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Abstract. The paper presents shear lag parameters for beam-to-column connections in steel box piers.
Previous researches have analyzed beam-to-column connections in steel piers using a shear lag parameter
no obtained from a simple beam model, which is not based on a reasonable design assumption. Instead,
the current paper proposes a cantilever beam model and has proved the effectiveness through theoretical
and experimental studies. The paper examines the inaccuracy of the previous researches by estimating the
effective width, the width-span length ratidb, and the sectional area ratoof a cantilever beam. Two

different shear lag parameters are defined using the cantilever model and the results are compared each
other. The first type of shear lag paramejerof a cantilever beam is derived using additional moments

from various stress distribution functions while the other shear lag paranggtef a cantilever beam is

defined based on the concept of the effective width. An evaluation method for shear lag stresses has been
investigated by comparing analytical stresses with test results. Through the study, it could be observed
that the shear lag parametes; agrees withr. obtained from the " order stress distribution function.

Also, it could be observed that the shear lag paramgtessing the % order stress distribution function

almost converges to the upper bound of test results.

Key words: beam-to-column connection; shear lag parameter; additional moment; stress distribution
function; effective width.

1. Introduction

Recently, steel piers have been widely applied for pier structures of urban overpasses and elevated
structures in East Asian countries due to the small space requirements, excellent earthquake
resistance capacity, and less construction term. However, at the T-type or framed beam-to-column
connections of box-sectioned steel piers as illustrated in Fig. 1, it has been widely acknowledged
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that serious shear lag and also stress concentrations may occur due to abrupt direction changes in
member forces. Therefore, it has been highly required to handle these problems properly in the
design stage.

In the early study on welded steel connections, Bestdi¢ (1951) proposed a stress and strength
evaluation method for a H-sectioned beam-to-column connection by assuming that stresses are
uniform in flanges and webs. Fielding and Huang (1971) indicated that the strength of beam-to-
column connection of a H-sectioned frame is reduced due to the axial force in column. However,
they could not notice shear lag phenomenon at the flange of connection.

By recognizing shear lag phenomenon at box-sectioned beam-to-column connections of pier
structure, Okumura and Ishizawa (1968) carried out theoretical and experimental studies using a
simple beam model subjected to a concentrated mid-span load and suggested an evaluation method
for shear lag stresses as a result. However, they overlooked a problem in assuming internal forces at
the welded connection where the distribution of bending moments is closer to that of a cantilever
beam rather than that of a simple beam. In addition, Okumura and Ishizawa (1968) did not consider
the effective width of the flange plate seriously in estimating the shear lag and stress concentration
at the connection. Instead of using a simple beam model, Nakhi(1992) suggested an equation
for the shear lag stress from a study using an overhanged beam model with additional moments due
to shear deformation occurred at the connection. However, the result of éialfaivas also not
much different from that of Okumura and Ishizawa because they also did not take reasonable
account of the similarity between the internal forces of a beam-to-column connection and the
moment distribution of a cantilever beam.

Shear lag in box girders was firstly studied by Reisser (1946), and evaluation of shear lag stress
had been studied by many investigators. Malcolm and Redwood (1970) suggested analytical
procedure using stiffener-sheet solution. Kuzmaéovi and Graham (1981) found the minimum
potential energy principle was a suitable approach to evaluate the shear lag in box girders. Chang
and Zheng (1987) analyzed shear lag effects in cantilever box girders through a variational approach
on the additional moment using different analytical procedures under various types of loadings.
Recently, the substructuring analysis method for shear lag stress using the conditions of
compatibility and equilibrium was introduced by Fafitis and Rong (1996), and Lee and Wu (2000)

(b) T type pier
Fig. 1 Beam-to-column connections of steel box piers
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improved the inefficiency of traditional finite element analysis using uniform meshes in the solution
of shear lag stress. Wang (1997) derived an energy equation for the lateral buckling of thin-walled
members with openings considering shear lag phenomenon. AlsoetLab (2002) carried out
experimental study on the shear lag effect of box girder with varying depth. However, these studies
have been recognized that the complicated equations by many investigators are not so practical for
the design of box girders and box-sectioned connections. Also, their studies have been limited to
box girders only and did not considered that the shear lag stress of the box-sectioned beam-to-
column connection is much higher than that of box girders.

