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Abstract. Peak response is a more suitable index than mean response in the light of structural safety. In
this study, a controller optimization method is proposed to restrict peak responses of building structures
subject to earthquake excitations, which are modeled as partially stationary stochastic process. The
constraints are given with specified failure probabilities of peak responses. LQR is chosen to assure
stability in numerical process of optimization. Optimization problem is formulated with weightings on
controlled outputs as design variables and gradients of objective and constraint functions are derived. Full
state feedback controllers designed by the proposed method satisfy various design objectives and output
feedback controllers using LQG also yield similar results without significant performance deterioration.
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1. Introduction

Many active structural control methods have been developed and implemented in the field of civil
engineering to suppress excessive vibrations induced by earthquake or wind loads (Soong 1990,
Housner et al. 1997). Due to the nature of such loads, their magnitudes and distributions cannot be
exactly specified, but can be defined stochastically only. Therefore, the quantification of control
effectiveness based on probabilistic concept is an important problem in controller design. Standard
deviation is the most commonly used response quantity for stochastically excited structures, because
most random disturbances can be approximated by white or filtered white noises and the response
covariance matrix of a linear time invariant (LTI) system under a white noise excitation can be
obtained by solving a Lyapunov equation. Further, the exact probability distribution of peak
responses is not known (Lutes and Sarkani 1997). Accordingly, widely used control methodologies
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such as Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control algorithms
minimize the standard deviation of responses. However, in the light of structural safety, the critical
response quantity is defined as a peak value rather than a standard deviation.

Spencer et al. (1994a) proposed a probabilistic controller design method for a single degree of
freedom (SDF) structure considering the uncertainty in structural parameters. In their research, the
probability of peak displacements exceeding critical value is used as an objective function and the
root mean square (RMS) value of control forces is used as a constraint. May and Beck (1998)
investigated an unconstrained optimization of the acceleration feedback controller for a three-story
test building structure taking into account the parameter uncertainty in ground acceleration
modeling. They minimized the failure probability defined by a safe region, but the level of the
failure probability could not be specified. An important problem in the controller optimization is
that a control gain may fall into an unstable region while seeking an optimal solution. In such cases,
the probability distribution of the closed-loop system does not exist and the optimization process
cannot be continued, since the closed-loop system responses diverge. In the previous two studies by
Spencer et al. and May and Beck, there were no remarks on this issue. This is because the simple
controller structures that they used make it easy to set up constraints on the stability. 

There have been a lot of studies on controller optimization of which solution has the form of LQR
controller. This is due to the facts that LQR controller has a simple stability condition expressed in
terms of weightings on output variables, and that it can be easily extended to an output feedback
controller with an appropriate observer, for example, LQG controller with Kalman filter. Studies on
LQR or LQG controller optimization can be classified into three groups. First, Hsieh et al. (1989)
and Zhu et al. (1997) studied the optimization with constraints on the covariance of output
variables. Second, Zhu and Skelton (1991) and Rotea (1993) studied the optimization with
constraints on L∞ norm of output variables, which is deterministic norm and may be too
conservative. Third, Toivonen and Mäkilä (1989) and Khargonekar and Rotea (1991) studied the
optimization problem with multiple objective functions on RMS values of output variables. But
none of them dealt with optimization with constraints on the probabilistic peak values of output
variables considering the stochastic nature of external loads. 

In this paper, a new controller optimization method is proposed to restrict the failure probabilities
of peak responses below specified levels with minimum control force for multi degree of freedom
(MDF) structures. The optimization problem is formulated with weightings on controlled responses
as design variables. Gradients of objective function and inequality constraints are derived to make
use of general gradient based optimization algorithms. The limit in the actuator stroke is also
considered in the optimization problem. LQR controller with full state feedback is first chosen as a
subject controller to deal with more complex and general controller types for MDF structures and to
establish simple stability conditions. Next, the optimized full state feedback controller is extended to
the output feedback controller using LQG with Kalman filters. The performance degradation due to
the output feedback is evaluated in the numerical examples. 

