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Abstract. In this paper a thick cylindrical shell with varying thickness which is subjected to static non-
uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the
energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse
shear deformation. Then the governing equations which are, a system of differential equations with
varying coefficients have been solved analytically with the boundary layer technique of the perturbation
theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is
very capable of providing a closed form solution even near the boundaries. Displacement predictions are
in a good agreement with the calculated finite elements and other analytical results. The convergence of
solution is very fast and the amount of calculations is less than the Frobenius method.
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1. Introduction

Axisymmetric thick shells with varying thickness are very important in industries. In optimizing a
shell with respect to weight or stress distribution, one method is to use shells with varying
thickness.

Long and thick cylinders with constant thickness and subjected to axisymmetric internal pressure
are analyzed with the Navier equations in cylindrical coordinates. Radial displacement of this shell
is given by:

W= Cr+ CTZ (1)
where

C,, G, are constants arndis radius. With considerin® as middle radius and the distance from
the middle surface, one can write R+ z, if Z/R<1 and by the Taylor expansion:
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W = C/(R+ 2+ = Ko+ kyz+ loZ" + ... )

2
R(1+z/R

It means that the displacement can be written as a polynomiahrd ky, k;, ... are coefficients.
Different theories of thick shells have been obtained with an analogy of Eq. (2) and considering
some finite terms of it.

The first order displacement field for thick shells was expressed bgkyiterrmann (1958)
which is the extension of the Mindlin (1951) plate theory and includes transverse shear deformation.
Suzuki (1981, 1982, 1983) used the first order theory for vibration analysis of varying thickness
vessels. He used a linear approximation for axial displacement while radial displacement is
independent of, also he assumed that the problem is in the state of plane stress and ignored the
normal stress in the radial direction. Takahashi and Suzuki (1981) used the first order theory for
vibrational analysis but for the stress analysis of conical shells, they (1986) used second order
theory. Simkins (1994) used the first order theory for determining of displacements in a long and
thick shell subjected to moving loads. Nzengwa (1999) derived a 2-Dimensional model of a thick
elastic shell from 3-Dimensional theory by considering different ordens/Rfin horizontal and
vertical components. In recent years, static analysis of isotropic and homogendisutashaot
been examined frequently and the main investigations have been concentrated on composite shell
with different orders for displacement field where the equations have been sobledeid formfor
special casese.g. constant thickness or in genemamerical methodshave been used. Reddy
(1984) has collected some of these cases.

In this paper, the governing equationgtotk cylinders with varying thicknessre derived by the
energy principle. Inner radius of the cylinder is constant but the outer radius and axisymmetric
internal pressure varies linearly in vertical direction. The cylinder is homogeneous and isotropic and
in an elastic state, stress-strain relations conform with Hooke’s Law. The linear displacement field
(Mirsky-Herrmann (1958) theory) which includes transverse shear deformation is used. The derived
equations are a system of diffetiel equations with variable coefficients. By solving this system in
a special case, thapplication of this theoryor different ratios of radius to thickness is obtained,
then the equations arelged with theBoundary Layer Method (matched asymptotic methaaf)
the perturbation theory.

2. Governing equations

In the axisymmetric case, the location of each point on the cross section of the shell is denoted by
A(r, X) wherer is radius and is the vertical coordinate in the symmetric axes direction. Consider
R(X) as middle radius, then= R(x) + z wherez is the horizontal distance from the middle surface.

Fig. 1 shows a schematic of the shell geometry.

Displacement of each point contains two components: verkicah@l horizontalZ). Displacement

field considering the transverse shear deformation (MirskyHann (1958) theory) is:

Ux = U(X) + zg(X)

Cl
Il

W(X) +z¢,(X) 3
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Fig. 1 Geometry of the shell Fig. 2 Deformation of an element of the shell

where Uy, U, are approximate solutionsxirandz directions;u andw displacements of the middle
surface inx and z directions; ¢, rotation inr-x plane andy, is transverse normal strain. Fig. 2
shows the deformation of an element of lengdwmth deformation described by relations (3)

(u andw have not been displayed). The sides of this element remain straight but not perpendicular
to the middle surface. Miky-Hermann used relations (3) for dynamic analysis of shells. In their
studies, the approximate solutions are the functions of the space and time. One can obtain relation
(3) as the analogy of relation (2) by considering only the first order of expansion of series in which
the coefficients are functions a&f Equilibrium equations can be derived by energy principle. Strain
energy of an axisymmetric elastic body is:

U= I(Gxxexx+ 0'996994' Gzzezz+ O-xzyxz)dv (4)
\%

where V is the shell volume andlV = rdfdxdz 0<08<2m, -h/2<z<h/2,0<x<L his
thickness andL is length of the shell. External work is due to internal pressure:

W = £P02d3= jP%N—ng%dS (5)
S

whereSis the inner surface amtS= 2m(R - h/2)dx. Strain-Displacement relations are:
2y _ du, du,

S = Tox T odx T Zdx
]
eZZ = 022 = L)UZ
o = U, _ W+ zy,
% = R+ z
_ dUy . dU, dw_ _dy,
Yoz = 0z * ox bt der de (62)
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According to the Hooke’s Law, the stress-strain relations are:

Gxx = Aexx+ A(ezz"' e99)
0., = A+ A(EB+ €4p)
Ogg = Ae99+ A(ezz"' exx)

Oxz = HYxz

wherep andA are Lame cefficients andA= A + 2.
The minimum energy principle states thaltt = oW where:

5U = J’(O-xxdexx"' 0'9956994' 0'225622+ zedyxz)dv
\%

SW = £P%§w—25w2%18

(6b)

(7)

By the substitution of relations (3), (6a) and (6b) in (7) and equating #fcamts of oy, oy,

ow, ou to zero, one can find:
d _
S (RN) =0

d _
dX(RMX) - RQx =0

d hpo_
d¢R@%Nw+m%—%@-o

d hg h
5 (RM) —Mo—RN, - PR3 U=

20 2RO ™ 0

and boundary conditions are:
[R(NGU + M+ Qdw+ M, 841)]g = O

where the stress resultants are defined as:

h/2

u, h*d¢g, , w, O
N, = [ ou(1+2/Rdz = ALY, LS80, Hpow
g _hf/z > Cox ~ 12Rdx 0" “'CR™ 7O

h/2 3 3
_ _ Ah'rdu dég 227
M, = _|’ 0,,Z(1+z/Rdz = 12R|:Hx+ Rde+ 19R

-h/2

v,

(8a)

(8b)

(9a)

(9b)
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h/2 2
- — 2yptaw _h” d¢in
Q = —h/20X2(1+Z/ Rdz = k /,lhDdX+ Y+ 2R dx [ (9¢)
h/2 2
- . w, du, h dg
N, _ﬁ|;2022(1 +2/Rdz = Ahy, + )\hER+ dx 2R dx [ (9d)
h/2
— I:L L:Uz[]
_ﬁ[zaxzz(l +2/Rdz = K ulZRDd + Y+ de (9e)
h/2 du
= [ Ogedz = A(aw+ Bu) + }\h%/,/ D (of)
-h/2
h/2 L:Ux
= | cwzdz= ABw nu;)+ A12 m (%)
h/2 h/2 h/2 _2
a= [ UL - nBED g 202 gy o= Zdz = aR?—Rh  (9K)
R+ Z 2R-h 2R+ Z R

P(x) is the distribution of the internal pressure awds the shear correction factor that is
embedded in shear stress term with an analogy of the Timoshenko beam theory (Mirsky-Herrmann
1958). If R is assumed constant, Egs. (8a) result in Mirsky-Herrmann (1958) equations.

So, the equilibrium equations of the shell can be rewritten in the abbreviated form:

d g dy dy,
&%1(1)(1% dX(Bz 1)+Bsd +By,; +F; =0

The vectors of forces and displacements and the matrices of coefficient are defined as:

(10a)

)
_ © . _PRy_h hd
i = (00, 0000, 9093 . Fu= B0 0,130 (100)
- ]
Rhh 7 0 0 0 0 6h 6Rh|
3 3 3
LB o o 0 0 o0 20
B, = B, (10¢)
e 0 Rh 0 O
0 0 6Rh 6% .
0o o e RN P 2 00
i 212 7212
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[0 0 0 0|
h? 0 O 0 0
0 0 —eth —621_2 0 _eth 0 0
B3 - , B4 = (10d)
—6;h 0 0 0 0 O -a B+ 6h)
3 0 0 —B+6,h) —aR
—-6,Rh - ;‘2 0 D (B+ 6ih)

and boundary conditions have to satisfy Eq. (8b).