Therefore, the current paper simplifies the equations based on Chang and Zheng and develops an
adequate design methodology for the pier connection behavior with shear lag phenomenon.
Especially, additional moment of a cantilever beam under concentrated load, which is a new and
more reasonable concept to evaluate the shear lag stress of connection, is introduced and applied to
a typical box-sectioned connection. Also, the effective width ttlousing the cantilever model is
estimated and the influences of two variables of the width to span length.fatand sectional
area ratio§(=A,/A;) on the shear lag stress have been investigated. Shear lag parameters depending
on the variables ol./b, § and effective widths are formulated and their adequacy has been
examined by comparing analytical outcomes with experimental results.

2. Review of the previous studies

As shown in Fig. 2, the normal streggy) at the flange of a box section distributes uniformly
with g, along they-axis based on the elementary beam theory. However, at the intersection of the
flange and web wherg= *b', the actual maximum normal stregsma{y = £b') is higher than the

average normal stress gf. This high stress due to the transfer of the shear force from the web to
the flange edge is called the shear lag phenomenon (Timoshenko and Goodier 1987).
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Fig. 2 Normal stress distribution of box beam Fig. 3 Internal forces acting on a connection
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In the box-sectioned beam-to-column connection, the bending moments in the beam and column
are transformed into the concentrated forces in flanges by assuming that the flanges almost resist the
moments (Beedlet al 1951, Okumura and Ishizawa 1968). Therefore, the internal concentrated
forcesFy, andF;, acting on the flanges of a box-sectioned column and beam at the connection, as
depicted in Fig. 3, are defined as follows.

Mb Nb _ [ Nc
g, "2 FeTg o @
where M,, M. = moment,N,, N, = axial force,d,, d. = depth of beam and column sections,
respectively. These internal forcEg andF;. act as shear forces to the column and beam and thus
the shear lag phenomenon may occur.

To evaluate the maximum normal stress at the flange, it is required to compute shear lag stress
in Fig. 2 as well as the average vertical st@sBom bending moments and axial forces. Okumura
and Ishizawa (1968) suggested Eqg. (2a) for the shear lag stydss introducing a shear lag
parameten, from a simple beam model under a concentrated mid-sparPlaadshown in Fig. 4.

Fip =

F
Os = 1o A_WE (2&)

whereb, d = width and depth of the bea, = internal concentrated force of the flangg,= area
of the web,n, = shear lag parameter by Okumura defined by Eq. (2b), respectively.

_ o6l 3 rS(1-be/b)mt
o= 2,570 6+ 315+3(b./b)} 20

in which b' = half width of beamS = sectional area ratiofg/A;), be = effective half width of beam,

be _ coshb'sinhZb’ + b’ o o b’ _
and = = 14 ; 52 ,Z = effective width ratio witlfb’ = nm— , respectively.
b 270’ cosH b L
1.0
—e— : Olumura(1],)
08 1 —o— : Nakai(1,)
0.6 |
n
P 04 |
| a=0QL ‘
é % 0.2
I:ix=0.5L4>J J
L 00 b o o 0 0 0 0
a : distance from support to loading point 0 3 6 9 2 15
x : distance from support to mid-span R ( =3/ S)

Fig. 4 Simple beam model with span length Fig. 5 Comparison of shear lag parameters
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However, the use of a simple beam conflicts with the actual observation that the bending moment
distribution at a connection is closer to that of a cantilever beam. In addition, since the shear lag
parameten), of Okmura and Ishizawa is expressed by power series, an additional diagram of Fig. 5
is required for practical applications. With a recognition of this problem, Nakdi (1992) used an
overhanged beam model and suggested a shear lag pargyratéig. (3) considering an additional
moment due to shear deformation.

