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Abstract. One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is
the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability
and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type
PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate
changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution
algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The
feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies
were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous
PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

Key words: damage identification; structural safety; prestressed concrete bridge; prestress-loss; modal
test; natural frequency.

1. Introduction

This paper deals with the general problem of utilizing dynamic modal properties of structures for
nondestructive detection of their damage. Structural damage may be defined as any deviation of a
geometric or material property which may cause undesired responses of the structure. A solution to
this problem is important for at least two reasons. Firstly, damage detection is the first step in the
broader category of safety assessment. Secondly, a timely safety assessment could produce desirable
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consequences such as saving of human lives, protection of property, increased reliability and
productivity, and reduction in maintenance costs. Therefore, an accurate and reliable safety
assessment capability should be ensured in timely manner to maintain the integrity of structural
systems (Stubbs and Osegueda 1990, Pandey et al. 1991, Rytter 1993, Kim et al. 2003). 

In recent years, the interest on the safety assessment of existing prestressed concrete (PSC)
bridges has been increased. Prestressed concrete is defined as concrete in which there have been
introduced internal stresses of such magnitudes and distribution that the stresses resulting from
given external loading are counteracted to a desired degree. The prestress force which is one of
unknown parameters in the PSC bridges is introduced to control crack initiation in concrete, to
reduce deflections, and to add strength to the prestressed members. Therefore, a substantial
difference between the desired and the in-service prestress forces can lead to severe and critical
serviceability and safety problems (Saiidi et al. 1996, Saiidi et al. 1998, Aalami 2000, Miyamoto et al.
2000). In other words, a PSC girder is considered as irreparable as it is seriously damaged on the
condition of the prestressing strands (Civjan et al. 1995). It is known that the loss of the prestress
force in tendon occurs due to elastic shortening and bending of concrete, creep and shrinkage of
concrete, steel relaxation, anchorage take-up, and frictional loss between tendon and its surrounding
materials. Also, the loss of the prestress force unexpectedly occurs due to damage or severing of
prestress strands. Therefore, it is very important to estimate the prestress-loss by considering the fact
that a prestressed concrete member should keep effective force at each significant level of loading,
together with appropriate material properties for that time in the life history of the structure. 

Unless a PSC bridge is instrumented at the time of construction, the existing prestress force
cannot be directly monitored and other alternative methods should be sought. Based on previous
research works, nondestructive evaluation methods using vibration test data can be used to estimate
the prestress loss in the PSC bridges on the basis of the following consideration: (1) the loss of the
prestress force in the structure is related to the change in structural stiffness (Lin 1963, Saiidi et al.
1994); (2) the loss of the prestress force changes vibration characteristics of the structure (Saiidi et al.
1994, Miyamoto et al. 2000); and (3) the change in structural stiffness can be estimated by
monitoring changes in vibration characteristics of the structure (Cawley and Adams 1979, Kim and
Stubbs 1995, Stubbs and Kim 1996, Kim and Stubbs 2002, Kim et al. 2003). However, to date, no
successful attempts have been made to identify the relationship between the prestress-loss and the
change in modal parameters (Saiidi et al. 1994, Miyamoto et al. 2000). Thus, it needs to develop a
practical method that can identify the prestress-loss via monitoring changes in natural frequencies.
The vibration-based method will prompt the primary, online alarm on the loss of the prestress force
before other nondestructive techniques are enforced to diagnosis the state of the structure, in detail. 

