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Abstract. The classical 8-node isoparametric serendipity element uses parametric shape functions for
both test and trial functions. Although this element performs well in general, it yields poor results under
severe mesh distortions. The distortion sensitivity is caused by the lack of continuity and/or completeness
of shape functions used for test and trial functions. A recent element using parametric and metric shape
functions for constructing the test and trial functions exhibits distortion immunity. This paper discusses the
choice of parametric or metric shape functions as the basis for test and/or trial functions, satisfaction of
continuity and completeness requirements, and their connection to distortion sensitivity. Also, the
performances of four types of elements, viz., parametric, metric, parametric-metric, and metric-parametric,
are compared for distorted meshes, and their merits and demerits are discussed.

Key words: eight-node plane element; parametric-metric element; unsymmetric finite element; mesh
distortion; geometric distortion; higher order completeness.

1. Introduction

The classical 8-node serendipity isoparametric quadrilateral element is a widely used element for
plane stress/strain applications. This element uses parametric shape functions that involve a
complete quadratic polynomial ξ and η with the addition of two cubic terms, ξ2η and ξη2(e.g., see
Zienkiewicz and Taylor 1989). The 9-node Lagrangian isoparametric quadrilateral element is also
widely used for plane stress/strain applications. This element also uses parametric shape functions
that involve a complete quadratic polynomials in the natural coordinates, ξ and η, but with three
additional terms, ξ2η, ξη2, and ξ2η2 (e.g., see Zienkiewicz and Taylor 1989). The performance of 9-
node Lagrangian isoparametric element is very similar to that of 8-node serendipity isoparametric
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element for meshes involving square and rectangular element geometry. For such meshes, the 8-
node element is often preferred to the 9-node element because the later uses an extra node at the
centre of the element. However, the performance of 9-node element is better than that of 8-node
element under some types of mesh distortion (Lee and Bathe 1993). Lee and Bathe (1993) showed
that the 8-node element can at best reproduce exactly a linear polynomial displacement field (in
global Cartesian coordinates) under the angular distortion as well as quadratic curved-edge
distortion. On the other hand, the 9-node element can reproduce exactly a quadratic displacement
field under angular distortion, and a linear field under quadratic curved-edge distortion. However, a
full (3 × 3) numerical integration of stiffness matrix needs to be employed for 9-node element,
whereas, for the 8-node isoparametric element, a reduced order (2 × 2) numerical integration
generally produces accurate solution under distorted mesh. With the reduced order integration, the
performance of the 9-node element is, however, worse than that of the 8-node element. An excellent
comparison of these two elements is given by MacNeal and Harder (1992). 

The performance of the classical 8-node serendipity element, although generally reliable, may
deteriorate dramatically under severe mesh distortions. Stiffening effect of mesh distortion leading
these elements to poor performance has been known for long (Stricklin et al. 1977, Buckland 1978,
Gifford 1979, Lee and Bathe 1993, Rajendran and Liew 2000). In practice, the geometric distortions
are neither completely avoidable nor always ignorable. Mesh distortions emerge naturally while
meshing curved geometries and during large strain nonlinear analysis. Although the ill effects of
distortion can be alleviated by reduced integration of element stiffness or through mesh refinement,
a rugged element formulation insensitive to mesh distortion is always preferable.

MacNeal and Harder (1992) proposed an improved 8-node isoparametric element, the shape
functions of which are obtained by modifying the shape functions of 9-node Lagrangian element.
This element reproduces exactly a quadratic displacement field under angular distortions. However,
explicit expressions for the modified shape functions have not been derived by MacNeal and Harder
(1992). Recently, Kikuchi et al. (1999) proposed another 8-node isoparametric element similar to
that of MacNeal and Harder (1992), but with explicit expressions for the shape functions. This
element also reproduces exactly a quadratic displacement field under angular distortion.

Rajendran and Liew (2003) reported a quadrilateral element (US-QUAD8) that is capable of
reproducing a Cartesian quadratic displacement not only under linear and bilinear element geometry
but also under quadratic element geometry. This element employs two different sets of shape
functions as the basis for the test and trial functions. The distortion-immunity of this formulation
under a Cartesian quadratic displacement field crucially depends on a careful choice of the two sets
of shape functions. 

An important feature of the element proposed by MacNeal and Harder (1992), which is
responsible for the better performance of the element, is the use Cartesian quadratic polynomial
terms in the shape functions. This motivates the re-investigation of the well-known but less popular
element formulation using shape functions directly obtained from the Cartesian polynomial
displacement model (e.g., see p116 of Zienkiewicz and Taylor 1989). In order to distinguish them
from the parametric shape functions, these shape functions are hereinafter referred to as metric
shape functions following MacNeal (1994), and the element developed using such shape functions is
called the metric element.