R
= 3.273 3
T 327(R+1)A/(R+1)(R+6) ©

whereR = sectional area ratio(2g/A, = 3/9

Shear lag parameters for the two cases are compared in Fig. 5. From the figure, it can be observed
that the difference is almost negligible although the two parameteysao n, deviate a little bit
asR>2.0.

3. Effective width of a box section
3.1 Effective width of a simple beam
At the mid-span of a box-sectioned simple beam subjected to a concentraté&ldeashown in

Fig. 4, the normal stress distribution is illustrated in Fig. 7. The effective width batio<{ 2b;/
2b") at the mid-span is given by Eq. (4a) (Komatsu 1974).

be _ L J1.50/ (1.2—K)A

b~ 7 3g(1-g)(L/b) + kJ1.50/ (12— K)A

(4a)

wherev = Poisson’s ratio of steel (= 0.3),= coefficient for distance from support to the point under

. . 1 Afc Ifc ZS+ 3

= — -t =z=—
consideration,w v K AT (S+3)(5+1)
and the compression flange, respectivelgnd I;, are the area moment of inertia of the box section
and the compression flange, respectively. The condtankEq. (4b) is defined as.

A and A are the area of the box section

A=1.0 for L/b'>5.0
_ /b /1.5w0 '
tanh D012 k0] for L/b'<5.0 (4b)

At the mid-span of a simple beam whepe 0.5, Eq. (4a) reduces to Eq. (5) and could be
expressed in terms affb' andS

463 [(S+3)(S+1
be _ 1 N12S° + 28S+6
o= 1-

L 2S+3 S+3)(S+ 1)
0.755 + —22+3 [ g3 [(S*3)(S+1)
b’ (S+3)(S+ 1)%1 122 + 285+ 6°

()
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beam theory

===
il [
b’ b’
b' b! %
|
b.=2b',
— _»_ -
y
P
| * i l: - ;
I _— J
X
- L - | b |
Fig. 6 Cantilever beam model Fig. 7 Effective width of box section

3.2 Effective width of a cantilever beam

3.2.1 The 2" order stress distribution function
When a concentrated lo&dacts on a free end of a cantilever beam (Fig. 6), the normal stress can
be computed by the"®order stress distribution function as formulated by Chang and Zheng (1987).

_ P[,_5np ¥y 2lgqsinhkx
o) = z[x 4K 3IEbosH<LJ (63)

whereZ = sectional moduluds/l =3/S+3, n andK are defined by Eq. (6b) which are based on
Reissner’'s parameters (Reissner 1946), respectively.

6S+18 1 14 6S+ 18
= , K== 6b
N~ 65+3 b«/10(1+ v)«/68+3 (6b)
Based on Eqg. (6a) by Chang and Zheng, a practical formubg/ffiois derived in this study. WheerL
andL/b'= 2.5, Eq. (6¢) can be obtained from Eq. (6a) and Eq. (Gb)csgéhi)li 01.0
_ P[, _5n, 5ny", 2l5n
ob) = z[" aK T akpzt 30 4KJ (60)

If y=+b' is substituted into Eq. (6¢), the maximum normal stiggss is obtained. Using the
concept of the effective width (Moffat and Dowling 1975, BS5400 1982, Tahah 1997), the
effective width ratidb./b is obtained as follows.
: 5n . 5nls
b _ [ WYy _ "6k 6K
b~ b o nls
Kl

7a
e (7a)
6
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Also, if n/K based on the"?stress distribution function arig/l are substituted into Eq. (7a), the
effective width ratiob,/b is formulated as follows by the width-span length ratib' and the
sectional area ratis

L [6S+ 18 6S+181 1
— —0.803 +2.409
b’ + +3B+30
% = 65+3 65+3 for #22.5 (7b)

b L 6S+181 1 [
b'+2'409/68+3ESD_+3D

3.2.2 The 3" order stress distribution function
If the distribution of normal stress is assumed by tReor@ler stress distribution function, stress
distribution a(x) is expressed as follows.

