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Orthotropic sandwich plates with interlayer slip and
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Abstract.  An elasticity solution for sandwich plates assembled with non-rigid bonding and subjected to
edgewise loads is presented. The solution satisfies the equilibrium equations of the face and core
elements, the compatibility equations of stresses and strains at the interfaces, and the boundary conditions.
To investigate the effects of bonding stiffnesses on the responses of sandwich plates, numerical
evaluations are conducted. The results obtained have shown that the bonding stiffness, up to a certain
level, has a strong effect on the plate mechanical response. Beyond this level, the usual assumption of
perfect bonding used in classical theories is quite acceptable. An answer to what constitutes perfect
bonding is found in terms of the ratio of the core stiffness to the bonding stiffness.
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1. Introduction

Significant advances in the development of lightweight materials have promoted the application of
sandwich plates in structures (Haan 1996, Hussein and Cheremisinoff 1993, Hussein 1993, Karbhari
1997, Swanson 1997). The advantages of using sandwich plates are derived from judicious
combinations of different materials for the skins and core to satisfy the structural and environmental
performance requirements. Plate virtues include structural efficiency, weather seal, interior and
exterior finish, thermal insulation, and durability.

Existing methods of analysis of sandwich plates have invariably assumed perfect bonding between
layers (Allen 1969, Noomkt al. 1996, Plantema 1966). Nevertheless, interlayer slips do occur
because of the finite bonding stiffness; the bonding creep under sustained loads and environmental
effects. The high local interlayer shear stress due to applied loads may contribute to an answer of
the many delamination problems in structural sandwich plates.

Analysis of wood joist floor systems, taking into account interlayer shear stresses, was done by
Goodmanet al (1968, 1969,1974). In that study, the wood layer were assembled with nails or by
gluing their ends, and although the interlayer slip in this system was accounted for in the analytical
model, transverse shear deformations were neglected. The interlaminar shear in composites under
plane stress was investigated analytically by Puppo and Evensen (1970), and with the finite element
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method by Isakson and Levy (1971).

Very few papers have been published which deal with the structural responses of sandwich plates
with interlayer slip or orthotropic materials. In a series of analytic and experimental studies, the
author has investigated the structural behaviors of sandwich plates with interlayer slips and under
transverse and thermal loads (Hussstiral. 1989, 1986, 1984, 1982) and sandwich beam-columns
with interlayer slip (Husseiet al. 1982). In those investigations, many common assumptions from
the literature have been replaced with realistic ones such as the use of bonding having finite
stiffness; the effects of core elastic properties and shear deformations on the plate deformations and
stresses; the permission of faces to deform in their own planes. There remains the problem of
orthotropic sandwich plates with interlayer slip and under edgewise loads.

This paper presents an analytical solution of orthotropic sandwich plates with interlayer slips and
under edgewise loads. The solution satisfies the equilibrium equations of each layer and the
compatibility of deformations at the interfaces. The objective is to ascertain the effects of interlayer
slips on the performance of sandwich plates due to edgewise loads.

2. Description of problem

Consider a sandwich plate of span 2a and width 2b, subjected to in-plane biaxial loads as shown
in Fig. 1. The plate is composed of three layers bonded together and made of orthotropic materials.
The facings are thin, of equal thicknaéssThe core, of a thicknesstg has a modului of elasticity,

Ecx and E, usually significantly less than those of the faEgsandE;,. However, its shear modului
Gexy Gexz @and Gy, should be high enough to develop the interaction required between the layers.
The bond between the facings and core has finite stiffidgs®idK,. The extent of this composite
action depends on the relative stiffness of the constituent materials as will be shown subsequently.
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Fig. 1 Sandwich plate
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3. Assumptions

The following assumptions underline the present development.

1. The materials are orthotropic and linear elastic.

2. Deformations are small, so first order strain-displacement relations are applicable.

3. Interlayer slip is proportional to the interlayer shears. The term “slip” is probably inaccurate;
however, its use in this paper follows from its widespread acceptance in the literature.

4. Analytical development
4.1 General

This kind of problem has been attacked using the fundamentals of theory of elasticity (Hussein
2002a, 2002b, 1992, 1989, 1986, 1984a, 1984b, 1982). Generally, equations are set up to define the
equilibrium of the separate faces and of the core and to prescribe the necessary continuity between
the faces and the core. The result is a set of differential equations which may be solved in particular
cases for the quantities of interest. In that kind of problems, the analytic investigation is sufficiently
complex and differ from ordinary homogeneous plates in that the deformations are enhanced by the
existence of non-zero shear strains in the core and bonding, and of the direct strains in the core.
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Fig. 2 Stress state in sandwich element
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The stress state in the faces and core elements is shown in Fig. 2. The equilibrium of the face

element requires that

901, Tryx _ Gy
ox oy
00y , Oy
oy X
in which

Ow, Oy = Normal stress components in faces;

Tny, Tyx = Shear stress components in faces;

Ox andqg, = Interlayer shear stress;

t = The thickness of the face;

f = Subscript denoting face;

X, Y = Coordinate axes.