This paper compares the performances of the 8-node metric element, the classical 8-node
serendipity element, and the 8-node elements proposed by Kikuchi et al. (1999) and Rajendran and
Liew (2003) in the presence of mesh distortions. These element types are grouped into four broad
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types (viz., parametric, metric, parametric-metric, and metric-parametric) depending on whether the
parametric or metric shape functions are used as the basis for test and trial functions. The metric-
parametric element refers to a case where the roles of parametric and metric shape functions of US-
QUAD8 are interchanged. Typical test problems involving severe mesh distortions are solved to
assess the relative performance and merits of these element types. 

As the performance of elements under different types of mesh distortion is of interest, a
classification of various possible distortions is useful. Generally, five types of distortions are
encountered with an 8- or 9-node plane element (see. Lee and Bathe 1993), viz., 1) Aspect-ratio
distortion, 2) Parallelogram distortion, 3) Angular distortion, 4) Unevenly-spaced-nodes distortion or
alternatively called Mid-side node distortion (Rajendran and Liew 2000), and 5) Curved-edge
distortion. 

For the classification stated above, a square geometry with the mid-side nodes at the centre of
their respective sides is treated as the undistorted geometry. A typical element in a distorted mesh
may have one or more of the above distortions together. The first distortion type refers to a
rectangular element geometry. As the name suggests, the second type refers to parallelogram
geometry. The first two types of distortion generally reduce the predictive capability of the overall
finite element model as a result of reduced number of elements caused by such distortions. The
third type refers to a quadrilateral geometry whereas the fourth type refers to a square element
geometry with only the mid-side nodes displaced from their middle position. As the name suggests,
the fifth type refers to a square element with one or more curved edges. We will explicitly consider
only the last three types of distortion for the present work. The angular distortion commonly
appears during mesh generation involving irregular geometries and also in meshing the transition
regions between coarse and fine meshes. The curved-edge distortion, as the name suggests, is often
encountered in meshing the curved geometries. During nonlinear solution of large strain problems,
all the three types of distortion may simultaneously appear.

The mesh distortion may be looked at from the viewpoint of parametric mapping of geometry.
Considering a parametric mapping of a bi-unit square in the parameter space to the actual element
shape in the Cartesian coordinate space, we note the following:

a) The aspect ratio distortion or parallelogram distortion is a case of linear (affine) geometric
mapping of the form,  and  where ci and di (i = 0, 1)
are arbitrary constants. 

b) The angular distortion corresponds to a bilinear geometric mapping of the form, 
 and . 

c) The mid-side node distortion or curved edge distortion is a case of quadratic geometric
mapping of the form,  and 

.
d) An element geometry including all the above distortions together corresponds to a quadratic

geometric mapping of the for m,  and
.

2. Parametric and metric shape functions 

The serendipity parametric shape functions for the 8-node serendipity element are well known in
the literature and are reproduced here for convenience:

x co c1ξ c2η+ += y do d1ξ d2η+ +=

x co c1ξ+=
c2η + c3ξη y do d1ξ d2η d3ξη+ + +=

x co c1ξ c2η c3ξ
2 c4η

2 c5ξη2 c6ξ
2η+ + + + + += y do d1ξ d2η+ +=

d3ξ2 d4η2 d+ 5ξη2 d6ξ2η+ +

x co c1ξ c2η c3ξη c4ξ
2 c5η

2 c6ξη2 c7ξ
2η+ + + + + + +=

y do d1ξ d2η d3ξη d4ξ
2 d5η

2 d6ξη2 d7ξ
2η+ + + + + + +=
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(1)

(2) 

(3)

where i, j and k refer to the corner nodes, mid-side nodes along η-axis, and mid-side nodes along
ξ-axis, respectively. Using these shape functions, the finite element displacement field is interpolated
from the nodal displacements as

(4)

where N and  are the shape function matrix and the nodal displacement vector, respectively,
defined as

(5)

and

(6)

The over-bar and the subscript n in the symbol  stand for ‘finite element approximation’ and
‘nodal quantity’, respectively.

The derivation of metric shape functions is well known in the literature but is presented here for
convenience of reference. Since there are 8-nodes for the element, the displacement field we ideally
want the element to reproduce exactly is written in the form

(7)

 (8)

where ai and bi (i = 1, 2, 3, ..., 8) are arbitrary constants. The first six monomial terms on the right
side of Eqs. (7) and (8) correspond to a complete quadratic polynomial. However, the choice of the
last two terms is rather arbitrary, as they are just included to make up the number of monomial
terms to the number of nodes of the element. For illustrating the procedure to derive the metric
shape functions, we now consider only the u(x, y)-displacement. The procedure for v(x, y)-
displacement is similar. Eq. (7) is rewritten as

(9)

where

 (10)

Ni
1
4
--- 1 ξξi+( ) 1 ηηi+( ) ξξi ηηi 1–+( )=
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and

(11)