_ P[,_7ng ¥ 3lysinhkx
o(x) = z[x 6K 3 4|Ebosh<J (83)

where Reissher's two parametersand K can be expressed by Eq. (8b) in terms of the sectional
area ratioS

_ 85+24 _1J 14 [8S+24 (8b)

8S+3' ' b'A10(1+ v)y 85+3

ls 3
WhereI = 33"

By following the same procedure as the case of tHeo@ler stress distribution function, the
effective width ratio ob./b for the 3 order stress distribution function is derived as follows.

L 8S+ 24 8S+241 1 0
= _-0.843 [222<=+ 2529
b. _ b N 8S+3 8S+3 [B+30
b L 8S+24r 1 [

for # 525 ©)

3.2.3 Higher order stress distribution function
The effective width ratido./b for higher order stress distribution functions can be obtained by the
same procedure and are presented in Table 1.

3.3 Comparison of effective width

Fig. 8 compares the effective width ratigb of a simple beam with that of a cantilever beam
using the 2 order stress distribution function when the span length When the span length of a
simple beam and a cantilever is the samé,ahe effective width ratios of a cantilever beam are
consistently larger than those of a simple beam with equal sectional area ratio. However, when the
span length of the simple beam is doubled byw&h fixed span length for the cantilever, the trend
of bo/b from two beam models almost coincide each other at every trial valu®'afs shown in
Fig. 8(b). From the two figures, we can observe that Okumura’s approach of calculating shear lag
parameter in beam-to-column connections using a simple beam model does not reflect this span
length effect properly.
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Table 1 The effective width ratio with the different order of stress distribution function

Order of stress distribution function Effective width ratig/lf)

L 6S+18 6S+1800 1 [
- 0.803/63+3 +2'409,68+3|:S+3D

2
L 6S+1811 1 O
b,+2.409 6573 6+ 30
L [8S+24 8S+240 1 O
b 0.843 3513 +2.529 8573 [(65+ 30
3
L 8S+24 1 O
b’+2'529 8S+3 B+ 30
L 10S+ 30 10S+301 1 [
=-0. | +2.
A b 0.867 10573 2.601 10S+3 6+ 30
L 10S+301 1 [
b +2.601 _1OS+ 3 5+ 30
L 12S+ 36 12S+3600. 1 O
= —0.883 [===—>'+ 2.650 [===—=
. b /\/ 12S+3 12S+3 8+ 30

L [12S+3601 1 [
b +2.650 195+ 3 [65+ 30

1.0
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02 f —O— : §=0.0(cantilever) 02 | —O— : 8=0.0(cantilever)
—1 : $=10.0(cantilever) -1 : S=10.0(cantilever)
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(a) Simple beam span length = L (b) Simple beam span length = 2L

Fig. 8 Comparison dbs/b from simple beam and cantilever beam models with variaticmbof

3.4 Influence of L/b' and S on effective width

The effective width ratido./b of a cantilever beam can be expressed by a function of the width-
span length ratid/b' and the sectional area ra®as presented in Table 1. Fig. 9(a) shows the



Evaluation of shear lag parameters for beam-to-column connections in steel piers 699

1.0 0.7

08

06 |

b,/b
()X

1 :S=0.02nd)

04 | —0— :8=0.03rd)
—A— 8= 0.0(4th) os W
—o— : 8= 0.0(5th) ' — : L/b'=2.5(2nd)
—m— : S=10.0(2nd) I —— : L/b'=2.5(3rd)

02 | —o— :§=5z.%3r;1j - Lb2.54th)
—A— :S=10.0(4th il
—o— : S=10.0(5th) —— : L/b'=2.5(5th)

0.0 1 rl L 04

0 5 10 15 20 0 2 4 6 8 10
L/b' S(=A,,/Ay)
(a) Influence of L/b" on b./b (b) Influence of S on b./b