2. Problem statements

2.1 Augmented design plant

The augmented design plant is composed of a building structure, a control device and a
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disturbance frequency shaping filter. Each floor of the structure is assumed to have a diaphragm
constraint so that the number of degree of freedom is equal to that of floors through static
condensation and ignoring vertical deformations. The control device considered in this paper is a
hybrid mass damper (HMD) that works as a tuned mass damper (TMD) for low level vibrations and
as an active tuned mass damper (ATMD) for high level vibrations. The state space representation of
the equation of motion for an n degree of freedom structure with a HMD is 

(1)

 (2)

where

(3)

and xs, ys, fg and u are, respectively, the (2n + 2) state vector, the (2n + 1) vector of controlled
responses, the ground acceleration, and the control force, and q, qd, , and qd, HMD are,
respectively, the (n + 1) vector of relative displacements of floors and the HMD, the n inter-story
drift vector, the n absolute floor acceleration vector, and the HMD stroke. As, Bs1, Bs2, Cs1, and Ds1

are the state matrix, the disturbance influence matrix, the control force influence matrix, the output
matrix, and the matrix that represents the coupling between the control force and controlled
responses, respectively. 

The actuator dynamics is mathematically modeled with a first-order low pass filter (Yang et al.
1996) and represented by the following state space equation.

(4)

(5)

where v, xa, and ωa are the control signal expressed as input voltage, the state of the actuator, the
cut-off frequency, respectively, and αa is a constant. The state space representation of Kanai-Tajimi
filter is used for the frequency shaping filter of the ground acceleration.

(6)

 (7)

where 

(8)
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and xf, w, qf, ωg, and ξg are the state vector of the filter, the input white noise of the filter, the
relative displacement of Kanai-Tajimi filter, the natural frequency of the filter, and the damping ratio
of the filter, respectively. If soil property data is lack, a low pass filter, which is represented by the
same state space equation form of Eqs. (6) and (7), can be used (Spencer et al. 1994b).

In sum, the augmented design plant for the structure with a HMD, the actuator, and the frequency
shaping filter of ground acceleration is given as 

(9)

 (10)

where

(11)

(12)

where x is the (2n + 5) state vector, y is the (2n + 3) vector of output variables, and O and 0 are a
zero matrix and a zero vector with appropriate dimensions. To represent the non-stationary property
of earthquake, the envelope function proposed by Jennings et al. (1968) is multiplied to the white
noise input, w, in the above augmented plant equations. A resulting sample ground acceleration and
a scaled envelope function is presented in Fig. 1. 
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Fig. 1 Sample ground acceleration and the shape of envelope function
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2.2 Definition of peak response

From the viewpoint of safety and economy, it is required to specify the probability that the peak
response exceeds prescribed critical value. Peak response can be expressed stochastically using a
failure probability, which is the probability that the controlled response of the system exceeds the
critical value. If the process X is stationary and Gaussian and the failure probability at the initial
time is zero, the failure probability of X is defined as the probability that |X | exceeds a prescribed
barrier level b during the interval, tb, and is approximately given as (Lutes and Sarkani 1997)

 (13)

where  is the X’s crossing rate. The crossing rate is defined as an average number of |X |
exceeding a prescribed level, b, during a unit time interval and expressed as

 (14)

where σX and  are, respectively, standard deviations of process X and its time derivative (Lutes and
Sarkani 1997). 

Since the envelope function is flat for its largest amplitude part, the strong ground motion,
presented in Fig. 1, can be assumed to be a stationary Gaussian process based on the assumption
that the influence of the non-stationarity of the ground motion at the early rising stage is small and
can be neglected. Since the steady-state output of a linear system subjected to the stationary
Gaussian random excitation is also stationary and Gaussian, the plant output can be treated as a
stationary and Gaussian process during the strong excitation interval for elastic structures and linear
controllers. Accordingly, the above equations are applied for the remaining parts of this paper in
spite of non-stationarity of earthquake and corresponding structural responses. Otherwise, a
technique using evolutionary spectral density can be employed (Lin and Cai 1995), which is beyond
the scope of this paper and reserved as a future research topic.

2.3 Control algorithm

Control algorithms can be classified into full state feedback control algorithms and output
feedback control algorithms. The former employs the complete information of the plant state while
the latter employs limited information. Therefore, the full state feedback control is more
advantageous than the output feedback control. For practical reason, however, all state variables
cannot be measured and an observer is often used to estimate state variables with limited number of
measured responses. In this paper, only the optimization of the full state feedback controller is
presented, but, if the state estimation error is negligible, an observer can be added based on the
well-known separation principle (Burl 1999).