Substituting the nodal displacements, , and the corresponding nodal coordinates, (xi, yi), for u(x, y)
and (x, y), respectively, in Eq. (9), the following system of eight equations are obtained:

(12)

where 

(13)

(14)

and

(15)

Assuming that the geometry of the element is such that P−1 exists, Eq. (12) is solved for a as 

(16)

Using Eq. (16) in (9), 

(17)

where the metric shape functions, Mi, are defined as

(18)

Eq. (18) may also be rewritten as

(19)

Analogous to Eq. (4), the finite element displacement field is written in terms of the metric shape
functions as

(20)

where M  is a matrix of metric shape function matrix defined as

(21)

a a1 a2 a3 … a8, , , ,[ ]T=

u i
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2.1 The continuity and completeness requirements of shape functions

The continuity requirement for the plane stress/strain application of the 8-node element is that the
displacement model must satisfy the intra- and inter-element continuity at least to a level of C1 and
C0, respectively. The metric shape functions as well as the parametric shape functions do satisfy the
minimum requirement of C1 intra-element continuity. However, the case with inter-element
continuity is different: The metric shape functions satisfy the inter-element continuity along the
element edges if the element geometry is square or rectangle but not in general for arbitrary
geometries. On the other hand, the parametric shape functions satisfy the inter-element continuity
along the element edge for any arbitrary but admissible geometry. An admissible geometry is one
for which the determinant of Jacobian matrix (associated with the transformation between global
Cartesian and the local parametric coordinates) is positive. 

In the literature, the completeness requirements are usually associated with the ability of the
element shape functions to reproduce an arbitrary linear polynomial displacement field of the form

 and . For this reason, these completeness
requirements will hereinafter be referred to as the linear completeness requirements which demand
the following conditions to be satisfied by the element shape functions, ψi, at any point inside the
element:

(22)

(23)

(24)

The linear completeness requirements ensure that the finite element solution converges to the
exact solution in the limit of mesh refinement. However, higher order elements are often used in
practice in order to get an accurate solution with fewer elements. The linear completeness
requirements are no longer sufficient as they can only ensure convergence to correct solution only in
the limit of mesh refinement. Thus, for the effective use of higher order elements, it is necessary to
investigate the higher order completeness requirements of shape functions. Rajendran and Liew
(2000) discuss the higher order completeness requirements for the 8-node plane element. Arnold et al.
(2002) provide a function space iterpretation of such conditions. For an 8-node plane element to
reproduce a quadratic displacement field given by Eqs. (7) and (8), the following conditions are to
be satisfied in addition to Eqs. (22)-(24):

 (25)

(26)

u x y,( ) a1 a2x a3y+ += v x y,( ) b1 b2x b3y+ +=

ψ i 1=
i 1=
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8
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ψi yi y=
i 1=

8

∑

ψ i xi
2 x2=

i 1=

8

∑

ψi xi yi xy=
i 1=

8

∑
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(27)

(28)

(29)

Eqs. (22)-(29) may be written concisely as 

(30)

where 

(31)

From Eq. (30), 
   

(32)

Comparing Eqs. (19) and (32), we observe that , which means that the metric shape functions,
Mi, satisfy all the completeness requirements (Eqs. (22)-(29)) inherently. Note that this observation
holds even for the distorted element geometry as long as P−1 exists. However, the parametric shape
functions, Ni, do not satisfy all the completeness requirements, in particular Eqs. (25)-(29), for all
geometries. It is easy to verify that the parametric shape functions do satisfy Eq. (22). Eqs. (23) and
(24) are also satisfied implicitly by isoparametric formulations because these equations themselves
form the basis of geometry interpolation. Satisfaction of Eqs. (25)-(29), however, depends on the
geometrical shape of the element. For example, for rectangular geometries with the sides parallel to
the global Cartesian coordinate axes and the mid-side nodes positioned at the centre of the sides,
i.e., for linear (affine) geometries, the parametric shape functions satisfy all the Eqs. (25)-(29). For
an arbitrarily oriented rectangular geometry with the mid-side nodes at the centre of the sides or a
parallelogram geometry with the mid-side nodes at the centre of the sides, the parametric shape
functions satisfy Eqs. (25)-(27), and not Eqs. (28) and (29) in general. For an arbitrary quadrilateral
geometry or an arbitrary geometry with curved edges, Eqs. (25)-(29) are not satisfied. Table 1 shows
a comparison of parametric and metric shape functions with respect to satisfaction of continuity and
completeness requirements.