Fig. 9 Influence oL/b' and Son effective width ratio

relationships between the effective width ratio and the width-span length ratio depending on the
order of stress distribution function when the sectional areaSasidixed as either of the value of

0.0 or 10.0. The effective width ratio increases rapidly in the region of &rélbut gradually
converges to a constant value whéve' > 10.0. When the value o6 = 0.0, the value of the
effective width ratiob./b increases as the order of stress distribution function decreases. However,
when the value o§ = 10.0, the values dif./b do not change with the increase of the order of stress
distribution function. Fig. 9(b) shows the variation of the effective width t®fio with the change

of the sectional area rati® with a fixed value ofL/b'=2.5. The effective width ratio increases
rapidly in the region ofS< 2.0 but is not sensitively affected lyb' when S>2.0. From the
observations of Fig. 9, it can be concluded that the influent#bbfind S should be considered in
calculating the effective width ratio./b, especially wher/b' <10.0 andS <2.0 as usual situation

of steel piers.

4. Development of formula for shear lag parameter
4.1 Shear lag parameter n. considering additional moment

In evaluating shear lag stress due to additional moment, shear lag pamumeiéhe derived
based on various stress distribution functions. When a concentrateld isagplied to a cantilever
beam with box section as shown in Fig. 7, the additional momMeatcurs at the flange due to the
shear deformation of the web. The additional moment is given by Eq. (10) when the normal stress
distribution is assumed as th& arder stress distribution function (Chang and Zheng 1987).
_ 5lgn

M; = éI—RP (20)

whereld/l, n, K are as defined in Eq. (6). The sectional moddlean be expressed by Eq. (11).
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_ B+ S0
Z =255 (11)

whereA;=2b - t;.
Then, the shear lag stregsis calculated by dividing the additional momét by the sectional
modulusZ as Eq. (12a).

_ My _5lnl _ S [6S+18bP
0= 5 = EiKz = 7.227% 3+ 6573 EEAW (12a)

By considering concentrated lod® as the flange forcd~ which acts as shear force at the
connection, Eq. (12a) can be rearranged as follows.

_ Fio
Os = I A_WD (12b)

wheren. = the shear lag parameter considering an additional moment as defined by Eq. (13).

S 6S+ 18
= 7.277x 13
fle (S+3)%\ 6S+3 (13)

Similarly, in the case of the3order stress distribution function, the additional momdnts
given by Eqg. (14).

_ 7lsn
M = 81 KP (14)
By using a similar procedure as in th&® drder stress distribution function, the shear lag

parameten), for the 3 order stress distribution function can be derived as.

S 85+ 24
= 7.589x% | 15
fle (S+3)°N 85+3 (15)

For a higher order of stress distribution function, the shear lag parameters derived for the
correspondingM;, n, and K. Table 2 summarizes the formula for shear lag paramgtewvith
different orders of stress distribution function.

Table 2 Shear lag parameter with stress distribution function

Order of stress distribution Shear lag parameter

S 6S+18
2 7.277x —=—;
><(s+3)2 6S+3

S 8S+24
7.589%x ———;
3 >89 (S+3)°N 85+3

S 10S+ 30
4 7.805
* (S+3)%N 10S+3

S [12S5+36
7.884x
> 88 (S+3)° 125+3
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Fig. 10 Variation of shear lag parametgr

Fig. 10 shows the relationship between the different shear lag parapmetbenS varies. The
shear lag parametey. based on the "2 order stress distribution function agrees well with the
Okumua and Ishizawa’s shear lag parameteobtained from a simple beam model if the span
length is set equal tolL.2 From the figure, we can also observe that the shear lag parapeter
becomes larger as the order of stress distribution function increases with a fixed va&ue of
However, when the order of a stress distribution function is higher than 4, the increasergate of
with a fixed value ofS reduces rapidly.