A full state feedback controller can be designed by optimizing the feedback control gain. However
this process may cause instability of the closed loop system while seeking an optimum solution. In
such case, the optimization cannot be continued since it becomes impossible to compute the norm
of diverging responses. To overcome this drawback, the feedback gain needs to be restricted within
the safe range that feedback gains stabilize the plant. But, for multi-variable systems, it is difficult to
set up clear stability conditions involving the feedback gain itself. To solve such problem, this study
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adopts LQR because the positive semi-definite state weighting matrix and the positive definite
control weighting matrix in its quadratic performance index always give stabilizing feedback gains. 

For the output feedback control algorithm, LQG controller is investigated in this paper. In LQG,
which is composed of LQR controller and Kalman filter, the plant disturbances and measurement
noises are modeled by white noises. Further, plant disturbances and all measurement noises are
assumed to be uncorrelated.

3. Formulation of optimization problem

3.1 Optimization problem

For the controller optimization, the variance of control force is selected as an objective function.
That is, the optimization problem finds a control gain that requires a minimum control force in the
mean sense. Constraints on controlled outputs - inter-story drifts, absolute floor accelerations, and
HMD stroke - are given as specified levels of corresponding failure probabilities. The control force
and control signal have no constraints, because if they are constrained, it may be impossible to find
a controller satisfying constraints on structural responses. From optimization results, the peak
control force and signal defined with specified failure probabilities can be calculated.

The nonlinear constrained optimization problem is defined as

minimize (15)

subject to  (16)

where  is the variance of the control force that is the (2n + 2)-th output variable of Eq. (12)
and S is a (2n + 3) by (2n + 3) matrix containing design variables which are weightings in the
performance index of LQR given by

(17)

in which 

(18)

In Eq. (16),  is the crossing rate of the k-th measured response, yk, over the barrier level bk,
ts is the duration of stationary strong ground motion, and Pk is the pre-specified failure probability
for yk. 

In order to reduce the number of design variables to 2n + 3, S is assumed to have a diagonal
matrix form as follows.

 (19)

For the controller optimization, the weighting on the control signal, s2n+3, is set to be 1.0 and
excluded from the design variables, since the LQR control gain depends on the relative values
between weightings.
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The failure probability of each output variable is determined by the crossing rate over the duration
of stationary process. Because there is one-to-one relationship between the crossing rate and the
failure probability given by Eq. (13), the constraint Eq. (16) can be converted into the following
nonlinear inequality equations.

 (20)

where  and  are variances of yk and , respectively, and ρk is an upper bound of crossing
rate calculated from the Pk of Eq. (16) and the basic relationship of Eq. (13). 

The optimal control gain, G, of LQR for a linear system under a Gaussian white noise disturbance
is known to be independent of the disturbance (Burl 1999) and given by 

(21)

where P is the Riccati matrix, which can be calculated from the algebraic Ricatti equation
(Anderson and Moore 1989)

(22)

In order to calculate the objective function and constraints, the covariance matrices of y and 
need to be obtained. The covariance matrix of the output vector y is calculated from a Lyapunov
equation of the closed loop system (Burl 1999), and given as

 (23)

subject to

 (24)

where 

(25)

and  and  are, respectively, the covariance matrices of state vector x and output vector y, and
Sw is the power spectral density (PSD) of the white noise disturbance. 

The derivative of the output vector y can be written by

 (26)

It can be seen in Eq. (26) that  is a linear combination of the state vector and the white noise
disturbance. Since the state of LTI system under a white noise input is the Markov process, the state
vector x and the white noise disturbance w in Eq. (26) are independent each other. Consequently,
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the covariance matrix of  is obtained as

(27)

where δ (0) is a Dirac delta function having an infinite value at zero. To avoid an infinite covariance
matrix, the white noise disturbance is assumed to be band-limited. This can be justified because, for
real implementation of control problem, all signals are discretely represented with a sampling time,
and frequency contents of those discrete signals higher than the Nyquist frequency are filtered out.
In this study, the finite covariance matrix of  is calculated using a basic conversion rule (Burl
1999) between the variance of a continuous signal and its discrete counterpart as 

(28)

where ∆t is the sampling time.