In this paper, a method to nondestructively detect the loss of prestress force in beam-type PSC
bridges using a few natural frequencies is presented. Firstly, an analytical model is described, which
has been formulated to identify the relationship between changes in natural frequencies and the loss
of prestress force in a PSC beam. Secondly, an inverse-solution algorithm is described, which
identifies the prestress-loss in the PSC bridges by using the changes in natural frequencies. Thirdly,
the proposed method is applied to a PSC beam, tested by Saiidi et al. (1994), for which the lower
two natural frequencies are available for a set of prestress-loss cases. Finally, numerical models of
two-span continuous PSC beams are examined to verify the practical usability of the proposed
algorithm on more complicated cases than the simply-supported PSC beam.
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2. PSC beam model

A simply-supported, rectangular, PSC beam with a straight concentric tendon is studied to analyze
the effect of the prestress force. As a typical analysis, an axial-force model that represents a beam
subject to axial forces is examined. Fig. 1 illustrates an analytic model of a PSC beam for which the
prestress force, N, is applied at its anchoring edges. For the analysis, the Euler-Bernoulli beam
under flexure motion is examined to include effect of compressive loads. 

Assuming the axial compression force is uniform along the length of the member and not varying
with time, the equation of the free transverse vibration becomes (Clough and Penzien 1993):

(1)

where y is transverse displacement; EcIc is flexural rigidity of concrete beam-section; and ρcAc is
mass of concrete beam per unit length. Eq. (1) with the boundary conditions leads to the nth natural
frequency as follows:

(2)

Eq. (2) shows that the increase in the axial compression reduces the frequency and vise versa.
However, this is contradictory to the behavior of the PSC beam with straight concentric tendons
since natural frequencies are reduced as a result of the loss of prestress force (Saiidi et al. 1994). 

As an alternative analysis, a tension-strength model is examined for the PSC beam with straight
concentric tendons. Fig. 2 schematizes the tension-strength model for which a tendon is initially
stretched and anchored to introduce prestressing effect. Suppose that the structure is in axial
compression due to the prestress loads applied at the anchorage edges. Then we can model the
structure which is initially deformed in compression (e.g., up to the deformed span length Lr) and
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Fig. 1 Axial-force model of PSC beam
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the tendon is still in tension due to the constraint after elastic stretching for prestressing effect. The
initial deformation of the beam results in the reduction of span length, δL(= L − Lr), and the
expansion in the cross-section by Poisson effect. The governing differential equation for the beam is
expressed by:

(3)

where ErIr is the flexural rigidity of PSC beam section and mr is mass per unit length of PSC beam.
The composite flexural rigidity and the mass of the PSC beam can be evaluated as:

(4a)

(4b)

where EsIs is the equivalent flexural rigidity corresponding to the contribution of the tendon on the
flexural resistance and ρsAs is the mass of the tendon per unit length. 

The equivalent flexural rigidity, EsIs, is derived from analyzing flexural vibration of a cable under
uniform tension as shown in Fig. 3(a). The governing differential equation of the cable for tension
force N is given by (Clough and Penzien 1993):

(5)

Furthermore, Eq. (5) leads the nth natural frequency of the cable under tension as follows (see
Fig. 3(a)):

(6)
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Fig. 2 Tension-strength model of PSC beam
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On assuming that there exists a beam equivalent to the cable under tension with respect to modal
properties, as shown in Fig. 3(b), the nth natural frequency of the equivalent beam is derived as
follows:

(7)

By setting Eq. (6) equal to Eq. (7), we obtain the equivalent flexural rigidity as follows:

(8)

On substituting Eq. (8) into Eq. (4), the total flexural rigidity of the PSC beam section can be
expressed as:

(9)

where ErIr is assumed constant along the entire length of the beam. 
Applying Eq. (9) and appropriate boundary conditions to Eq. (3) leads the nth natural frequency of
the residual-tension model as follows:

(10)

where the deformed span length Lr can be computed as:

(11)

In case of Ac/L
2 << 1, the axial compression effect is negligible if the prestress force N is less than

the beam’s yielding point. Note that the residual tension effect of the tendon is reflected on the
natural frequency equation of the PSC beam via quantifying the equivalent bending rigidity which is
in terms of the beam span length and the axial force. Note also that Eq. (10) can be directly used to
compute frequency changes due to changes in prestress forces.

