way, show to become a generalized eigenvalue problem
when modelled with the aim of the G. D. Q. technique. The solution procedure takes advance now
of the kinematic condensation, in order to obtain a system of equations in terms of domain d.o.f.
only:

(49)

where subscripted matrices are, in the order, stiffness and mass condensed matrices of the
discretized system. 

Once the eigenfrequencies are calculated and the interior harmonic displacements components are
obtained, one can trace the pattern of generalized displacements along meridional direction by
simply applying a suitable interpolation scheme (i.e., Lagrange interpolation) and then obtain the
approximated bidimensional displacement field (Z, θ) recalling the expansions (43a). Last,
applying strain-displacements relationships and constitutive equations one can recover the
approximated state of stress in terms of internal actions .

9.1 Assembling of discretized boundary conditions

A remarkable aspect of the exposed solution procedure is the ability of implementing appropriate
sets of boundary conditions, without any approximation, following Eqs. (36a-c). This is due to the
specific first order shear deformation shell theory adopted, in a way that it permits to deal with
“paired ” sets of conditions. In fact, for those points lying in the interior of the domain five
harmonic dynamic equilibrium equations hold and the same number of boundary assignments need
to be stated for the end edges of the shell. This feature pertaining to the present five-degrees-of-
freedom formulation permits to avoid the so called delta-point technique for boundary conditions,
often appearing in some recent papers regarding shear-undeformable shells G. D. Q. analyses (Bert
and Malik 1996, Redekop and Xu 1999). 

Another interesting particular case is the closed-apex rotational shell or dome, in which the
material continuity requirements in correspondence of the top often imposes some approximation to
the numerical analysis of the problem. In fact, in many finite element shell formulation the
continuity conditions need to be replace with a little fictitious circular hole, trying not to modify too
much the shape of the structure. In this way, a proper set of assignments for harmonic
displacements components, depending on the harmonic number considered, needs to be imposed
equivalently to a set of boundary conditions (Gould 1985). Precisely, for some harmonic numbers,
these apex conditions are less than five and in such cases the “missing” ones must be replaced with
appropriate equilibrium ones so to get a correct total of five discretized equations, holding at the
dome vertex. For further details on this very topic the interested reader is referred to Artioli and
Viola (2003).

K dd
n

ud
n ωn( )

2
M dd

n
ud

n– 0=

ũ

R̃ Z θ,( )
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10. Numerical results and discussion

10.1 Freely vibrating simply supported circular plate

To show the accuracy and precision of the present method, we first consider a “ flat”  axisymmetric
shell in free vibration (Fig. 6). The boundary parallel transverse fibres are free to rotate in the radial
plane. The computed non-dimensional eigenparameters λ = [12(1 − ν2)ρa4ω2/(Eh2)]1/2 are plotted in
Table 1, where in brackets are reported those available from a spline finite element solution by Luah
and Fan (1989). For this analysis, a few (11-13) cosine-spaced sampling points are sufficient to
yield good precision for the first 3 modes; while to get similarly good approximation even for
higher modes a little more points (15-17) need to be fixed onto the domain.

10.2 Clamped free truncated conical shell in free vibration

Fig. 7 shows the geometry of a truncated conical shell with one clamped edge, the other one free.
Results are plotted in Fig. 8 and Table 2, in terms of cyclic frequencies f = ω/2π for the first three

Fig. 6 A circular flat plate simply supported along the boundary middle parallel 

Table 1 Frequency parameter λ = [12(1 − ν2)ρa4ω2/(Eh2)]1/2 for the simply supported circular plate shown in
Fig. 6

Harmonic
number n

Mode number m

1 2 3 4 5 6

0 4.93515
[4.93515]

12.3899893 
[29.7201]

74.1553
[74.1576]

138.324
[138.329]

222.164
[224.264]

324.896
[326.013]

1 13.6586
[13.8982]

49.9285
[48.4791]

102.909
[102.776]

178.803
[176.816]

270.489
[270.630]

384.078
[384.279]

2 25.6132
[25.6128]

70.1163
[70.1150]

134.295
[134.296]

218.195
[218.213]

321.826
[321.909]

445.187
[445.467]

3 39.9570
[39.9573]