3.2 Gradients of objective function and inequality constraints

Algorithms to solve a nonlinear constrained optimization problem are grouped into gradient based
methods and direct search methods. For the problem with large number of design variables, the
former is known to be more effective than the latter if the gradients of objective function and
constraints are continuous (Belegundu and Chandrupatla 1999). Accordingly, a gradient based
method is adopted in this paper, and the gradient calculations necessary in the optimization
procedure are derived in this section.

The gradients of the objective function and the k-th constraint with respect to the p-th design
variable sp in Eq. (19) are obtained using chain rule such that 

(29)

(30)

The derivative of the k-th constraint  with respect to the corresponding variances  and 
in the above equation can be obtained by simple differentiation. The derivatives of  and  with
respect to the p-th design variable sp can be obtained using the elements of Riccati matrix P and
applying the chain rule as

  

(31)
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The derivatives of the covariance matrices of y and , with respect to the component Pij in Eqs.
(31) and (32) are obtained by partially differentiating Eqs. (23) and (28) with respect to Pij as

(33)

(34)

The derivatives of the matrices Ac and Cc with respect to the component Pij in Eqs. (33) and (34)
are calculated as

 (35)

 (36)

where

 (37)

The derivative of the covariance of the state vector with respect to the Riccati matrix, , in
Eqs. (33) and (34) is obtained by solving the following Lyapunov equation, which is derived by
differentiating the Lyapunov equation (24) with respect to Pij.

(38)

The derivative of the Riccati matrix with respect to the p-th component of the weighting matrix sp,
, is obtained by solving the following Lyapunov equation, which is obtained by

differentiating the Riccati Eq. (22) with respect to sp

(39)

where
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 in Eqs. (35) and  in Eq. (36) are non-zero matrix only for i = 2n + 3 and j = 1,
2, …. , 2n + 5. Therefore, only 2n + 5 of both ’s in Eq. (33) and ’s in Eq. (34)
need to be calculated and the rest are zero. Further, Eqs. (35) and (36) are calculated only once
during the entire optimization process because R is a fixed weighting for the control signal. 

4. Numerical analysis

A ten-story shear building shown in Fig. 2 is used for the numerical analysis using the proposed
optimization process. The order of the design plant is 25. The larger the DOF of the structure
becomes, the more difficult convergence is. But, in many cases, this may not be a problem since
most civil structural vibration is dominated by only a few modes and the design plants identified
from experiments have small order.

Structural properties are presented in Table 1. The HMD installed on the top floor consists of a
TMD and a hydraulic actuator. The mass of the TMD is 0.5% of the total mass of the building. The
natural frequency and damping ratio of the TMD are determined from the equation proposed by
Ayorinde (Ayorinde and Warburton 1980) for optimal passive control. 

∂Ac ∂Pi j⁄ ∂Cc ∂Pi j⁄
∂Σxx ∂Pi j⁄ ∂Σy·y· ∂Pi j⁄

Fig. 2 Example ten-story shear building with a hybrid mass damper
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Parameters used for the Kanai-Tajimi filter, the envelope function of the filter input, and the
actuator model are presented in Table 2. The PSD of the white noise input, Sw, for the Kanai-Tajimi
filter is determined to set the mean peak ground acceleration to 0.1 g from 1000 samples. Parameters
of the envelope function are selected such that the strong motion continues stationarily from t1 to t2
with falloff parameter c (Jennings et al. 1968). 

Design variables are given by

 (41)

where diagonal elements represents weightings on measured responses, which correspond to ten
inter-story drifts, ten absolute floor accelerations, an HMD stroke, a control force, and a control
signal, respectively. As previously mentioned, the weighting on the control signal is set to be 1. In
order to avoid an ill-conditioning and improve the optimization performance, scale factors of 1002,
1, 1, 0.012, 102 are multiplied to five groups of weightings in Eq. (41), because they have different
dimensions.