ψ i yi
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Table 1 Continuity and completeness of parametric and metric shape functions

Shape function
type

Satisfaction of inter-element (C0) 
and intra-element continuity (C1)

Satisfaction of higher order 
completeness, Eqs. (25)-(29)

Parametric For all admissible geometry #Not for all admissible geometry
Metric #Not for all admissible geometry For all admissible geometry

#Satisfied for special geometries like square/rectangle/parallelogram with sides parallel to global coordinate
axes.
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The above observations have important implications in the choice of shape functions for an
element. If we want the shape functions satisfy the higher order completeness requirements (Eqs. (25)-
(29)), the metric shape functions offer a better choice compared to the parametric shape functions.
However, if we want the elements to satisfy the inter-element compatibility, the parametric shape
functions emerge to be a better choice. Thus, the two sets of shape functions play the
complementary roles. Ideally, we want shape functions that satisfy both requirements. However,
such shape functions are hard to obtain for this element. Rajendran and Liew (2003) have observed
that the parametric shape functions serve as a good choice for constructing the test functions, and
the metric shape functions for the trial functions. The element formulated so (US-QUAD8) performs
well under distorted mesh. Motivated by this observation, the following four element formulations
are explored in the rest of the paper for an insight into how the choice of basis for test and trial
functions affects the element performance:

2.2 Parametric element (PP element)

This is the same as the classical 8-node isoparametric serendipity element (QUAD8) using the
shape functions given by Eqs. (1)-(3) for both test and trial functions. The element stiffness matrix,
load vector due to body forces and that due to surface forces are computed as usual using the
equations,

(33)

(34)

 (35)

respectively, where L  and D are the usual strain-displacement differential operator matrix, and the
material constitutive matrix, respectively, and b(e) and t(e) are body and surface forces, respectively.

2.3 Metric element (MM element)

For this element, the metric shape functions given by Eq. (21) are used for the test and trial
functions. Recently, Rajendran and Liew (2002) have tested the performance of this element under
mesh distortion. The element stiffness matrix and the load vectors for this element are computed as

(36)

(37)

(38)

K e( ) LN( )TD LN( )dV e( )

V
e( )
∫=

fb
e( ) NTb e( )dV e( )

V
e( )
∫=

f t
e( ) NTt e( )dV e( )

V
e( )
∫=

K e( ) LM( )TD LM( )dV e( )

V
e( )
∫=

fb
e( ) M Tb e( )dV e( )

V
e( )
∫=

f t
e( ) M Tt e( )dV e( )

V
e( )
∫=
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2.4 Parametric-metric element (PM element)

This element uses parametric shape functions and metric shape functions used as the test and trial
functions, respectively, and is the same as the US-QUAD8 element of Rajendran and Liew (2003).
This formulation may be looked upon as a typical Petrov-Galerkin formulation where different sets
of basis functions are used for the test and trial functions. The element stiffness matrix and the load
vectors for this element become

(39)

(40)

(41)

2.5 Metric-parametric element (MP element)

This element also uses two different sets of basis functions but with the roles of parametric shape
functions and metric shape functions interchanged. For this element, the stiffness matrix and the
load vectors become

 (42)

(43)

(44)

The PP and MM elements conform to Galerkin formulation and thus results in symmetric stiffness
matrix because the same set of shape functions is used on the right as well as left side of the D
matrix in the stiffness integral in Eqs. (33) and (36). However, the PM and MP elements conform to
Petrov-Galerkin formulation and results in an unsymmetric stiffness matrix because of different sets
of shape functions used. For solving test problems of section 3, the element geometry is interpolated
using the parametric shape functions (Eqs. (1)-(3)) for each of the four formulations. Thus, there are

K e( ) LN( )TD LM( )dV e( )

V
e( )
∫=

fb
e( ) NTb e( )dV e( )

V
e( )
∫=

f t
e( ) NTt e( )dV e( )

V
e( )
∫=

K e( ) LM( )TD LN( )dV e( )

V
e( )
∫=

fb
e( ) M Tb e( )dV e( )

V
e( )
∫=

f t
e( ) M Tt e( )dV e( )

V
e( )
∫=

Table 2 Choice of shape functions for the four element formulations studied in this paper

Element type Left shape functions Right shape functions Geometry interpolation 

Parametric (PP) Parametric Parametric Parametric
Metric (MM) Metric Metric Parametric

Parametric-metric (PM) Parametric Metric Parametric
Metric-parametric (MP) Metric Parametric Parametric
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three generic roles of shape functions, viz., (i) as left shape functions to represent the test function,
(ii) as right shape functions to represent the trial function, and (iii) as interpolation functions for
geometry. Table 2 provides a summary of the choice of shape functions with respect to these three
roles for the four element formulations mentioned above. 

3. Test problems

The performances of the four element types discussed in section 2 are studied for typical test
problems involving mesh distortion. All the four elements perform equally well for meshes
involving square or rectangular element geometries. However, they show marked difference in
performance under mesh distortion, which forms the focus of the present paper. The numerical
integration of stiffness matrix is carried out using a 3 × 3 Gaussian quadrature unless stated
otherwise.