=18
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The state of stress in the core must satisfy the following equilibrium equations.

&acx chyx chzx

+ +
OX oy
o"'aCY+ droxy+ 7.,y
oy OX
in which
O Ocy Oz = Normal stress in the core;

= Shear stress in the core;
Subscript denoting core.

Texy Teyz Tezx
Cc

The normal stress components in the facings and core must

equations, which are

y=2b y 2b z=tc =2b
2t o.,dy dz+ p,dy
f y'IO IO z —I—tc I
= y=2az=tc y=2a
dx+ dx dz+ p,dx
'I 'IO z —I—tc & y'l’o y

wherep, andp, are the applied edge loads.

At the interfaces between the core and the skins, the stresses

compatibility equations in terms of stresses are

0

®3)

(4)

also satisfy the overall equilibrium

1
o

()

1
o

(6)

and strains must be compatible. The
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()
(8)

Ox = Tczx|z =+tc

ay = Tczy|z =ztc

In terms of strains, the compatibility equations are written as
oA,
dX = Efx_scx|2:¢tc (9)
oA
Fyy = &y gcy|z—+tc (10)
9% 99
ox
yfxy_ ycxy|z: +t, = % + ?y (11)

in which
eandy =Normal and shear strain, respectively;
JAY = Interlayer deformation in thiedirection, where = x orvy;
_a.
K’
Ki = Stiffness of bonding in thiedirection.
Solutions to the problem must also satisfy the prescribed displacement boundary conditions. With

respect to a sandwich plate subjected to edgewise loads, the relevant boundary conditions are

1. At the plate edges, no normal or shear stresses should exist in the core and the face normal

stress must equal the applied in-plane stress, thus
atx =0, 2a Ot = Otyo (12)
aty = 0, 2b Ory = Otyo (13)
in which
Oixo = pfxo/tf
afyo: pfyo/tf
2. For symmetrical loading about the plate middle plane and centerlines, the shear stresses vanish
and no in-plane displacements occur. Thus
atx =a Ty = Ty = 0 Uu=u=0 (14)
Ve =V =0 (15)

aty=b Tryx = Teyx = 0

whereu andv are displacements in tlxeandy directions, respectively.
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4.2 Equilibrium of core

For the sandwich plate in Fig. 1, a solution for normal stress components in the core satisfying the
boundary conditions in Egs. (12) and (13) is considered as (Husseih 1989, 1986, 1984a,
1984b, 1982)

0= Y Y AnBS (16)
. m:;,... n:;,... " SS’
Ocy = ZE Con®BSS, 17)
m=13 .. n=13, ...
in which
2
= 0,(20,coshB,z + z62sinh6,z— t,62cothd,t.coshB,z) — Tk :
q)x_ X X X X X tc XCO chOS XZ) 2 (pXCOSG(pXZ,
- g o 6 B
@, = 6,(26,coshg,z+ z6sinh6,z— .6, cothf,t.coshd,z) — Tk, cosa,Z;
6.t
k(px— W 6.t.coshg,t.;
Ky = —QL B,t.coshbt;
? 7 sinh@t,
Ecx
L
[E
ey:Bn _Cl;
cyz
q.. = M.
"2t
nrm,
Poy= 2t

S« § = sin ay, x and sing, y, respectively;

mrt

O, B = %a and% respectively;
Anr Con= Unknown coefficients;
n = Integers.

From Egs. (16) and (17), expressions for the displacement components in the core satisfying the
boundary conditions in Egs. (14) and (15) are derived as
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i Amn@(c §(+ ﬂyi z mnﬂ g (18)

ECYm in=1

vt 5
=13

v, = — = i c M&“Mi z n(l’xSxC (19)
(o3
ECY m=T,3 ... n:;... Bn CXm in=1
in which
vV = Poisson’s ration;

Cw C, =cosan, x and cosf, y, respectively.