Three different constraints sets on inter-story drifts, absolute floor accelerations, and an HMD
stroke are given in Table 3. They are classified as A, B, and C according to the level of the HMD
stroke. The optimization is carried out using the sequential quadratic programming algorithm in
MATLAB Optimization Tool Box (Coleman et al. 1999). All peak responses including the control
force and control signal presented in the remaining parts of this paper are based on 5% failure

S diag sd 1,
2 … sd 10,

2
sa 1,

2 … sa 10,
2

sm
2

su
2 1, , , , , , , ,[ ]=

Table 1 Structural parameters

Floor Mass (kg) Stiffness (kgf/cm) Natural frequencies (Hz) Damping ratio

1 24300 10000 0.42
0.02

for all structural 
modes

2, 3, 4 24300 8000 1.16 / 1.90 / 2.64
5, 6, 7 24300 7000 3.22 / 3.82 / 4.20
8, 9, 10 24300 5000 4.67 / 5.09 / 5.51

Table 2 Parameters of ground acceleration model and actuator

Ground 
acceleration

Mean peak ground acceleration 0.1 g
PSD of white noise input 7.949 × 10−4 m2/sec3

Natural frequency of filter 15.6 rad/sec
Damping ratio of filter 0.6

Envelope function t1 = 20 sec, t2 = 40 sec, c = 0.15

Actuator
ωa 11.94 rad/sec
αa 400

Table 3 Constraint sets on peak responses

Constraint set A B C

Inter-story drift 2 cm 2 cm 2 cm
Floor absolute acceleration 0.2 g 0.2 g 0.2 g

HMD stroke 1.5 m 1.75 m 2 m
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probability assuming that the duration of the stationary large response is the same as that of the
stationary strong ground motion, i.e. from 20 to 40 sec.

4.1 Full state feedback controller design

The controller optimization is performed for two different cases and the results are presented in
Table 4 with activated constraints shaded. In the first case, denoted as LQR(I), sd, i (i = 1 to 10), sa, i

(i = 1 to 10), sm and su in Eq. (41) are included in the LQR performance index. In the second case,
denoted as LQR(II), only sd, 2, sa, 10, sm and su are included, because peak inter-story drift and
absolute floor acceleration occur in the second and tenth floor, respectively, without control. Initial
values for sd, i (i = 1 to 10), sa, i (i = 1 to 10), sm and su are 100, 100, 100 and 1, respectively, for both
cases. Constraints on all of the inter-story drifts, the absolute floor accelerations, and the HMD
stroke are imposed for both cases.

The constraints on controlled responses except the second inter-story drift and the tenth floor
absolute acceleration are not activated so that they are not presented in Table 4. It is observed that
the peak responses and control force for LQR(I) and LQR(II) are not significantly different in spite
of the difference in the number of design variables. Additionally, LQR(II), where the smaller
number of design variables is used, converges faster than LQR(I). Consequently, only LQR(II) with
five design variables will be discussed hereafter.

Table 4 indicates that a strict stroke constraint requires large control force. This is because the
HMD is tuned to the first structural mode and limiting its stroke implies decreasing control effect on
that mode. When the stroke limit is not large enough for the first mode control, the control efforts
move onto higher modes to compensate consequent increase in overall responses. This requires large
control force since higher natural frequencies require the faster HMD movement. Fig. 3 shows the
seesaw relation between responses of the first and second mode. That is, the LQR(II) with
constraint B (stroke = 1.75 m) is superior to LQR(II) with constraint A (stroke = 1.5 m) in control
of the first mode, while the latter with a smaller stroke limit is superior in control of the second
mode. For the optimization with a stroke constraint of 1.25 m, not presented in Table 4, no feasible
solution is found. This means that there exists a lower limit of the stroke, which can be determined
from optimizations with different stroke constraints.

Table 4 Controlled peak responses (Activated constraints are shaded)

Controller Constraint
2nd

inter-story
Drift (cm)

10th floor absolute 
acceleration 

(g)

Stroke
(m)

Control 
force
(kN)

Control 
signal
(V)