94.5476
[95.5496]

168.670
[168.681]

262.474
[262.519]

375.991
[376.142]

509.231
[509.661]

4 56.8411
[56.8416]

121.700
[121.703]

205.845
[205.859]

309.593
[309.649]

433.021
[433.205]

576.155
[576.673]

5 76.2022
[76.2031]

151.514
[151.519]

245.769
[245.787]

359.513
[359.581]

492.884
[493.104]

645.932
[646.548]



806 Erasmo Viola and Edoardo Artioli

modes. Good results, comparing the present method to a displacement-based F.E. solution by Sen
and Gould (1974) and to another one obtained with the numerical package FEMLAB are observed. 

In the whole modal analysis, the frequencies calculated needed no more that 17 grid points to be
obtained, the F.E. solutions adopted as benchmarks involved much larger solving eigenvalue
systems. In the case of FEMLAB solution almost 3’ on a 1.5 GHz Pentium PC was the CPU-time
to solve the final eigenproblem, while the G. D. Q. solution never involved more that 4”. Another
striking testimony of the great ability of the G. D. Q. method to solve structural mechanics
problems with a low computational cost due to its great simplicity of implementation.

10.3 Hemispherical dome

The clamped hemispherical shell shown in Fig. 9 is studied to evaluate the G. D. Q. method

Fig. 7 A clamped-free conical shell with uniform
thickness (L = 19.71 mm, Ru/L = 0.6384,
h = 1.016 mm, E = 2.069 × 1011 N/m2, ρ
= 7868 Kg/m3)

Fig. 8 Cyclic frequencies f of the first three modes for
the conical shell shown in Fig. 7

Table 2 Cyclic frequencies f (Hz) for the clamped free conical shell shown in Fig. 7

Sen & Gould Present Sen & Gould Present FEMLAB Present

n m = 1 m = 2 m = 3

0 / 2128.6 / 4410.4 6291 6278.3
1 / 1192.5 / 4937.8 6333 6328.5
2 544.8 542.32 3140 3127.2 5688 5684.9
3 335.3 333.2 2008 2000.1 4340 4345
4 361.2 360.9 1455 1450.2 3312 3308.2
5 505.9 506.1 1299 1296 2714 2702
6 696.4 696.5 1412 1410 2493 2486.2
7 919.8 919.9 1654 1652.5 2580 2574.7
8 1177 1176.3 1954 1951.6 2829 2835.1
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reliability on a membrane-dominated (Kunieda 1984) shell problem. The non-dimensional frequency
parameter considered in this example is defined as: 

Fig. 9 A clamped hemispherical dome with uniform
thickness (a/h = 100, ν = 0.3 )

Fig. 10 Frequency parameter λ  = aω(ρ/E)1/2 for the first
six modes in the vibration of the clamped
emispherical shell shown in Fig. 7

Table 3 Non-dimensional frequency parameter λ  = aω (ρ/E)1/2 for the clamped emispherical dome shown in
Fig. 9

Harmonic
number n

Mode number m

1 2 3 4 5 6

0
0.760

(0.761)
[0.760]

0.938
(0.938)
[0.938]

0.984
(0.984)
[0.984]

1.020
(1.021)
[1.020]

1.070
(1.072)
[1.071]

1.146
[1.144]

1 0.567
(0.567)

0.893
(0.894)

0.965
(0.966)

1.002
(1.002)

1.045
(1.046)

1.115
{1.106}

2 0.901
(0.901)

0.966
(0.966)

0.997
(0.998)

1.029
(1.031)

1.077
(1.081)

1.150
{1.153}

3 0.947
(0.948)

0.988
(0.990)

1.022
(1.024)

1.063
(1.066)

1.119
(1.124)

1.206
{1.207}

4 0.969
(0.969)

1.004
(1.005)

1.042
(1.045)

1.091
(1.095)

1.159
(1.167)

1.266
{1.264}

5 0.985
(0.985)

1.019
(1.021)

1.062
(1.066)

1.120
(1.127)

1.204
(1.213)

1.341
{1.327}

Values in [ ] are exact one for the axisymmetric modes, obtained by Kunieda (1984).
Values in ( ) are from Kim (1998).
Values in { }are from Luah and Fan (1989).
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where a is the sphere radius. The reference values are the exact ones obtained by Kunieda (1984)
for the axisymmetric modes (n = 0), and those by two kinds of F.E. modelling by Kim (1998) and
Luah and Fan (1989).