If Randh are assumed constant, these equations simplify to Simkins (1994) equations.

The coefficients in the above equations are the geometrical and mechanical properties of the shell
In the elastic state, for a homogeneous and isotropic shell, mechanical properties are constant bu
geometrical properties are functionsxofNote that in calculating af one needs to consideR2 h,

i.e. the non-solid shell.
Integrating the first equation of (8a) directly:

RN, = C, (11)

where Cyis a constant an€@y/R for a cylinder with constant thickness is axial prestress (Simkins
1994). From Eq. (11), one can obtain:

du _ h’dgy. ,h S
Nax T 12Rdx T ORWT O ap (12)

By substituting Eq. (12) in Egs. (10), equilibrium equations are derived with respect to displacements:

d d d
A0 Q0. Lay)+ AL Ays F =0 (133)
o dnh’ o O
g dx2rRUOA O
3 ¢ ]
- T _ o, PR h O
y - {LIUX! W! L)UZ} 1 F - g_ elAR+ A ZRD% (13b)
af 5Co PRh o
O YA~ 2A 2RO
[ % h2 |:| i — _
—_ _ 0 0 h3 h3
12 o[ h
12R 3 0 Oon 675
A = 0 6,Rh 92;-]_2 ) A, = 6,Rh 0 0 (13c)
h3
h® _RK 0, 0 0
h RA 12
i 0 9212 0, 12 | - -
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h3
0  -6Rh -6, _6,Rh 0 0
3 h
Al 0 0 | AS| O Gh-a  Gh-(B+eh) (134
h 0 &h—(B+6,h) ERh-aR’

and the boundary conditions for Egs. (12) and (13) is Eq. (8b).

3. Restriction of using the first order theory

Mirsky-Herrmann (1958) used the first order theory for studying wave motion in an axisymmetric
cylinder. They state that the error of using this theory in the calculation of the phase velocity is not
more than 15-20 percent even for a solid shell. Bhaskar (1991) found that the first order theory is
accurate in determining the general characteristics of a shell e.g. deflection, natural frequencies anc
buckling loads but it is not suitable in calculation of stresses, mode shapes and high natural frequencies

For difference estimation of the first order theory in calculating the deflection of a thick shell,
Egs. (13) have been solved for a long and thick cylinder with constant thickness and pressure. In
this case, displacements do not depena and the terms that contaitidx are removed. Assuming
Co=0 thenyy = 0 andy, andw are determined and the radial displacement on the innerwyglis(
calculated. On the other hand, this radial displacement can be calculated from the relatigh (1) (

If one assumeR as the average radius anés the thickness, the ®@gifence percentage i.Biff(%)
W, — W,

W3
theory is very accurate for small thickness and by increasing the thickness, its accuracy is reduced.

x 100 with respect tan= R/his plotted in Fig. 3. This figure shows that the first order
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4. Solution of equations

For a cylinder with constant thickness the coefficients of Eqgs. &i8)constant and by the
elementary theory of differential equations, one can solve these equations. Simkins ¢h89#) s
these equations for a long thick cylinder with constant thickness which is subjected to moving
pressure by this method. The general method for solving differential equations with variable
coefficients is the Frobenius method. This method that is used in analyzing the vessels with varying
thickness by Suzuki (1981, 1982, 1983) and Takahashi and Suzuki (1981, 1986), requires a large
amount of calculations. Takahashi and Suzuki (1981) used 100 terms of series for desired
convergence. Before using this method, itireer and outer profiles of the shellave to be defined.

In this article,Boundary Layer Method (matched asymptotic metloddhe perturbation theory is
used for solving these equations. This method does not require the knowledge of the inner and oute
profiles of shell before formulation. In addition, the convergence is fast and the solutiocidsed
form. The beauty of this method is in its compatibility with titeysics of the shellt can explain
the behavior of the shell successfully even near the boundaries. Solving the equations with varying
thickness give rise to solving a system of algebraic equations and two systems of differential
equations with constant coefficients.