4.2 Shear lag parameter nes based on effective width

As another approach, the shear lag stress can be evaluated by considering the effective width of
the flange If the normal stress of the flange which is increased by using sectional modulus with
effective width is assumed as maximum normal stress, the difference between maximum normal
stress and average normal stress by elementary beam theory can be defined as sheardlag stress
Then, a shear lag parametgf can be derived from shear lag stresbased on effective width.

Z,and Z is sectional modulus with and without considering the effective width. They are defined
as Eq. (16a).

Ad(3[h,/b+ 9 Ad(3+9)
= , /= ——=

6 6
The difference between the inverse of sectional matiwindZ is obtained as Eq. (16b).
L _1g_ 18(1-b./b)
(z, zU Ad@Bb/b+S(3+9)
where A; is the area of the flange plate(st2 Then, the shear lag stresg is obtained by
multiplying Eg. (16) by bending momeht as Eq. (17a).
1 1g_ 0. 18(1-be/b) O bFif
.~ Z07 Hb(3b/b+ 9(3+ 9 LA,

Z, (16a)

(16b)

o, =M (178.)
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Also, by considering concentrated loRdas the flange forc&;, Eq. (17a) can be rearranged as
follows.

F
O = Nen gm0 (17b)

wherene; = the shear lag parameter using effective width defined by Eq. (18).

_L_18(1-by/b)S
Mett = b(3bs/b+ 9(3+9)

Fig. 11 shows the variation of shear lag paramgigmith respect to the sectional area raio
with different values of/b". From the figure, it is observed that the shear lag paramgtef Eq. (18)
is not influenced by the changelob'. As a result, the shear lag paramejgrof Eq. (18) can be a
function of a single paramet& Fig. 12 shows a good agreement between the effective shear lag
parameten.« and the shear lag parametgrusing the 2 order stress distribution function.

From the two approaches of evaluating shear lag stress in terms of shear lag parameter, both
methods by parametey. considering additional moment angl; based on the effective width
produce consistent results. Therefore, the shear lag stress may be evaluated by the shear lag
parameter. which is only dependent on the sectional area &tio

(17¢)

5. Comparison with test results
5.1 Test model

The shear lag parameter, at a beam-column connection was derived as a function of the
sectional area rati§ in Eq. (13), Eq. (15), and Table 2. To verify the theoretical equationg,for
laboratory experiments have been carried out with a test device shown in Fig. 13(a) and the results
in elastic region are compared. The test specimen is hinged at one edge with roller at the other as
shown in Fig. 13(b). Four different categories of test specimens (A, B, C, D) were used as
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Fig. 13 Test setup, boundary condition, and section details
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Fig. 14 Gauge locations in the lower flange of beam

summarized in Table 3. Fig. 14 shows the strain gauge layout for the specimens. The maximum
normal stresses due to shear lag phenomenon calculated by the data of gauge A and gauge C were
used to compare with the analytical solutions. Also, because minimum vyield stress of specimens
was 286 Mpa, all specimens were in the elastic state under giverPldadTable 3,5, is the

sectional area ratio of the beam or colurap,is the normal stress by beam theamy,, is the
maximum normal stress from experiments,is a shear lag stress calculated fromx— oy, Fi is

the concentrated flange force calculated from Eq. (1), raml the shear lag parameter calculated

from experiments based on the form of Eq. (12b), respectively.

5.2 Evaluation of shear lag stress

Fig. 15 compares the shear lag parameters from experimental results (Hwang 1993) iwith
Table 2 andne; in Eq. (18). As observed from Fig. 12, the shear lag paramgtearsing the 2
order stress distribution function and the shear lag paramefesm Eqg. (18) agree well but these
two shear lag parameters are consistently lower than those from the experiments. Also, it can be
observed that the upper limit values from the experiments almost coincide with the shear lag
parameter by theSorder stress distribution function. Thus, from the equations in Table 2, the shear
lag parameten). over the ¥ order stress distribution function can be considered to estimate the
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Table 3 Shear lag parameters of test model