As an inverse solution of Eq. (10), the prestress force can be identified as:

(12)
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Fig. 3 Flexural vibration of cable under tension
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where (N)n is the identified prestress force by using nth natural frequency and structural properties.
By assuming that no changes in beam’s geometry and material properties occur due to changes in
the prestress force, the first variation of the prestress force can be derived as:

(13)

where (δN)n is the change in the prestress force that can be identified by the nth mode and  is
the change in  due to the prestress-loss. From Eq. (12) and Eq. (13), the relative change in the
prestress force that can be identified by using the nth mode is obtained as:

(14)

Rearranging Eq. (14) gives:

(15)

where  is the nth natural frequency of the beam with zero prestress force and is given by:

(16)

From Eq. (15), the relative change in prestress force, δN/N, can be estimated by measuring natural
frequency changes, δωn, and natural frequencies of the beam with zero prestress force, ϖn. However,
in existing real structures, ϖn is not available unless measured at as-built state; therefore, ϖn should
be estimated from system identification process.

3. Verification examples

3.1 Example 1: Simply-supported PSC beam

3.1.1 Description of test structure
The test structure is schematized in Fig. 4. Saiidi et al. (1994) performed a laboratory experiment

to measure changes in dynamic modal properties by adjusting prestress forces applied to the test
structure. The beam was reinforced longitudinally and transverse direction with Grade 60 bars. The
stirrups were used to facilitate the positioning of the top bars. A Grade 250 seven-wire straight
concentric strand was used as the prestressing steel. The strand was placed in a 25-mm diameter
duct that remained ungrouted. The concrete was made with type II Portland cement and had a
maximum aggregate size of 12.7-mm. The 28-day compressive strength of concrete was 20.3 MPa. 

Dynamic modal tests were conducted with different axial forces. For the modal tests, the beam
was instrumented with seven equally spaced accelerometers that measured the vertical acceleration
responses of the beam. The structure was excited by impact hammer in vertical direction. Each
dynamic test was performed after the desired prestress force had been applied and the cable had
been anchored. The jack was disconnected from the beam to avoid the effect of the jack mass on
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the beam’s dynamic responses. The prestress force was varied from zero to a relatively large level,
i.e., the maximum axial force was 131.3 kN. 

Four sets of modal data were collected for each axial force level, two with impact applied at mid-
span and the other two with impact at the quarter point. Using fast Fourier transformation technique
(FFT), the first two frequencies were obtained for each in-situ prestress-force case as listed in Table 1.
The listed frequencies are the average values of the results measured at all seven channels.

Fig. 4 Simply-supported PSC beam (Saiidi et al. 1994)

Table 1 Natural frequencies of simply-supported PSC beams

Case

In-situ
prestress 

force
(kN)

Experimental
frequency (Hz)

(Saiidi et al. 1994)

Predicted frequency (Hz)

Analytical model FE model

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

1 0 11.41 43.99 11.409 45.635 11.196 44.047
2 15.71 12.09 44.11 11.832 46.063 11.689 44.547
3 27.05 13.47 44.89 12.128 46.371 12.032 44.886
4 36.49 12.89 44.69 12.370 46.626 12.311 45.161
5 57.25 13.63 45.62 12.885 47.179 12.902 45.744
6 81.81 14.49 45.57 13.468 47.828 13.568 46.401
7 91.26 14.72 46.32 13.686 48.073 13.816 46.645
8 121.46 14.72 45.86 14.360 48.854 14.578 47.398
9 130.91 14.97 46.10 14.565 49.096 14.809 47.622
10 132.80 15.07 45.87 14.610 49.145 14.855 47.667
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3.1.2 System identification
The natural frequencies of the PSC beam in Fig. 4 were identified by using two different models:

analytical and FE models. The analytical model is equivalent to Eq. (10) from which natural
frequencies are directly computed for known prestress forces. The span length Lr is approximated
using Eq. (11). The elastic modulus of concrete was estimated as Ec = 21.52 GPa by using the 28-day
compressive strength f28 = 20.3 MPa, the linear mass density of concrete ρc = 2400 kg/m3, and cross-
sectional area of concrete Ac = 1.24 × 10−2 m2. For the maximum force (i.e., N = 132.8 kN) in Table 1,
Lr is computed as 0.9995 L, i.e., the resulting compressive strain is less than 5 × 10−4. Therefore, we
neglect the axial deformation effect provided that . Also, the second moment of
area is calculated as Ic = 1.734 × 10−5 m4. The mass per unit length are calculated using Eq. (4b) as
mr = 30.75 kg/m, in which the cross-sectional area and the linear mass density of the steel tendon
are As = 1.27 × 10−4 m2 and ρs = 7850 kg/m3, respectively.

With the above structural data, Eq. (10) can be rewritten and regarded as an analytical model to
predict natural frequencies of the PSC beam.

(17)

where n is mode number and N is the prestress force in Newton. Here all ten cases in Table 1
were investigated by using Eq. (17). The predicted natural frequency results are also summarized in
Table 1. 
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Fig. 5 FE model of simply-supported PSC beam
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The FE model of the PSC beam is schematized in Fig. 5. For analysis purpose, we divided the
beam into 28,512 block elements. The steel tendon is placed at center with 288 elements along the
beam and each element size is 1 cm × 1.25 cm × 1.25 cm. All others are concrete elements and each
element size is 1.125 cm × 1.125 cm × 1.25 cm. Material properties of the FE model were assigned
as follows: (1) for concrete elements, the elastic modulus Ec = 21.52 GPa, Poisson’s ratio υ = 0.18,
and the linear mass density ρc = 2400 kg/m3; and (2) for steel tendon elements, Es = 0.3155· N · n−2

(kN/m3), ρs = 7850 kg/m3, and υ = 0.3. Among those properties, the elastic modulus Es is estimated
by using the equivalent flexural rigidity formula.

(18)

where Is is the second moment of area of the steel tendon element and Is = 4.16 × 10−3 m2. Since the
modal and structural properties depends on mode number (see Eq. (6) and Eq. (7)), Es is estimated
differently for each mode. Therefore, Es should be adjusted for each mode. For example,
Es = 0.3155 ·N (kN/m2) for the first bending mode and Es= 0.0789 ·N (kN/m2) for the second one.
The contribution of the tendon to the flexural stiffness becomes the maximum in the first bending
mode and decreases as mode number increases. Modal parameters of the FE model were generated
numerically using the commercial software ANSYS. Here all ten cases in Table 1 were investigated.
The predicted frequencies of modes 1 and 2 are also summarized in Table 1. Their mode shapes are
respectively plotted in Fig. 6. 

The predicted frequencies using those two models were compared with the experimentally
measured ones as plotted in Figs. 7(a) and 7(b). In case of the analytical model, prediction errors
are 0.1%~3% for mode 1 and 3%~7% for mode 2. In case of the FE model, prediction errors are
1%~3% for mode 1 and 0.1%~4% for mode 2. In mode 1, the predicted results show relatively
good accuracy in both models. In mode 2, the results of the FE model shows relatively better
accuracy than the analytical model. 
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Fig. 6 Mode shapes of simply-supported PSC beam
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3.1.3 Prestress-loss detection
The prestress-loss in the test structure is identified from the inverse solution of the PSC beam

models. The relative change in prestress force with reference to the full prestress force is identified
by measuring the relative change in the nth natural frequency with reference to the frequency
margin between the full prestress state and the zero prestress state. In order to predict the prestress-
losses for the cases in Table 1, Eq. (15) is rewritten as follows:

(19)

where the subscripts f and d denote the full prestress state and the damaged prestress-loss state,
respectively. In real structures, natural frequencies can be measured at those two states. However,
natural frequencies of the zero prestress state (ϖn) should be estimated, since it is not realistic to
measure the frequencies in existing in-service structures. In this study, ϖn is modeled by the
analytical model for N = 0 (i.e., 11.409 Hz for mode 1 and 45.635 Hz for mode 2) and also by the
FE model for N = 0 (i.e., 11.196 Hz for mode 1 and 44.047 Hz for mode 2). Here all ten cases in
Table 1 were examined to detect the prestress-loss and the results are outlined in Table 2.

