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Abstract. This paper presents an improved Monte Carlo simulation for the probabilistic determination
of initial cable forces of cable-stayed bridges under dead loads using the response surfaces method. A
response surface (i.e. a quadratic response surface without cross-terms) is used to approximate structural
response. The use of the response surface eliminates the need to perform a deterministic analysis in each
simulation loop. In addition, use of the response surface requires fewer simulation loops than conventional
Monte Carlo simulation. Thereby, the computation time is saved significantly. The statistics (e.g. mean
value, standard deviation) of the structural response are calculated through conventional Monte Carlo
simulation method. By using Monte Carlo simulation, it is possible to use the existing deterministic finite
element code without modifying it. Probabilistic analysis of a truss demonstrates the proposed method’s
efficiency and accuracy; probabilistic determination of initial cable forces of a cable-stayed bridge under
dead loads verifies the method’s applicability.

Key words: cable-stayed bridges; initial cable forces; probabilistic; parametric uncertainties; response
surface; Monte Carlo simulation; statistics.

1. Introduction

Determination of initial cable forces under dead loads is a major prerequisite for carrying out
structural analyses of completed cable-stayed bridges. Since the early 1980s, various methods have
been developed for determining initial cable forces (Kasuga et al. 1985, Furukawa et al. 1987,
Wang et al. 1993, Chen et al. 2000). These methods are based on the assumption of complete
determinacy of structural parameters. This is usually referred to as deterministic analysis. In reality,
however, there are uncertainties in design variables. These uncertainties include geometric properties
(cross-sectional properties and dimensions), material mechanical properties (modulus and strength,
etc), load magnitude and distribution, etc. Thus deterministic analysis cannot provide complete
information regarding initial cable forces of cable-stayed bridges under dead loads. 
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To determine the initial cable forces of cable-stayed bridges with parametric uncertainties,
geometric nonlinearity has to be considered. This is because cable-stayed bridges become more
flexible as spans become longer. Two methods have been used to predict the response of
geometrically nonlinear structures with parametric uncertainties, namely, the Monte Carlo
simulation, and the first-order approximation. Imai and Frangopol (2000) used the two methods to
analyze probabilistically the mean and variance of member axial forces of a truss and a suspension
cable. The results show that the first-order approximation method and Monte Carlo simulation are in
close agreement. However, the above study is limited to simple structures. More complex structures
such as cable-stayed bridges are not considered. In addition, the above-mentioned two methods have
drawbacks. First, for accurate results, Monte Carlo simulation needs numerous repetitions of
deterministic analysis, thus consuming an enormous large amount of computation time. Second, the
first-order approximation method needs the computation of response gradients for geometrically
nonlinear structures with parametric uncertainties. Unfortunately, the existing deterministic finite
element code available to design engineers cannot compute response gradients. Therefore, to use the
method, it is necessary to modify the existing deterministic finite element code. To the best of the
authors’ knowledge, no procedure considering geometrically nonlinear behavior and uncertainty in
the determination of initial cable forces of cable-stayed bridges under dead loads is currently
available. 

The aims of this paper are to propose an efficient method to determine the initial cable forces of
cable-stayed bridges with parametric uncertainties, and use the method to investigate the effects of
various parameters on the initial cable forces of cable-stayed bridges.

2. Proposed method

2.1 Principle

The proposed method is a Monte Carlo simulation based on the response surface method. The
idea of the method is to improve the computation efficiency of conventional Monte Carlo simulation
and to effectively take advantage of the existing deterministic finite element code.

Conventional Monte Carlo simulation is the most common and traditional method for a
probabilistic analysis. Extensive reviews of the method are found in (Melchers 1999, Haldar 2000).
In brief, the method uses randomly generated samples of the input variables for each deterministic
analysis, and estimates response statistics after numerous repetitions of the deterministic analysis
(Haldar 2000). The main advantages of the method are: (1) engineers with only a basic working
knowledge of probability and statistics can use it (Haldar 2000); (2) it always provides correct
results when a very large number of simulation cycles are performed (one simulation cycle
represents a deterministic analysis). However, the method has one drawback: it needs an enormously
large amount of computation time.