. Shear lag
b t db dc tw L P Op Omax Oy Fi
Model (mm) (mm) (mm) (mm) (mm) mm) S kN) (Mpa) (Mpa) (Mpa) (kN) paremeter

A-1b* 1844 59 1541 1541 44 600 062 277 820 156.3 74.3 107924 0.78
A-2b 2445 6.0 204 204 45 800 0.63 427 936 1775 839 167399 0.77
A-3b 1845 6.0 204 154 45 620 0.83 213 453 815 36.2 64867 0.85

B-lb 2756 88 2012 2012 56 900 046 565 91.3 177.8 86.4 252629 0.56
B-2b 3356 88 2712 2712 56 1100 051 56.3 659 1255 59.6 228229 0.64
B-3b 2756 88 2712 201.2 56 900 0.63 585 66.1 109.1 429 194091 0.66

C-1b 486 11.85 428 428 1185 2000 0.88 207.9 141.8 2156 73.8 971436 0.79
C-2b 415 1185 488 418 1185 2000 1.18 693 411 63.7 226 324762 0.94
C-3c** 415 11.85 488 418 11.85 2000 1.01 69.3 488 750 26.1 288117 0.90

D-1b 306 100 270 190 6.0 900 053 392 378 735 357 136474 0.75
D-1c 306 100 270 190 6.0 900 0.37 39.2 528 1129 60.1 177432 0.48
D-2b 308 100 330 260 80 1300 0.86 39.2 395 608 21.3 158582 0.76
D-2c 308 100 330 260 80 1300 0.68 39.2 508 88.2 37.4 190723 0.69
D-3b 336 80 232 172 6.0 900 052 39.2 498 107.8 58.0 157138 0.71
D-3c 336 80 232 172 6.0 900 038 392 66.8 161.2 944 198279 0.50
D-4b 338 80 292 232 80 1300 0.86 39.2 507 882 375 178548 0.85
D-4c 338 8.0 292 232 80 1300 0.69 392 649 1274 625 214586 0.74

*: b index means experimental data of the beam lower flange
** . ¢ index means experimental data of the column lower flange

B Test(A-series)
& . Test(B-series)
@ : Test(C-series)
A Test(D-series)

—o— nejf

— 7. (2nd)

------- : 1, (3rd)

—=== 1], (4th)

— 1. (5th)

0.0 0.5 1.0 1.5 2.0
S(=A,/A;)
Fig. 15 Comparison afi. with test results

upper limit value. Therefore, it may be reasonable to use the shear lag pararbgtesing the %
order stress distribution function to evaluate the shear lag stress properly.
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6. Conclusions

To evaluate the shear lag stress at a beam-to-column connection of steel piers, two types of shear
lag parameters, i.er. derived from an additional moment ang based on the effective width ratio
b./b in a cantilever beam have been derived in a different way. From the study, the following
conclusions could be obtained:

1) A cantilever beam model was identified as a proper model to evaluate shear lag stress at beam-
to-column connection rather than a simple beam model. In this study, therefore, equations for
effective width of cantilever beam with hollow rectangular section were derived using a
cantilever model based on th& through %' order stress distribution functions.

2) The effective width ratid/b of a cantilever calculated from derived equation changes rapidly
when the width-span length rafigb' < 10.0 and the sectional area refic 2.0.

3) The shear lag parametgy; based on the effective width is in a good agreement nittbtained
by using the 2 order stress distribution function. Therefore, the shear lag stress can be evaluated
by the shear lag parametgrwhich is only dependent on the sectional area &tio

4) Because the shear lag parameteusing a stress distribution function with a higher than the
4" order almost converges to the upper bound of shear lag parameters from the experiments, it
seems to be reasonable to apply the shear lag paragpetéh the 4" order stress distribution
function for evaluating shear lag stress

Although the shear lag stress can be properly evaluated from the proposed panarfetex

typical rectangular beam-to-column connection, considerations on the variable section and yielding
pattern of connections may be also necessary to develop design equations of steel pier connection in
near future.
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