The predicted prestress-losses using the two models were compared with the measured in-situ
prestress-losses. The predicted prestress-losses versus the inflicted prestress-losses were plotted in
Fig. 8. The correlation between those two sets is relatively high both in the FE model and in the
analytical model. It means that the prestress-loss in the PSC beam can be detected via monitoring
changes in natural frequencies of a few basic modes. In case of the analytical model, prediction
errors are 1%~72% for mode 1 and even higher for mode 2. In case of the FE model, prediction
errors are 5%~75% for mode 1 and 10%~70% for mode 2. It is observed that the accuracy of the
predicted prestress-loss depends on the accuracy of measured frequencies and the accuracy of the
baseline modeling of the zero force state as well. In mode 1, both models show almost identical
results. In mode 2, the FE model shows relatively better accuracy than the analytical model.
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Fig. 7 Natural frequencies of simply-supported PSC beam
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In reality, the elastic modulus of concrete varies with time, which would also cause change in
frequency. The proposed method alone may not be able to distinguish or isolate the change in
prestress-loss from the concrete damage based on the frequency shift. However, a frequency-based
algorithm or a mode-shape-based algorithm proposed by the authors (Kim et al. 2003, Kim and
Stubbs 2002) could be applied in conjunction with the proposed method to identify the location and
the severity of damage in the concrete beam. 

3.2 Example 2: Two-span continuous PSC beam

Numerical models of two-span continuous PSC beams are examined to verify the practical
usability of the proposed algorithm on more complicated cases than the simply-supported PSC

Table 2 Prestress-loss prediction in simply-supported PSC beams

Case
Experiment Analytical model FE model

N (kN)

1 0 1.0 0.999 - 0.953 -
2 15.71 0.882 0.835 - 0.795 0.994
3 27.05 0.796 0.471 - 0.449 0.559
4 36.49 0.725 0.629 - 0.599 0.671
5 57.25 0.569 0.426 - 0.406 0.144
6 81.81 0.384 0.177 - 0.169 0.172
7 91.26 0.313 0.108 −1.930 0.103 −0.261
8 121.46 0.085 0.108 0.043 0.103 0.006
9 130.91 0.014 0.031 −0.934 0.029 −0.133
10 132.80 0.0 0.0 0.0 0.0 0.0

∂N N⁄ ∂N N⁄( )1 ∂N N⁄( )2 ∂N N⁄( )1 ∂N N⁄( )2

Fig. 8 Prestress-loss prediction in simply-supported PSC beam
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beam. In Fig. 9, a periodic beam (the left span to the right span is 0.5L:0.5L) and a non-periodic
beam (the left span to the right span is 0.4L:0.6L) are shown. For both cases, the boundary
conditions are set as hinged, roller, and roller supports from the left. The FE models of the beams
have the same beam geometry as the simply-supported beam, which is shown in Fig. 5. For analysis
purpose, we divided each beam into 28,512 block elements. The steel tendon is placed at center
with 288 elements (the same as Example 1). Material properties of the FE models were also the
same as the Example 1. 

Modal parameters of the FE models were generated using the ANSYS software. All ten cases of
the prestress forces listed in Table 1 were again investigated. The equivalent flexural rigidity
formula was used for simulating the prestress forces. Here, Eq. (18) was used to compute the
equivalent flexural rigidity EsIs. Using only mode 1, Es = 0.3155 ·N (kN/m2) and Is= 4.16 × 10−3 m2.
For the two beams shown in Fig. 9, natural frequencies of the first two bending modes were
computed and listed in Table 3. Mode shapes of the first two bending modes are also plotted in Fig. 10. 