To overcome the drawback of conventional Monte Carlo simulation, we use Monte Carlo
simulation together with a response surface method. The main idea of the response surface method
is to represent the structural response by using a suitable approximation function. Once the
approximation function is found, we can directly use the approximation function instead of
deterministic finite element analysis. To perform a finite element analysis can require minutes to
hours of computation time; in contrast, evaluation of a quadratic function requires only a fraction of
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a second. Hence, if using the approximate function, we can efficiently use conventional Monte
Carlo simulation to calculate the statistics of the structural response. Second, this method makes it
possible to use an existing deterministic finite element code without modifying it. For more details
concerning the method, the reader is referred to (Khuri and Cornell 1987, Bucher and Bourgund
1990, Zheng and Das 2000, Soares et al. 2002). 

The unique feature of the proposed method is the combination of the advantages of conventional
Monte Carlo simulation and the response surface method. The efficiency and accuracy of the
proposed method are verified in Sec.3 of this paper. 

2.2 Procedure for the proposed method 

The procedures of the proposed method are:
1. Use the response surface method to find an approximation function that can represent the

structural response. The approximation function is the so-called response surface function
(RSF). The RSF commonly takes the form of polynomials of the random basic input variables.
In many cases of engineering analysis, the RSF takes three polynomial forms: (1) linear
function; (2) quadratic function without cross-terms; (3) quadratic function with cross-terms.
They can be expressed as:

 (1)

 (2)

(3) 

where Xi(i = 1, 2, ...., k) = the ith random variable; k = number of random variables; and b0, bi,
bii, and bij = unknown coefficients to be determined. All three RSF forms above-mentioned are
used in the paper. To obtain the response surface function (RSF), the following steps are
necessary: (1) choose a technique to determine the location of the sampling points. Here, we
chose the central composite design sampling method (CCDSM); A central composite design
consists of a center point, a complete 2k factorial design, and two axial points on the axis of
each random variable at a distance α from the center point, where α =  in order to make
the design rotatable; (2) choose a technique to determine the RSF based on the results obtained
at the sampling points. Here, we chose the least-squares method (LSM). More details about the
CCDSM and the LSM may be found in (Montgomery 1991, Neter et al. 1985). 

2. Based on the obtained response surface, apply conventional Monte Carlo simulation to obtain
the probabilistic results for structural response. 
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3. Probabilistic analysis of a truss

To demonstrate the efficiency and accuracy of the proposed method, the truss shown in Fig. 1 was
analyzed probabilistically. Note that the vertical dimension of 1 m shown in Fig. 1 is unchanged.
The statistical parameters of random variables of the truss are listed in Table 1. Five methods were
considered: (1) Monte-Carlo simulation on linear response surface (MCS-LRS); (2) Monte-Carlo
simulation on quadratic response surface without cross-terms (MCS-QRS1); (3) Monte-Carlo
simulation on quadratic response surface including cross-terms (MCS-QRS2); (4) conventional

Fig. 1 Two-bar truss

Table 1 Statistical parameters of random variables of a two-bar truss

Variable µ σ Dimension Distribution

E1 200 4 GPa Normal
E2 200 4 GPa Normal
P 18 3.6 KN Normal

Table 2 Comparison of various methods for the means, standard deviations and coefficients of variation
(COVs) of the member axial force (a two-bar truss - α = 0.5 degrees)

Method Number of
simulations

µ
(KN)

σ
(KN) COV

MCS-LRS
10 124.3721 15.0957 0.121375

1000 125.2763 16.7023 0.133324
10000 125.2792 16.6932 0.133248

MCS-QRS1
10 125.1267 15.1710 0.121245

1000 125.9491 16.7148 0.132711
10000 125.9528 16.7022 0.132607

MCS-QRS2
10 125.1689 15.1078 0.120699

1000 125.9527 16.7097 0.132666
10000 125.9536 16.7037 0.132618

MCS-1 50000 125.8658 16.9261 0.134477

MCS-2 50000 125.2750 17.2290 0.137529
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Monte-Carlo simulation used in the present paper (MCS-1); (5) conventional Monte-Carlo
simulation used in (Imai and Frangopol 2000) (MCS-2). The comparison of various methods for the
means, standard deviations and coefficients of variation (COVs) of the member axial force (α = 0.5
degrees) is shown in Table 2. The means, standard deviations of the member axial force obtained by
both MCS-QRS1 and MCS-2 for different values of the angle α are listed in Table 3. Fig. 2
presents a graphical comparison of the results of both MCS-QRS1 and MCS-2 for different values
of the angle α. The comparison of various methods for number of FEM computations and
computation time (α = 0.5 degrees) is listed in Table 4.