Egs. (18) and (19) fulfill the boundary conditions in Egs. (14) and (15). An expression for the
shear strain in the cong,, is obtained by properly differentiating Egs. (18) and (19); thus

oy = 2= S Z Amp 3£ + v, G +

CXm = 13

]ii :i Cmnqoyg_%: cxya Eb C (20)

Eq. (20) fulfills the boundary conditions in Egs. (14) and (15). By substituting Egs. (16), (17) and
(20) in Eg. (3), an expression for the vertical shear stggss the core is obtained as

z
00 o0 B
Tow = 5. J edzhy-a, P2 e, ades -
m=13 .. n=13 .. z=0
Coxy

m

2 ; I o%dzq“”ﬁ Sy % * "cxv%%cxsy (21)

[ee]
CYm=T3.. n=13

In a similar manner, the shear stress in the tgyés obtained from Egs. (17), (20) and (4) as

Tz = i ; j%dzom[ Bm+%am5—%+vcxyﬁ s, +

G ® ® z B a
— dzA, a2y —rs C 22
B D3 ] BOZAnT o vy A (22)

4.3 Interlayer shear stresses

Expressions for the interlayer shear stresgeand g, are obtained from Egs. (21) and (22) in
accordance with the compatibility Egs. (7) and (8); thus

qx = m_i n:O’Z’”I('A‘mn)‘gnl"' Cmn/\gnz)cx% (23)
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q = Z ; (ConAgia + Anea) SC, (24)

in which

‘ cxy 0 Bn ay
/\gnl = I (B(d2|2: [ an+ Bn chxED:|
z=0 n

an
_ E_CCnyZ:rO dz),_ tCBnD_ﬁ CXY%E
Ao = zjowydz|2: E[_B" ¥ (;—‘:;yamg—%‘ * VCXY%EJ
Agie = (é—zyzj’o dz,. .« mD ﬁn chx%%

4.4 Equilibrium of face

An expression for the in-plane shear strggsn the facings is obtained from Egs. (11) and (20) as

SR o G 0 B 0,
Ty = Z z Amn|:E_;y¢x|z_ L[ an chmeD

Gfxyﬁn/\ Gfxy mA kZ]C C +

K, o ” K,
> - Gfx O an ﬁnl]
Cn [ = * Yoy At
m=ZS,... n= ; tO Bn nyamD
G G
f}zyﬁn/\gnz foy mAgkl]C C (25)

An expression for the normal stregg in the facings is obtained by substituting Egs. (23) and (25)
in Eq. (1); Thus

G S5 (Audat Coda)SS 1Y) (26)

m=13, ...

in which
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Auw = %y(px| &D_& + m|:| _g_l Efszn |:|+ Gfxx/\ngBn
z1 — z=

V,
E., ta,U a, VB, o* an, U K, tf 0 K,
A = Gixy | B On Ly BnD Agn2 Efxxﬁz 1D GixyAgiaBn
2 Ecy % 2= tcamE| n C>(yamD O 0 Kx tf Ky

f (x, y) = A function representing the constant of integration.
The functionf (x, y) is obtained by using the overall equilibrium Eq. (5); Egs. (16) and (26), and

by expanding the applied load in double trigonometric series. In the case of a uniform load of
intensitiespy, andpeo Ot IS found as

Gz S (At Calda)SS*OwS 5 ZEiEss (@]

m=13 .. n=
in which
e Zj’:)c(pxdz
z1 — ‘21 bsz tszﬂi
' 2 O
Ma= ApH =
2 2 bzﬁm

In a similar manner, an expression for the normal siwgss obtained from Egs. (2), (6), (17)
and (24) as

Ufy = i _i ( mnAZS + CmnAz4)S<Sy+Ufyo z z aa an Sy (28)

m=13, ..
in which
' 2 0
AZ3 AZ3%I‘_aza§]D
A= )\4%[_ 2 D_Zﬁ%dz
’ ’ a’a®l ta’d?
Aw = Gfx | mlj Bn v m|:| _q_ Efxy 1|:| GfxyAgnlam
2 Ec 2= tcﬁnlj e CyXB D ﬁn th Kx
A, = Gfx m|:| a Bnl] _g&[ Efxya2 1|:|+ GfxyAgnzam
z4 —

[Ble= g T Vg 0T B O K, 40" K,
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4.5 Solutions for Ay, and Cpp
At this stage, the only unknowns are the coefficigts and C,,, These can be determined by

using the compatibility Egs. (9) and (10). By substituting Egs. (16), (17), (23), (24), (27) and (28) in
Egs. (9) and (10)An, andC,,are obtained as