Next, the prestress-losses of the PSC beams are predicted by using Eq. (19). The relative change
in the nth natural frequency is measured with reference to the frequency margin between the full
prestress state and the zero prestress state. For those two beams, all ten cases of the prestress forces
were examined and the prestress-loss prediction results are outlined in Table 4. The results of both
periodic and non-periodic beams are shown there, respectively. Also, the predicted prestress-losses
versus the simulated prestress-losses were plotted in Fig. 11. As shown in Fig. 11(a), in the periodic
beam, the predicted prestress-losses are almost identical to the simulated ones. Also, as shown in
Fig. 11(b), in the non-periodic beam, the correlation between the simulated prestress-loss and the
predicted one is reasonably high. It means that the prestress-loss in the two-span PSC beams could
be detected via monitoring the changes in natural frequencies of a few basic modes. The results are
almost identical for both mode 1 and mode 2. 

Fig. 9 Two-span continuous PSC beams
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Table 3 Natural frequencies of two-span continuous PSC beams

Case
Prestress 

force
(kN)

Natural frequency (Hz)

Periodic beam Non-periodic beam

Mode 1 Mode 2 Mode 1 Mode 2

1 0 44.060 67.435 38.150 80.657
2 15.71 46.034 70.595 38.730 84.477
3 27.05 47.388 72.685 39.115 86.680
4 36.49 48.488 74.377 39.421 88.441
5 57.25 50.821 77.955 40.054 92.115
6 81.81 53.444 81.964 40.749 96.152
7 91.26 54.419 83.451 41.004 97.625
8 121.46 57.420 88.013 41.781 102.06
9 130.91 58.327 89.389 42.014 103.38
10 132.80 58.506 89.660 42.060 103.63

Fig. 10 Mode shapes of simply-supported PSC beam
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4. Conclusions

A methodology to nondestructively detect prestress-loss in beam-type PSC bridges using a few
natural frequencies was presented. An analytical model to estimate natural frequencies of the PSC
bridges under various prestress forces was developed. Also, an inverse-solution algorithm to predict
prestress-loss was formulated. The feasibility and practicality of the model was evaluated and
verified using PSC beams for which a few natural frequencies were measured for a set of prestress-
loss cases. Finally, numerical models of two-span continuous PSC beams were also examined to
verify the practical applicability of the proposed algorithm on more complicated cases.

Table 4 Prestress-loss prediction in two-span continuous PSC beams

Case
Simulation Periodic beam Non-periodic beam

N (kN)

1 0 1.0 1.0 1.0 1.0 1.0
2 15.71 0.882 0.879 0.875 0.858 0.851
3 27.05 0.796 0.795 0.789 0.762 0.762
4 36.49 0.725 0.723 0.718 0.686 0.673
5 57.25 0.569 0.567 0.562 0.525 0.532
6 81.81 0.384 0.383 0.378 0.346 0.353
7 91.26 0.313 0.312 0.308 0.279 0.286
8 121.46 0.085 0.085 0.084 0.075 0.076
9 130.91 0.014 0.014 0.014 0.012 0.012
10 132.80 0.0 0.0 0.0 0.0 0.0

∂N N⁄ ∂N N⁄( )1 ∂N N⁄( )2 ∂N N⁄( )1 ∂N N⁄( )2

Fig. 11 Prestress-loss prediction in 2-span continuous PSC beams
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For the application of the proposed approach to the test structure, natural frequencies were
predicted by using the analytical model whereas prestress-losses were predicted by using the
inverse-solution algorithm. The natural frequencies predicted at several prestressing stages showed
relatively accurate results compared to the ones measured at the same stages. It was also observed
that both in FE model and analytical model, the correlation between the inflicted and the predicted
prestress-losses was relatively high. Hence, the prestress-loss in the PSC beam can be detected via
monitoring the changes in natural frequencies of a few basic modes. Future research needs are to
improve the accuracy of prestress-loss prediction, to distinguish the change in prestress-loss from
the concrete damage based on the frequency shift, and to improve the accuracy of baseline modeling
of the initial zero-force state of the structure.
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