Fig. 1 Distorted meshes for the cantilever beam under pure bending
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3.1 Test Problem no. 1: A cantilever beam under pure bending

This test problem is same as the test problem no. 2 of Rajendran and Liew (2000). A cantilever
beam of length, L = 10, depth, d = 2, and thickness, t = 2, is restrained at one end and a bending
moment, M = 4000, is applied at the tip. The units for the numerical values quoted in this paper are
not explicitly stated; consistent units are assumed. The beam is modelled using two 8-node plane
elements belonging to the four types of formulation discussed in section 2. Young’s modulus, E, and
Poisson’s ratio, γ, are taken as 1500 and 0.25, respectively. The bending moment is represented by
two equal and opposite forces of 2000 units magnitude as shown in Fig. 1. The exact solution for
this problem by the classical beam theory gives a tip displacement, ML2/2EI = 100, and a bending
stress, ±Md/2I = ±3000, for the bottom and top surfaces of the beam, respectively. This problem
involves a quadratic displacement field. A quadratic displacement field can in general be reproduced
by quadratic elements under aspect ratio and parallelogram distortions, and therefore these
distortions are not considered here.

3.1.1 A two-element mesh with angular distortion 
A two-element mesh with angular distortion as shown in Fig. 1(a) is considered. The extent of

angular distortion is controlled by varying the parameter, α. While varying the angular distortion,
the mid-side nodes are re-positioned at the mid-point of the respective sides. The computed nodal
displacements at (10, 2) are plotted in Fig. 2(a). The results with the 8-node element of Kikuchi et al.
(1999) are also shown for comparison. Fig. 2(a) shows that PM and MP elements, and the element
of Kikuchi et al. (1999) are able to reproduce the exact displacement solution irrespective of the
value of distortion parameter. The MM element performs reasonably well with a typical error of
about 5% for α = 4.0. The PP element exhibits the highest sensitivity to mesh distortion with an
error of about 66% for α = 4.0. 

The computed nodal σx-stress at (5− α, 2) is plotted in Fig. 2(b) which shows that the PM
element as well as that of Kikuchi et al. (1999) is able to reproduce the exact stress solution
irrespective of the magnitude of distortion. The MM element performs reasonably well and its

Fig. 2 Sensitivity to angular distortion
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performance is better than that of the MP element as well as that of the PP element. The
performance of PP element is again poor with an error of about 80% for α = 4.0. The MM element
discussed here is the same as Formulation 2 discussed in section 3.2 of Rajendran and Liew (2000).
However, it should be noted that the results shown in the Tables 7 and 8 of this reference are in
error, and therefore do not agree with the results of Figs. 2(a) and 2(b), respectively.

3.1.2 A single element mesh with mid-side node distortion
The cantilever beam is then modelled with a single element having mid-side node distortion as

shown in Fig. 1(b). The extent of mesh distortion is varied by moving the mid-side node at the
bottom edge of the element by a distance, β, in the positive x-direction. All the other nodes are kept
at their original locations. The displacement and stress values computed for typical values of β are
shown in Figs. 3(a) and 3(b), respectively. It is seen from these figures that the MM and PM

Fig. 3 Sensitivity to mid-side node distortion

Fig. 4 Sensitivity to curved-edge distortion
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elements are able to reproduce the exact displacement and stress solution for all values of β. The
results for the 8-node element of Kikuchi et al. (1999) are the same as for the PP element. Although
the 8-node element of Kikuchi et al. (1999) has been able to reproduce exact solution under angular
distortion (Fig. 2), its performance under mid-side node distortion is thus bad, and similar to that of
the PP element.

3.1.3 Two-element mesh with quadratic curved-edge distortion
The cantilever beam is then modelled with a two-element mesh having quadratic curved-edge

distortion. The magnitude of curved-edge distortion is controlled by varying the x-coordinate of the
mid-side node (Fig. 1(c)), which is otherwise located at (5,1). The computed displacement and
stress values for typical values of distortion parameter, δ, are shown in Fig. 4. Only the PM element
is able to reproduce the exact displacement as well as stress for this mesh. MM element is the next
best performing element. The performance of other elements are poor, particularly with respect to
the stress results. 

Thus, with respect to all the three types of distortion considered, only PM element is capable of
reproducing the exact displacement and stress. 