It is seen from Table 2 that when the number of simulations was relatively large, e.g., more than
1000, the Monte-Carlo simulation methods based on various response surfaces provided good

Table 3 Comparison of the means and standard deviations of the member axial force obtained by various
methods (a two-bar truss -α = 0.5~60.0 degrees)

α
(Degrees)

MCS-QRS1 (10000) MCS-2 (50000)

µ
(KN)

σ
(KN)

µ
(KN)

σ
(KN)

0.5 125.9528 16.7022 125.275 17.229
2.5 112.7403 16.9591 111.967 16.932
5.0 85.5150 14.9902 85.467 14.976
7.5 64.2112 12.1166 64.204 12.137
10.0 50.1792 9.7549 50.178 9.783
15.0 34.4318 6.8255 34.435 6.847
30.0 17.9798 3.5929 17.982 3.604
45.0 12.7246 2.5442 12.726 2.553
60.0 10.3916 2.0782 10.393 2.085

Note: the value in the parenthesis is the number of simulations

Fig. 2(a) Comparison of the means value - angle curves for various methods, (b) Comparison of the standard
deviations - angle curves for various methods 
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results. This indicates that the forms of response surface have a minor effect on the results. The
number of simulations about 10,000 gives even better results. The number of simulations is
significantly less than the number of simulations used in (Imai and Frangopol 2000) (50,000). But,
it should be pointed out that the personal computer running time arising from the increase in the
number of simulations is absolutely negligible by using the proposed method. This is because the
proposed method uses the RSF instead of deterministic finite element analysis. 

It may be further observed from Table 3 and Fig. 2 that the Monte-Carlo simulation method based
on MCS-QRS1 is accurate for the number of simulations about 10,000. In addition, the form of
response surface in the MCS-QRS1 is also simple. Therefore, Monte-Carlo simulation based on
MCS-QRS1 with the number of simulations about 10,000 was used in the subsequent study. 

It is observed from Table 4 that by using the proposed method, the number of FEM calculations is
greatly reduced, thus significantly saving the computation time.

To check the accuracy of the probabilistic analysis of a truss (α = 0.5 degrees) by Eq. (2), the
variations of the member axial force constructed in Eq. (2) versus the variables, E and P, are shown
in Figs. 3 and 4, along with the ‘measured’ data points from the deterministic finite element
analyses. From these figures, it can be seen that the response surfaces constructed by Eq. (2) has a
very good agreement with the numerical solutions using deterministic finite element analyses. 

In view of its efficiency and accuracy, the proposed method is considered to be a suitable
probabilistic analytical tool for complex structures.

Table 4 Comparison of various methods for number of FEM computations and computation time (a two-bar
truss -α = 0.5 degrees)

Method Number of FEM computations Computation time (sec.)

MCS-LRS 9
About 75MCS-QRS1 9

MCS-QRS2 9
MCS-1 50000 About 14400

Fig. 3 Member axial force of a truss (α = 0.5 degrees)
versus modulus E (Load P = 18 KN)

Fig. 4 Member axial force of a truss (α = 0.5 degrees)
versus Load P (modulus E = 200 GPa)
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4. Probabilistic determination of initial cable forces of cable-stayed bridges

To further demonstrate the applicability of the proposed method, initial cable forces of a cable-
stayed bridge shown in Fig. 5 were probabilistically determined. Note that all towers are moveable
hinge (roller) supports as shown in Fig. 5. The statistical parameters of random variables of the
bridge are listed in Table 5.

Wang et al. (1993) presented a finite element computation procedure for determining the initial
cable forces of cable-stayed bridges with deterministic structural parameters. In this paper, the
computation procedure is used to perform a deterministic analysis of the bridge. 

In the following analyses, the proposed method was used to obtain the probabilistic initial cable
forces of cable-stayed bridges under dead loads. In all but some of Sec.4.1 cases, all the geometric
nonlinearities in the cable-stayed bridges are considered.