No control 3.67 0.30 · · ·

Passive control 2.70 0.26 1.41 · ·

LQR (I)
A 2.00 0.18 1.50 10.74 37.4
B 2.00 0.20 1.75 5.79 18.0
C 2.00 0.20 1.92 5.69 17.8

LQR (II)
A 2.00 0.18 1.50 10.65 34.6
B 2.00 0.20 1.75 5.84 17.4
C 2.00 0.20 1.93 5.62 16.1
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To investigate the influence of the actuator cut-off frequency, the proposed optimization process is
carried out for four different cut-off frequencies corresponding to the first to fourth natural
frequencies, ω1 to ω4, of the structure. Table 5, where peak control forces and signals corresponding
to different cut-off frequencies are presented, shows that, as the cut-off frequency increases, peak
control signals decrease but peak control forces change little. Since cut-off frequency is
recommended to be as small as possible to prevent the spill-over effect due to noises and the
uncertainty in the higher modes of the structure, optimization results for various cut-off frequencies
will help to choose or produce an actuator and signal processing equipment.

To investigate the effect of initial weightings on optimization results, four different sets of initial
weightings, denoted as W(I) to W(IV) in Table 6, are examined. In this table, peak control forces
and signals correspond to those of LQR with initial weightings. Table 7 shows that final weightings
obtained from the optimization are very different for different initial values. However, the peak
control force and signal for each constraint set have similar values except a few cases of W(II) for
constraint set A and W(I) for constraint set B and C. Also, activated constraints are same for
different initial weighting sets, excluding those exceptional cases. These observations illustrates that
the proposed optimization method gives reasonable solution by adjusting proportion of weightings
regardless of their absolute values.

Fig. 3 Transfer functions for different constraints on stroke limit: (a) transfer function from the ground
acceleration filter input to the 2nd inter-story drift, (b) transfer function from the ground acceleration
filter input to the 10th floor absolute acceleration

Table 5 Peak control forces and signals corresponding to different cut-off frequencies

Constraint Control effort
Cut-off frequency

ω1 ω2 ω3 ω4

A
Control force (kN) 11.92 11.92 10.65 10.60
Control signal (V) 1120.8 407.0 34.6 31.7

B
Control force (kN) 5.85 5.82 5.84 5.80
Control signal (V) 44.6 26.5 17.4 16.2

C
Control force (kN) 5.62 5.62 5.62 5.62
Control signal (V) 48.6 23.0 16.1 16.1
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4.2 Output feedback controller design

This section presents extension of LQR controller optimized in the previous section to LQG
controllers by adding Kalman filters. Since it is hard to measure all states of plant, output feedback
control is required in most civil structures. In this example, the Kanai-Tajimi filter input is used as a
plant disturbance. Measured responses are assumed to be absolute accelerations of the second, sixth,
and tenth floors and the HMD. PSD of all measurement noises is assumed to be 5% of the variance
of the tenth floor absolute acceleration when the HMD acts passively. 

Design results of full order LQG controllers are presented in Table 8. Tables 4 and 8 show little
difference between LQR and LQG controllers. Therefore, for limited number of measurements and
reasonably small noises, LQG controller satisfying various constraints can be designed by adding
Kalman filter to the LQR controller designed by the proposed optimization. 

The order of LQG controller is the same as that of the design plant. To prevent time delay caused
by computational burden, the controller order reduction is carried out using MATLAB command
‘balmr’ in Robust Control Toolbox (Chiang and Safonov 1997). This method is based on the
balanced realization whose controllability grammian and observability grammian are same (Burl
1999). For constraint sets A, B and C, the order of original controller, 25, can be reduced to 19, 15

Table 7 Final weightings for different initial weighting sets

Constraint Initial 
weighting

Final weightings Peak
control force

(kN)

Peak
control signal

(V)sd,2 sa,10 sm su sua

A

W(I) 518.78 253.37 456.13 0.00 1.00 10.95 32.75
W(II) 196.67 454.99 259.97 0.37 1.00 13.48 41.09
W(III) 712.91 172.78 616.93 0.00 1.00 10.65 34.60
W(IV) 1691.20 280.98 1445.30 6.96 1.00 10.59 35.10

B

W(I) 436.15 0.00 308.37 0.00 1.00 8.06 22.87
W(II) 1629.20 1677.20 885.49 33.47 1.00 5.82 18.56
W(III) 92.76 182.12 63.13 0.00 1.00 5.84 17.42
W(IV) 1106.60 1142.30 602.01 22.67 1.00 5.81 17.96