3.1.4 A severely distorted mesh
A mesh that has all the above three types of distortions together is considered here. In

manufacturing processes involving large strains, such as forging, deep drawing, extrusion, etc.,
various distortions could arise simultaneously, and hence the study of performance of elements

Table 3 Computed results for Problem 1 under severely distorted mesh (3 × 3 integration) 

PP element MM element PM element MP element8-node element of 
Kikuchi et al. (1999)

#σx at (0,0) 134 3017 3000 6213 74
#σx at (0,2) 10 −2567 −3000 −447 46
v at (10,2) 8.62 101.38 100 149.52 8.49

Exact solution: σx at (0,0) = 3000; σx at (0,2) =−3000; v at (10,2) = 100
#Calculated with respect to element No. 1

Fig. 5 A severely distorted mesh involving simultaneously three types of distortion, viz., angular distortion,
mid-side node distortion and curved-edge distortion
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under combined distortions is of considerable practical significance. The problem considered is
again the same as shown in Fig. 1, but the finite element mesh has five elements as shown in Fig. 5
that includes simultaneously various distortions, viz., angular distortion, mid-side node distortion
and curved-edge distortion. The lines defining the element boundaries shown in Fig. 5 have been
plotted by the parametric interpolation. Typical displacement and stress results for this mesh are
shown in Table 3. The PM element is able to reproduce the exact displacements and stresses
notwithstanding the severity of distortion. The PP element, MP element, and the 8-node element of
Kikuchi et al. (1999) produce results that deviate far from the exact solution. The performance of
MM element is far better, though not exact.

The problem was also solved using the PLANE82 element of the commercial finite element
package, ANSYS5.4. A reduced 2 × 2 integration is used by ANSYS5.4 for the computation of
stiffness matrix (Kohnke 1997), and hence for comparison purposes, the displacement and stress
results of the five element types shown in Table 3 have been re-computed with 2 × 2 integration.

Table 4 Computed results for Problem 1 under severely distorted mesh (2 × 2 integration)

PP element MM element PM element MP element
8-node element 
of Kikuchi et al. 

(1999)

PLANE82 
element 

(ANSYS5.4)
#σx at (0,0) 249 4176 2570 3729 175 266
#σx at (0,2) −329 −5282 −2741 666 −56 −1001
v at (10,2) 16.18 114.32 100.49 109.94 17.96 16.18

Exact solution: σx at (0,0) = 3000; σx at (0,2) =−3000; v at (10,2) = 100
#Calculated with respect to element No. 1

Fig. 6 σx-stress distribution across the mid-section of the beam for the severely distorted mesh shown in Fig. 5
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The results are summarised in Table 4, which suggest that even with reduced integration, the PM
element produces the best results though not exact as in Table 3.

The distribution of σx stress across the mid-section (x = 5) of the beam is shown in Figs. 6-8. (The
y-coordinates, and the ξ- and η-coordinates of the points at which the stresses are computed are
listed in Table 5 for reference purposes. The values of ξ and η are the roots of the two simultaneous

Fig. 7 σy-stress distribution across the mid-section of the beam for the mesh shown in Fig. 5

Fig. 8 σxy-stress distribution across the mid-section of the beam for the mesh shown in Fig. 5
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nonlinear equations,  and = 0, with x = 5 and
y-values listed in Table 5, which have been solved using the Mathematica software. Ni in these two
equations are shape functions as defined in Eqs. (1)-(3) for PP, MM, PM and MP elements, and as
given by Kikuchi et al. (1999) for the 8-node element of Kikuchi et al.) The stress values shown in
Figs. 6-8 are computed with 3 × 3 integration of stiffness matrix. It is seen from Fig. 6 that the MM
element and the PM element are able to represent the linear distribution of σx-stress accurately. The
PM element reproduces the exact solution whereas the MM element has small errors although not
visible in the current scale of plot in Fig. 6. The error is about 2.4% and 0.4% at the top and bottom
surfaces of the beam. The PP element, MP element and that of Kikuchi et al. (1999) are not
successful in representing the linear variation of σx-stress. The MP element exhibits violent
fluctuation of stress across the cross section. Figs. 7 and 8 show the distribution of σy- and σxy-

f1 ξ η,( ) x Σi 1=

8
Nixi 0=–≡ f2 ξ η,( ) y Σi 1=

8
Nixi–≡

Table 5 Coordinates of points at the mid-section of mesh shown in Fig. 5 at which the stresses are computed

PP, MM, PM and MP elements 8-node isoparametric element of 
Kikuchi et al. (1999)