4.1 Effect of geometric nonlinearities 

Geometric nonlinear behavior of cable-stayed bridges originates from three primary sources:
(1) cable sag effects; (2) combined axial load and bending moment interaction for the girder and
towers; (3) large displacement, which is produced by the geometry changes of the structure. An
equivalent modulus approach proposed by Ernst (1965) is used in the paper to account for the

Fig. 5 Symmetric radiating cable-stayed bridge (unit: m)

Table 5 Statistical parameters of random variables of the symmetric radiating cable-stayed bridge

Variable µ σ Dimension Distribution

E 2.067e8 2.067e7 kN/m2 Normal
IGIRD 1.13066 0.05653 m4 Normal
AGIRD 0.31959 0.01598 m2 Normal
ACABE 0.04199 0.0021 m2 Normal
ACABI 0.01617 8.08256E-4 m2 Normal
WGIRD 87.6 7.008 kN/m Normal
WCABE 3.2266 0.258128 kN/m Normal
WCABI 1.241 0.09928 kN/m Normal

(Note: E: Elastic modulus of the girder and the cables; IGIRD: In-plane moment of inertia of the girder;
AGIRD: Area of the girder; ACABE: Area of the exterior cables; ACABI: Area of the interior cables;
WGIRD: Dead load of the girder; WCABE: Dead load of the exterior cables; WCABI: Dead load of the
interior cables)
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sagging of inclined cables. In order to investigate the effect of geometric nonlinearities on the
probabilistic results for the initial cable forces of cable-stayed bridges under dead loads, the
following cases are considered: 

1. CA=1-All these geometric nonlinearities are considered.
2. CA=2-Only (1) of the geometric nonlinearities above-mentioned is considered.
3. CA=3-Only (2) and (3) of the geometric nonlinearities above-mentioned are considered.
The comparison of the means (µ), standard deviations (σ ) and coefficients of variation (Cov) of

the cable forces for different cases is listed in Table 6. Figs. 6 and 7 show the comparison of the
cumulative distribution function (CDF) and the probability density function (PDF) of the cable
forces for different cases, respectively. It can be seen from Table 6 that the difference in the means
of cable forces between the two cases of CA=1 and CA=2 is larger than that between the two cases
of CA=1 and CA=3. This implies that, for the accurate mean values of cable forces, (2) and (3) in
the geometric nonlinearities above-mentioned need to be considered. However, the difference in the
standard deviations of cable forces for all cases above-mentioned is small. This implies that the
geometric nonlinearities have a minor effect on the standard deviations of cable forces. It can be
seen from Figs. 6 and 7 that omission of the cable sag effects does not influence both the CDF
curve and the PDF curve. But the effects of (2) and (3) in the geometric nonlinearities above-
mentioned cannot be ignored.

Table 6 Comparison of the means, standard deviations and coefficients of variation (COVs) of the cable forces
with different cable elements for different cases (the symmetric radiating cable-stayed bridge)

Cable 
No.

CA=1 CA=2 CA=3

µ (kN) σ (kN) Cov µ (kN) σ (kN) Cov µ (kN) σ (kN) Cov

1-16 11212.89 912.2055 0.081 11051.58 904.7295 0.082 11257.7 891.1125 0.079
2-16 7583.023 598.659 0.079 7775.53 611.0295 0.079 7479.249 620.597 0.083
3-16 5222.075 432.718 0.083 5069.04 422.8835 0.083 5256.607 413.0935 0.079

Fig. 6 Comparison of CDF curves with different
cable elements for different cases

Fig. 7 Comparison of PDF curves with different
cable elements for different cases
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For accurate cable forces, it is necessary that the analysis technique incorporate the effect of
structural parameters randomness. This is of special importance for accurate determination of cable
forces in cable-stayed bridges, which exhibit wide dispersion in structural parameters. This problem
can be solved by the proposed method (MCS-QRS1). The proposed method does offer a significant
improvement over deterministic analysis. 

4.2 Effect of probability distribution of random input variables 

The means (µ), standard deviations (σ ) and coefficients of variation (Cov) of the cable forces are
computed for the lognormal distributed input variables with the same mean and coefficient of
variation as the normal distributed input variables. The computational results are listed in Table 7.
As shown, the results associated with the lognormal distribution are almost the same as those
associated with the normal distribution. 

4.3 Effect of variation of dead loads

Seven cases listed in Table 8 are considered to investigate the effects of variation of dead loads on
the probabilistic results for the initial cable forces of cable-stayed bridges under dead loads. The
variations of the mean value (µ) and standard deviations (σ) of cable forces for different cable
elements with different cases (Cases I-VII) are listed in Table 9. For a better visualization, these
values are plotted in Figs. 8 and 9. From these figures and the table, it can be seen that the variation
of dead loads has a minor effect on µ values, while an opposite effect is observed for σ values. 