C

W(I) 436.15 0.00 308.37 0.00 1.00 8.06 22.87
W(II) 1382.80 2267.10 9.41 43.54 1.00 5.64 17.84
W(III) 224.28 393.67 0.00 6.87 1.00 5.62 16.08
W(IV) 956.82 1572.10 0.00 30.11 1.00 5.63 17.33

Table 6 Initial weighting sets

Initial
weighting sd, 2 sa, 10 sm su

Peak
control force

(kN)

Peak
control signal

(V)

W(I) 1 1 1 1 0.00 0.01
W(II) 10 10 10 1 0.20 0.51
W(III) 100 100 100 1 3.28 8.99
W(IV) 1000 1000 1000 1 22.58 72.68
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and 15, respectively. The peak responses with reduced LQG in Table 8 show insignificant
performance deterioration compared to those of full order LQG. 

4.3 Verification of failure probability

Since the failure probability presented in Eq. (13) is an approximation, simulations using 1,000
earthquake samples are performed to verify assumptions used in the proposed optimization method.
Sample ground accelerations are generated by filtering white noises multiplied by the non-stationary
envelope function through Kanai-Tajimi filter. Table 9, where the simulation result is presented,
indicates that most failure probabilities of the activated constraints (distinguished by shade) are a
little smaller than 5%, which is the target value in the optimization. The reason is that structural
responses do not reach to steady state at t1 = 20 sec., the beginning of stationary response assumed
for the calculation of failure probability, due to the initial non-stationarity of the earthquake
excitation. For the future study, a design method addressing this effect needs to be developed for
more accurate estimation of failure probability.

Table 8 Peak responses of LQG controllers

Controller Constraint
2nd 

inter-story
drift (cm)

10th floor absolute 
acceleration 

(g)

Stroke
(m)

Control 
force
(kN)

Control 
signal
(V)

No control 3.67 0.30 · · ·

Passive control 2.70 0.26 1.41 · ·

Full 
order
LQG

A 2.01 0.18 1.51 10.21 33.2
B 2.00 0.20 1.75 5.83 17.4
C 2.00 0.20 1.94 5.62 15.9

Reduced 
LQG

A 2.00 0.18 1.51 10.23 33.3
B 2.00 0.20 1.75 5.88 17.7
C 2.01 0.20 1.94 5.57 16.0

Table 9 Failure probability obtained from 1000 simulations

Constraint Controller
2nd

inter-story
drift (cm)

10th floor absolute 
acceleration

(g)

Stroke
(m)

Control 
force
(kN)

Control 
signal
(V)

A
LQR ( II ) 4.1 0.9 3.9 4.6 4.1

LQG 4.1 0.8 3.9 4.6 3.1
Reduced LQG 4.2 0.8 4.0 5.0 3.1

B
LQR ( II ) 3.7 4.0 3.4 3.5 4.4

LQG 3.6 4.1 3.5 3.7 4.1
Reduced LQG 3.6 4.2 3.6 3.7 4.1

C
LQR ( II ) 4.7 4.2 1.5 5.4 3.7

LQG 4.6 4.2 1.6 5.3 5.0
Reduced LQG 4.9 4.6 1.6 5.1 5.2
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5. Conclusions

The present study proposes an optimal controller design method for the minimum control force
with constraints on the failure probability of peak response. LQR is selected as control algorithm to
keep closed-loop system stable easily during optimization procedure. Gradients of objective function
and inequality constraints are derived to make use of general gradient based optimization
algorithms. 

Numerical analysis shows that the solution is not unique for various initial weightings. But
different controllers, excluding a few exceptional results, show similar performance in terms of the
peak control force and responses. The effects of stroke limitation and actuator cut-off frequency on
control performance are investigated. It is observed that the strict constraint on stroke increases the
peak control force due to the tendency of controlling higher modes. Also, the reduction of actuator
cut-off frequency tends to increase the control signal rather than control force.

Performance degradation due to the output feedback using Kalman filter appended to the
optimized LQR controller is found to be negligible. Further, the additional performance degradation
due to the controller order reduction for LQG is not significant. Therefore, the proposed
optimization of LQR can be used to design a low order output feedback controller for a structure
with limited number of measured responses. Statistics of simulation results for 1,000 artificial
earthquakes shows that failure probabilities of optimized control system are sufficiently accurate.
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