y ξ η ξ η
0.0 −0.350781 −1.000000 −0.350781 −1.000000
0.1 −0.348040 −0.827647 −0.332033 −0.821532
0.2 −0.339936 −0.637266 −0.306036 −0.623719
0.3 −0.322435 −0.421286 −0.267691 −0.398285
0.4 −0.285595 −0.164495 −0.205124 −0.128798
0.5 −0.194422 0.174491 −0.081424 0.226702
0.55 −0.078467 0.420131 0.044283 0.474891
0.6 0.240434 0.813085 0.291795 0.826964
0.61 0.342744 0.909888 0.364992 0.913637
0.61954 0.442047 0.999939 0.442144 1.000031
0.61955 0.442110 −0.999989 0.442105 −0.999980
0.7 0.329390 −0.764279 0.330560 −0.765003
0.8 0.234550 −0.497756 0.236662 −0.498905
0.9 0.184416 −0.241703 0.186961 −0.243014
1.0 0.180704 0.013628 0.183160 0.012336
1.1 0.224674 0.275409 0.226594 0.274315
1.2 0.315234 0.554034 0.316355 0.553317
1.3 0.455329 0.872802 0.455596 0.872607
1.33393 0.517769 1.000088 0.517755 1.000042
1.33393 0.517785 −0.999889 0.517773 −0.999897
1.4 0.612983 −0.773169 0.601051 −0.775277
1.5 0.666203 −0.515846 0.649982 −0.512897
1.6 0.675467 −0.258316 0.656574 −0.249546
1.7 0.646865 0.037304 0.625657 0.051867
1.8 0.576517 0.386397 0.557081 0.399799
1.9 0.483900 0.729593 0.473777 0.733328
2.0 0.398155 1.000000 0.402311 0.999998
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stresses, respectively. The results of MP element exhibits too violent fluctuation to be
accommodated in the current scale of the plots, and hence not shown in these figures. Figs. 7 and 8
show that only the PM element is able to correctly represent the exact distribution of zero σy- and
σxy-stresses across the cross section.

3.2 Test Problem no. 2: A cantilever beam with a parabolic shear force at the tip

A cantilever beam of length, L = 10, depth, d = 2, and thickness, t = 1, is fixed at one end and a
parabolically distributed shear force, P = 300, is applied at the tip. Young’s modulus, E, and
Poisson’s ratio, γ, are taken as 1500 and 0.25, respectively. The finite element mesh is shown in Fig. 9,
which is same as in Fig. 5, but with different boundary and loading conditions. The exact solution
for this problem is given by Timoshenko and Goodier (1934) 

(45)

(46)

 (47)

 (48)

 (49)

where G = E/2(1 +γ) is the rigidity modulus. For this solution to be valid, normal and shearing
forces conforming to Eqs. (47) and (49) must be applied at the fixed-edge. 

In the finite element model, the parabolic shear force is represented by three consistently lumped
nodal forces, 30, 240 and 30, acting upwards at the tip as shown in Fig. 9. Vertical lumped forces of
−30 and −240 are applied at the nodes at (0,2) and (0,1), respectively, conforming to Eq. (49). The
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Fig. 9 A severely distorted mesh for a cantilever beam with a parabolically distributed tip shear force
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nodes at (0,1) and (0,2) are restrained in the x-direction, and the node at (0,0) is restrained in both
x- and y-directions. These boundary conditions automatically produce the necessary normal forces
(as reactions) that conform to lumped forces otherwise obtainable from Eq. (47). 

The computed displacements and stresses are summarised in Table 6. None of the elements is able
to reproduce the exact solution as the exact displacement solution (Eqs. (45) and (46)) is an
incomplete cubic polynomial in (x, y) which is one order higher than what any of the five types of
elements can at best reproduce. It is seen from Table 6, the PP element and the 8-node element of
Kikuchi et al. (1999) exhibit poorer performance. The stress value σx(0,2) given by these two
elements as well as that given by MP element are positive in sign whereas the exact stress value is
negative. The MM element and MP element exhibit a somewhat better performance than these two
elements. The stress results of PM element are better than that of MM element. Table 7 shows the
results for this problem with reduced integration of stiffness matrix. Here again, the PP element and
the 8-node element of Kikuchi et al. (1999) exhibit poorer performance. The displacement given by
PLANE82 element of ANSYS5.4 is comparable to that of these two elements. MP element gives
the most accurate displacement value, although it gives an erroneous positive value of 13030 for
σx(0,2). The results of MM element and the PM elements are somewhat comparable to the exact
solution. The signs of stress values given by these two elements are correct although the magnitudes
are higher than the exact value. 

The distribution of stresses across the mid-section of the beam is shown in Figs. 10-12. Here
again, the stress values are computed with 3 × 3 stiffness integration. It is seen from Fig. 10 that the
MM and PP elements are able to represent the linear distribution of bending stress (σx-stress)
whereas the other elements, in particular the MP element, exhibits considerable deviations from
linear distribution. The σx-stress results of MM element match exact solution very closely, with
small errors that are not visible in this scale of the plot. The PM element exhibits significant

Table 6 Computed results for Problem 2 under severely distorted mesh (3 × 3 integration)

PP element MM element PM element MP element 8-node element of 
Kikuchi et al. (1999)

#σx (0,0) 130 3464 4426 8118 185
#σx (0,2) 213 −3044 −4100 4317 312
v (10,2) 11.39 89.12 118.39 126.05 12.18

Exact solution: σx at (0,0) = 4500; σx at (0,2) =−4500; v at (10,2) = 100
#Calculated with respect to element No. 1

Table 7 Computed results for Problem 2 under severely distorted mesh (2 × 2 integration)