Table 7 Comparison of the means, standard deviations and coefficients of variation (COVs) of the cable forces
with different cable elements for normal and lognormal distributed input variables (the symmetric
radiating cable-stayed bridge)

Cable No.
Normal distribution Lognormal distribution

µ (kN) σ (kN) Cov µ (kN) σ (kN) Cov

1-16 11212.89 912.2055 0.081 11211.73 911.538 0.0813
2-16 7583.023 598.659 0.079 7585.248 601.2395 0.0793
3-16 5222.075 432.718 0.083 5220.74 432.1395 0.0828

Table 8 Illustration of the seven cases used in Sec.4.3 of the paper

Case Numbers of random 
input variable Random input variable

I 2 E, IGIRD
II 3 E, IGIRD, AGIRD
III 4 E, IGIRD, AGIRD, ACABE
IV 5 E, IGIRD, AGIRD, ACABE, ACABI
V 6 E, IGIRD, AGIRD, ACABE, ACABI, WGIRD
VI 7 E, IGIRD, AGIRD, ACABE, ACABI, WGIRD, WCABE
VII 8 E, IGIRD, AGIRD, ACABE, ACABI, WGIRD, WCABE, WCABI
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Table 9 Comparison of the means and standard deviations of the cable forces with different cable elements for
different cases (the symmetric radiating cable-stayed bridge)

Case Cable No. µ (kN) σ (kN)

I
1-16 11198.65 103.9965
2-16 7598.909 185.3425
3-16 5220.117 101.905

II
1-16 11239.45 116.4565
2-16 7522.28 209.2835
3-16 5221.541 110.182

III
1-16 11222.81 71.645
2-16 7538.879 117.7915
3-16 5260.612 67.3285

IV
1-16 11190.95 73.603
2-16 7597.663 133.9005
3-16 5225.858 84.728

V
1-16 11223.26 918.0795
2-16 7556.145 599.9045
3-16 5211.351 436.6785

VI
1-16 11228.46 916.433
2-16 7551.739 599.86
3-16 5212.152 435.6995

VII
1-16 11212.89 912.2055
2-16 7583.023 598.6585
3-16 5222.075 432.718

Fig. 8 Variations of the mean value (µ) of cable
forces for different cable elements with
different cases (Cases I-VII)

Fig. 9 Variations of the standard deviations (σ) of
cable forces for different cable elements with
different cases (Cases I-VII)
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4.4 Effect of dead loads of girder

The variations of the mean value of cable forces with the mean value of dead loads of girder are
shown in Fig. 10. Also shown in Fig. 10 is the variation of the mean value of cable forces with the
standard deviation of dead loads of girder. It can be seen that the mean value of dead loads of girder
has a significant effect on the mean value of cable forces. The mean value of cable forces increases
with the increase in the mean value of dead loads of girder. However, the mean value of cable
forces does not change with the increase of the standard deviation of dead loads of girder.

The variations of the standard deviation of cable forces with the mean value of dead loads of
girder are shown in Fig. 11. Also shown in Fig. 11 is the variation of the standard deviation of cable
forces with the standard deviation of dead loads of girder. It can be seen that the increase in the
mean value of dead loads of girder almost does not influence the standard deviation of cable forces.
But, the increase of the standard deviation of dead loads of girder does increase the standard
deviation of cable forces. For example, the standard deviation of cable forces for Cable No.1-16
with the standard deviation of dead loads of girder σ = 7.008 kN/m and the mean value of dead
loads of girder µ = 87.6 kN/m is 912.2055 kN, while the standard deviation of cable forces for
Cable No.1-16 with the standard deviation of dead loads of girder σ = 10.512 kN/m and the mean
value of dead loads of girder µ = 87.6 kN/m increases to 1367.3515 kN.

5. Conclusions

An improved Monte Carlo simulation method (MCS-QRS1) is proposed for the probabilistic
determination of the initial cable forces of cable-stayed bridges under dead loads incorporating the

Fig. 10 Variations of the mean value of cable forces
with the mean value of dead loads of girder
for different cable elements

Fig. 11 Variations of the standard deviation of cable
forces with the mean value of dead loads of
girder for different cable elements
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response surfaces method. In the proposed method, a response surface (i.e. a quadratic response
surface without cross-terms) is used to approximate structural response. The use of the response
surface eliminates the need to perform a deterministic analysis in each simulation loop. In addition,
use of the response surface requires fewer simulation loops than conventional Monte Carlo
simulation. Thereby, the computation time is saved significantly. By using Monte Carlo simulation,
it is possible to use the existing deterministic finite element code without modifying it. This is
advancement over the first-order approximation method. The accuracy and reliability of the
proposed method are verified through comparison with conventional Monte Carlo simulation.
Comparative study on the probabilistic analysis of a truss confirms the accuracy and economy of the
proposed method. 