Regarding this case, it is worth noting that the method in argument fully permits the dealing of
the closed apex compatibility conditions Gould (1999), in a way that it is not necessary to model a
little “hole”  on the vertex to avoid the singularity of null parallel radius. The results in Table 3 are
obtained from a cosine-spacing sampling rule and show again very good accuracy, the maximum
percentage difference with respect to reference values being lower than 0.05%. Figs. 11 and 12
show the patterns of the first five circular frequencies, for n = 0, versus the number of sampling
points forming the grid in the case of cosine spaced (Fig. 11 ) and uniformly spaced (Fig. 12).

It is evident how the non-uniform grid is faster in converging and shows a monotonic tendency to
the desired roots.

11. Conclusions

A G. D. Q. solution procedure for the dynamic analysis of rotational shells has been presented.
Starting from general shell equations a proper set of equilibrium equations in terms of circular
harmonic components of generalized displacements has been obtained and equally a complete set of
boundary conditions. These 2nd order ordinary differential equations in the axial coordinate only are

λ aω ρ
E
--- 

 
1 2⁄

=

Fig. 11 Convergence characteristics of the present
analysis using a cosine grid points distribution,
in predicting the frequency parameter λ in
the axisymmetric vibration of the clamped
hemispherical shell shown in Fig. 9

Fig. 12 Convergence characteristics of the present
analysis using a uniform grid points distribu-
tion, in predicting the frequency parameter
λ in the axisymmetric vibration of the clamped
hemispherical shell shown in Fig. 9
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easily discretized by means of the technique in argument, to yield a common generalized eigenvalue
problem for the cyclic frequencies of the system. It is worth noting how, with the presented
discretized formulation, no “delta-point” technique has been used in this study, thus avoiding further
approximation in the boundary conditions assignments. Several comparisons with available results
confirm how this simple numerical method provides accurate and computationally low cost results. 
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Notation

α1, α2 : curvilinear coordinates on the reference surface
ς : normal coordinate along shell thickness
r : vector radius to undeformed reference surface
ρ : vector radius to deformed reference surface
t1, t2, n : tangent and outward normal vectors to the reference surface
R11, R22 : normal radii of curvature to the reference surface
A1, A2 : Lamè parameters of the reference surface
Ni, M i : stress resultants and couples
q, m : external distributed loads intensities
u(α1, α2, t) : generalized displacements vector
ϕ(α1, α2, t) : rotations vector 
εi : resultant strains vector
κi : couple strains vector
R(α1, α2, t) : stress resultants and couples vector
ε(α1, α2, t) : strain resultants and couples vector
λ : shearing correction factor
R(Z) : parallel radius
Rφ(Z) : meridian radius
Rθ(Z) : grand normal radius
L : fundamental system equilibrium operator 
M : fundamental system mass matrix

: weighting coefficients for the G. D. Q. approximations of derivatives
: diagonal matrices containing harmonic functions
: stiffness and mass matrices of discretized structure
: condensed stiffness and mass matrices of discretized structure

Appendix A - Modal shapes for the shells studied

A complete review of the modal shapes obtained by the eigensolutions for the three kinds of
shells studied in this paper is presented. It is to be noted that the number of grid points utilized to
plot the shapes is quite bigger than that needed to calculate the frequencies during the modal
analysis and this is due only to the necessity of having a good graphic rendering.
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Fig. A.1 Mode shapes for the circular plate shown in Fig. 6
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Fig. A.2 Mode shapes for the circular plate shown in Fig. 6
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Fig. A.3 Mode shapes for the truncated conical shell shown in Fig. 7
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Fig. A.4 Mode shapes for the truncated conical shell shown in Fig. 7
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Fig. A.5 Mode shapes for the spherical cap shown in Fig. 9
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Fig. A.6 Mode shapes for the spherical cap shown in Fig. 9
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Fig. A.7 Mode shapes for the spherical cap shown in Fig. 9