PP element MM element PM element MP element 8-node element of 
Kikuchi et al. (1999)

PLANE82 element 
(ANSYS5.4)

#σx (0,0) 333 9328 7499 7730 405 169
#σx (0,2) 158 −7602 −5579 13030 454 −1009
v (10,2) 20.03 114.76 103.53 100.69 22.12 18.99

Exact solution: σx at (0,0) = 4500; σx at (0,2) =−4500; v at (10,2) = 100
#Calculated with respect to element No. 1
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deviation from the exact solution. It is seen from Fig. 11 that none of the elements is able to
represent the zero distribution of σy-stress. It is seen from Fig. 12, none of the elements is able to

Fig. 10 σx-stress distribution across the mid-section of the beam for the mesh shown in Fig. 9

Fig. 11 σy-stress distribution across the mid-section of the beam for the mesh shown in Fig. 9
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match the parabolic distribution of σxy-stress. The distribution given by the PM element somewhat
resembles a parabola in a piece-wise sense although it is shifted leftward with respect to the exact
distribution. The distribution of stresses within each element domain as given by the MM and PM
elements is linear whereas that of the PP element and the element of Kikuchi et al. (1999) are
nonlinear.

3.3 Some general comments on the four formulations of section 2

The PP and MM formulations are well known in the literature, and the PM and MP formulations
are obscure. Although the PP and MM formulations are already known, the PP formulation has

Table 8 Reproduceability of quadratic displacement field under distorted mesh

Element geometry
/Distortion type PP element MM element PM element MP element 8-node element of 

Kikuchi et al. (1999)

Linear geometry:
  Aspect ratio distortion yes yes yes yes yes
  Parallelogram distortion yes yes yes yes yes

Bilinear geometry:
  Angular distortion no no yes no yes

Quadratic geometry:
  Mid-side node distortion no yes yes no no
  Curved-edge distortion no no yes no no

Fig. 12 σxy-stress distribution across the mid-section of the beam for the mesh shown in Fig. 9
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been preferentially used and advocated for certain reasons such as that it yields a compatible or
conforming element. Degeneration of the isoparametric quadrilateral element to a triangular element
by collapsing the three nodes of a side works with PP formulation while, in MM or PM or MP
formulation, it leads to singularity of P matrix due to repeated coordinates of the collapsed nodes.  

The PM element is an incompatible element because it uses metric shape functions to construct
trial function, which are not compatible for all element geometries. However, the ill effects of
incompatibility do not show up if the element is used under linear or quadratic displacement fields.
Furthermore, it is capable of reproducing a quadratic displacement field even under extreme mesh
distortions as long as the Jacobian of geometric mapping is unique at the quadrature points. Table 8
gives a summary of reproduceability of quadratic displacement field by various elements under
linear, bilinear and quadratic mesh distortions.

The PP formulation has been the staple formulation in finite element literature. Although the
shape functions used in the PP element satisfy interelement continuity, they do not satisfy Cartesian
quadratic completeness under general distorted geometries, which causes the distortion sensitivity
under a quadratic displacement field. 

The MM formulation, although known for long and is often presented in textbooks for simpler
elements like the CST triangle, has been unpopular for 8-node quadrilateral element. Although the
shape functions used in MM element satisfy Cartesian quadratic completeness under general
distorted geometries, it does not satisfy inter-element continuity, which prevents reproduction of
quadratic displacement fields under distorted meshes. 

The PM formulation uses two different sets of shape functions for constructing test and trial
functions. The left (test) shape functions are chosen to satisfy the interelement continuity, and the
right (trial) shape functions are chosen to satisfy the Cartesian quadratic completeness. This
particular choice is identified to be responsible for the distortion-immune performance of the PM
element under quadratic displacement fields (Rajendran and Liew 2003).

The MP formulation is similar to PM formulation, but the roles of left and right shape functions
are interchanged although there is no theoretical justification to do so. However, this element is
useful to demonstrate that the distortion immunity in PM element is not fortuitous and an arbitrary
choice of shape functions as in MP element does not lead to distortion-immune performance.

4. Conclusions

The performances of four types of formulations of 8-node plane quadratic element, viz.,
parametric (PP), metric (MM), parametric-metric (PM) and metric-parametric (MP) formulations,
have been compared in the presence of mesh distortion. The PP and MM formulations are already
well known in the literature, and they use the same set of shape functions as the basis functions for
the test and trial functions. The PM and MP formulations use different sets of shape functions as the
basis functions for the test and trial functions. The numerical test results reveal that the PP
formulation, on which the classical 8-node serendipity element is based, leads to poor results under
severely distorted meshes. The MM and PM formulations perform superior to other formulations.
The PM element is able to reproduce a quadratic displacement field even under extreme mesh
distortions where the other elements are not. This element also performs acceptably well under
reduced integration of stiffness matrix.
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