The proposed method has been applied to determine the initial cable forces of cable-stayed
bridges with parametric uncertainties under dead loads. It is found that the proposed method can
obtain more information about the initial cable forces than the commonly used deterministic method
(e.g. Wang et al. 1993). Using the proposed method, a parametric study was conducted to
investigate the effect of various parameters on the initial cable forces of cable-stayed bridges. The
results of the parametric study lead to the following conclusions:

1) The combined axial load and bending moment interaction for the girder and towers and large
displacement in the geometric nonlinearities of cable-stayed bridges generally affect the mean
value of initial cable forces. The geometric nonlinearities of cable-stayed bridges have a minor
effect on the standard deviations of initial cable forces.

2) The variation of dead loads has a minor effect on the mean value of initial cable forces, but a
significant effect on the standard deviations of initial cable forces.

3) The mean value of dead loads of girder has a significant effect on the mean value of initial
cable forces. The mean value of initial cable forces increases with the increase in the mean
value of dead loads of girder. However, the mean value of initial cable forces does not change
with increase in the standard deviation of dead loads of girder.

4) The standard deviation of initial cable forces is greatly influenced by the standard deviation of 
dead loads of girder. As the standard deviation of dead loads of girder increases, the standard
deviation of initial cable forces also increases.

It should be pointed out that the application of the proposed method is not limited to the
probabilistic determination of initial cable forces of cable-stayed bridges under dead loads. Wider
application of the proposed method is being explored. 

Acknowledgments

The writers thank the National Nature Science Foundation of China under grant number 59938180
for their financial support. The first writer is grateful to Dao-Jin Lin for several constructive
comments regarding this paper. The valuable comments of the anonymous reviewers of the paper
are also acknowledged. 

References

Bucher, C.G. and Bourgund, U. (1990), “A fast and efficient response surface approach for structural reliability



Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads279

problems”, Structural Safety, 7(1), 57-66.
Chen, D.W., Au, F.T.K., Tham, L.G. and Lee, P.K.K. (2000), “Determination of initial cable forces in prestressed

concrete cable-stayed bridges for given design deck profiles using the force equilibrium method”, Comput.
Struct., 74, 1-9.

Ernst, J.H. (1965), “Der E-Modul von Seilen unter berucksichtigung des Durchhanges”, Der Bauingenieur,
40(2), 52-55 (in German).

Furukawa, K., Sugimoto, H., Egusa, T., Inoue, K. and Yamada, Y. (1987), “Studies on optimization of cable
prestressing for cable-stayed bridges”, Proc. of Int. Conf. on Cable-stayed Bridges, Bangkok, 723-734.

Haldar, Achintya and Mahadevan Sankaran, (2000), Reliability Assessment Using Stochastic Finite Element
Analysis, John Wiley & Sons, New York.

Imai, Kiyohiro and Frangopol, Dan M. (2000), “Response prediction of geometrically nonlinear structures”, J.
Struct. Eng., ASCE, 126(11), 1348-1355.

Kasuga, A., Arai, H., Breen, J.E. and Furukawa, K. (1985), “Optimum cable-force adjustments in concrete cable-
stayed bridges”, J. Struct. Eng., ASCE, 121(4), 685-694.

Khuri, A. and Cornell, J.A. (1987), Response Surfaces: Designs and Analyses, Dekker, New York.
Melchers, Robert E. (1999), Structural Reliability Analysis and Prediction, John Wiley & Sons, New York.
Montgomery, D.C. (1991), Design and Analysis of Experiments, John Wiley & Sons, New York.
Neter, J., Wasserman, W. and Kutner, M.H. (1985), Applied Linear Statistical Models, Second Edition, Richard

D. Irwin, Inc.
Soares, R.C., Mohamed, A., Venturini, W.S. and Lemaire, M. (2002), “Reliability analysis of non-linear

reinforced concrete frames using the response surface method”, Reliability Engineering and System Safety, 75,
1-16.

Wang, P.H., Tseng, T.C. and Yang, C.G. (1993), “Initial shape of cable-stayed bridges”, Comput. Struct., 46(6),
1095-1106.

Zheng, Y. and Das, P.K. (2000), “Improved response surface method and its application to stiffened plate
reliability analysis”, Eng. Struct., 22, 544-551.