A _Ave
A A
Amn = XyZ_Ay_S (29)
Zyl Ty
Ay Ays
Cin = 3 (30)
Zy2 Ty
M Ay
in which
)\ — h_ foyAZIS _(pX|z: tc+ amAqnl
yl —
(= = E.. K,
Ayz — AEi_foéAZ,A + VCXy:y|z: tC+ aml?qnz
fx fy cy X
A= LL[foo_V ﬂﬂ
v a-ambﬁn Efx i Efy
A; V XAZ’ v Xq%( z= B A
Ay4=E_3_ ny l+ CyE| tc+ ankz
fy fx cX y
A _ E _ nyx/\zlz _ %|z: tc+ Bn/\gkl
y5 =
Efy Efx Ecy Ky

- 22 [0, Gl
ve aambﬁn Efy X Efx

5. Numeric evaluation of effects of bonding on behavior of sandwich plates

The complexity of the preceding solution makes it difficult to see the effect of bonding on the
sandwich plate responses. To demonstrate these effects, a square plate is considered. The plate is
made of two aluminum faces, a plastic foam core, and assembled with a non-rigid bonding. The
plate, facings and core properties are:
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For plate:

a=b =20 in. (1219.2 mm)
For facings:

t =0.04 in. (1.016 mm);
Ex = Ey =10 psi (68.9 GPa);
Vixy = Viyx =0.33

For core:

te =1.0 in. (50.8 mm);
Eex = Eqyy =2 x 1@ psi (137.8 MPa)
Gexy = Gexz = Gey, = 10 psi (68.9 MPa)
Vexy = Vieyx =0.20

Two loading cases are considered. In the first case a biaxial uniformly distributed stress of
intensity oy, = Oy, = 208.3 psi is used. In the second case a uniaxial uniformly distributed stress of
intensity oy, = 208.3 psi is applied. In each loading case, the load is applied independently first to
the face and core, and then concurrently to face and core as shown in Fig. 3. The face normal and
shear stresses are calculated for a chosen range of bonding stiffness frafp = 10*-10" psifin.

The normal stress in the facings at the plate center and the shear stress in the facings at the plate
corner are shown graphically in Figs. 4 and 5.

It is seen that the face normal stress shows greater sensitivity to the variation of bond stiffness
value when the latter is in the lower range; and beyond a certain level of stiffness, the bonding can
be practically considered as rigid. A chang&ijn(or K,) value for example from £00 2 x 18 psifin
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Fig. 3 A sandwich plate under biaxial edge load applied to skin
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Fig. 4 Effects of bond stiffness on face normal stress due to face edge load
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Fig. 5 Effects of bond stiffness on face shear stress due to face edge load

induces a stress decrease almost 6 times in the uniaxial case and 5 times in the biaxial case greater
than whenK, (or K, changes from 9 x 2@0 psiin. The face shear stress is practically
independent of bonding stiffness. Unlike the mechanical behavior of other sandwich plates with
non-rigid bonding and under transverse and thermal loads (Hetsaire002a, 2002b, 1993, 1992,
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1989, 1986, 1984a, 1982), this study reveals that interlayer shears are insignificant. This is due to
the absence of transverse loads which induce high transverse shear forces.

This analysis has yet to bring up an important point. By using existing theories (Allen 1969,
Plantema 1966), stress components in sandwich plates may be determined only at high values of
bond stiffness with a small margin of error, otherwiseKkhelues must be included in the analysis.

The results presented here are virtually identical to those by existing theories for the case of perfect;
i.e. very rigid, bonding.

Another important point has yet to come out of this analysis. By common sense, it can be felt that
a very stiff bonding would be unnecessary if the core were too soft, and the converse would be
unwise. This is quantitatively shown in Figs. 4 andifich show that the ratio of core stiffness to
bond stiffness is one of the main parameters influencing the behavior of sandwich plates.

Finally, it is worth while to mention that the literature has no record of elasticity based analytic
investigations of sandwich plates with bonds having finite stiffness and under edgewise loads. In this
regard, this paper has advanced the state-of-the art.

6. Conclusions

In the literature, very few papers have been published which deal with the effects of bonding on
the structural response of sandwich plates. Realistically, the core and bond in sandwich plates are
rigid enough to make a significant contribution to the overall structural integrity of the plate, yet
flexible enough to permit shear deformation.

An analysis of orthotropic sandwich plates taking into account the effects of the finite bonding
stiffness has been presented in this paper. The edgewise load can be uniaxial or biaxial. The solution
satisfies the equilibrium equations of the face and core elements, the compatibility equations of
stresses and strains at the interfaces, and the boundary conditions.

The numerical results have shown that the bonding stiffness, up to a certain level, has a strong
effect on the plate response. Beyond this level, the usual assumption of perfect bonding in the
literature is quite acceptable. The answer to what constitute perfect bonding may be best answered
in terms of the ratio of core stiffness to the bond stiffness, rather than on the individual constituent
material.
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