To make the equations dimensionless, one can use the nondimensional parameters:

X =x/L, " =h/h, R = R/h, W =w/h,, U =u/hy (14)

the dimensionless form of Egs. (13) is as below:
2 d D [ d * x *d *J ok *
&— + € Ay)+ A +Ay+F =0 15a
-HR le*D )+ A dlx* 7Y (15a)

where L is length of the shellhy is characteristic thickness argk=hy/L is assumed amall
parameter Matrices ofA;, A,, A;, A, are formed by substitution Rf with R andh” with h in the
matrices ofA;, A,, A, A, and’ = { Y, W', Lpz}

*2
F' =F,+eF, F,=pp—2—tci 000
0

0 dx M2r
0 0 0
% C, ' E
PR h O
* D 6 my e - * D * C
Fi=0O lR A %L 2R O 0 Cy = ——02 (15b)
0 - . O Ahg
DB c PR h h d
S 1%~0 2A ZR*DD

Egs. (15a) are singular and have two boundary layers at two ends of the shell. So, solution of the
problem contains three parts: a solution away from the boundaries that isocae@xpansiorand
two solutions near two boundaries whigte callednner expansiongNayfeh 1981).



Closed form solution for displacements of thick cylinders with varying thickness 739
4.1 Outer expansion

This solution is considered as a uniform series: of

y;ut = Yoot €Y1t ... (16a)

With substituting of this solution in Egs. (15a) and considering the terms with the same agder of
results:

" AyYoot F1 = 0

. d - ~ady,
£ Ay + —5(AYoo) + As :
dx dx

=X, =0 (16b)
Egs. (16b) are systems of algebraic equations and by solving them, solution of the shell away from
the boundaries is obtained.

4.2 Inner expansion at X = 0
The fast variablen = )Lv v>0 is considered as new variable for this region. With the Taylor
expansion: €

Al (X )-A(0)+x*{dA:} +.., i=1.4 (17a)
dx | _,

F(x)_F(0)+x*E]“ff% +.., j=12 (17b)
dx O -

By using relations (17) and applying the fast variable, Egs. (15a)nefbas:

* *

2-2v dA, Ld - vd dA, o,
£ dn{DM(OH LX*L:O+ ---E]]aﬂ+ n{ﬂ%(OH 3 nL L:O+ ...E]y}

* *

Y] D * v : * v F
€7 tA(0) + €'n d : + EHDl + & Fo(0) + ¢ nDd[]—fS +. |+
U dx |._, 0dx 0. -,

odn
0. dA, O. [ . OdF; O
[A(0) + s“n{ A:‘} + .0y +{F1(0)+8”I7E1—3[1 +} =0 (18)
g dx |, _, d 0dx 0. -,
In above equationsy is derived from balancing of the dominant terms witsen O . In this

casev = 1 and the fast variable &t= 0 isn = X'/e. By considering the series solution as:

Yin(M) = Up(n) + euy(n)+ ... (19a)
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and substituting in Eq. (18), the terms with the same orderacé:

€% L(ug n,0) + F;(0) = 0

£ L(uy, 0, 0) + M(Ug, &, by, €1, g, ) + ey + F5(0) = 0 (19Db)
where:
Y Ly A @Y A
Ly, % i) = AL(I)== + (A3(0) + Ay(i)) 2 + Au(i)y (20a)
dX2 dx
_,dndyg, ,, d dy
M(y: a11 b11 C11 d11 ’7) - aldn%dnlj+ bldn(ny)+ Clr]dr]+ dlr]y (ZOb)

ay, by, ¢y, d; are the derivatives of, A,, A;, A,  with respectxoat X' = 0 ande, is the derivative
of F; with respect tox at x = 0. Egs. (19b) are systems of ordinary differential equations (ODE)
with constant coefficients which are solved using the elementary differentidloegutneory (Wylie
1979).

Determination of the solution constants is by applying the boundary conditions of the ghellOat
and the physics of the structure e.g. the deflections have to be restrigied as

4.3 Inner expansion at X = 1

Assuming the fast variable a8 = (X —1)/&¢’"  and substituting in Egs. (15a), one gets
from balancing of dominant terms. By the uniform solution as:

Yin = Vo+ eV + ... (21a)
the equations with the orders of zero and one are:
€ L(Vy ¢, 1) +F (1) =0
€1 L(Vy, §,1) + M(Vo, @5 by, €5, 0y, {) + &+ F5(1) = 0 (21b)
ay, by, C,, o are the derivatives o\, A, A;, A,  with respectxoat X’ = 1 ande, is the derivative
of F; with respect to" at X' = 1. Egs. (21b) are also systems of ordinary differential equations with
constant coefficients which are solved using the elementary differential equations theory (Wylie
1979).
Determination of the solution constants is by applying the boundary conditions of the ghelDat
and the physics of the structure e.g. the deflection have to be restricfed as

4.4 Composite solution

In the boundary layer method, a composite solution is the summation of these three calculated
solutions minus the overlapped parts of them. Outer solutien-a0 and inner solufion et
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are overlapped and this common part, have to be removed from the composite solution. This is true
for outer solution ak — L and inner solution @t —o . Therefore the composite solution is:

Y = Vint Yint Your—(J1+ Jo) (22)
where J; and J, are common parts of inner and outetugons at two ends of the shell. These
common parts can be determined by definition of the intermediate variable or Van-Dyke algorithm
(Nayfeh 1981).
5. Analytical results
In this section, two problems have been studied. At first, a thick shell with constant thickness and
pressure have been examined and then, a thick shell with varying thickness and pressure have bee

analyzed.

5.1 A thick cylinder with constant thickness and subjected to constant internal pressure
with clamped-free boundary conditions

Geometrical and mechanical properties of the shell are listed in Table 1. In this problem,
€ =hy/L01/10 is a small parameter. This problem @édved by three methods:

Table 1 Characteristics of the shell with constant thickness

Length of the shell L=04m
Inner diameter 80 mm
Thickness 40 mm
Internal pressure 100 MPa
Young’s Modulus 210 GPa
Poisson’s ratio 0.3
Shear correction factok?) 5/6

5.1.1 Perturbation method (Boundary layer method)

By derived formulation, solving algebraic Eqgs. (16b) gives rise to outer expansion. Inner
expansion a’ = 0 relates to solution of the coupled differential equations with six constants.
Three constants are zero because of the limitation of deflection as~ Three remaining
constants are determined from applying the fixed boundary conditiwr=al, i.e.w" = ¢, = (,=0.

Inner expansion at end of the shell is obtained by solving Egs. (21b). This solution also contains six
constants. Three constants are zero because of the limitation of deflectidn- aso . Other
constants are determined by considering free edge condition. In the free edge, the deflection is the
same as the deflection away from the boundary or solution does not depefichruh three
remaining constants are zero too. So, the inner solution at end of the shell contains only the
particular solution of (21b). This solution satisfies the free boundary conditior$, FeM, = Qy =

My, = 0(dimensionless). Then with Egs. (22), the composite solution is calculated. For determining
u, it is enough to integrate Eq. (12). The coefficients of this equation are constant and this
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integration is performed directly. The constant of integrating from Eq. (12)Carate calculated

from the equationN,u=0 at two boundaries. The calculations are performed by a program in
MAPLE 5 environment and the radial displacement on the inner wall, away from the clamped
boundary is estimatedvy).

5.1.2 Navier equations
By using the relation (1), one can calculate the radial displacemeon the inner wall of this
cylinder.

5.1.3 Ordinary differential equations theory (ODE)

In this problem, the coefficients of Eqgs. (13a) are constant isndolution by ementary
differential equations theory is possible. The equations have general and particular solutions. By
unknown cefficients method, one can determine the particular solution. Therajesolution is in
the form of y=€%wv, v, va}" and by substitution in homogenous equations, one can calculate
eigenvalues ), eigenvectorsyj, and then get general solution. Totaluson is the smmation of
general and particular solutions. The constants of solution are estimated by applying free and
clamped boundary conditions. The displacement on the inner wall and away from the boundaries is
ws. Table 2 compares radial displacement on the inner surface by these three methods.

Table 2 Radial displacement

Radial Displacement (mm)
w; (Maple) 0.03343

w, (Navier) 0.03746
Ww5(ODE) 0.03341

5.2 A thick cylinder with varying thickness and subjected to linear internal pressure with
clamped-free boundary conditions

The shell characteristics are defined in Fig. 4 and Table 3. The matched asymptotic method is
used for solving Egs. (15a). Derived equations are aseed by a protam on MAPLE 5 like
section 5.1.1 for this problem. The only difference is in calculating. éh this case, one can not

X
A

Fig. 4 Schematic of the shell loading
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Table 3 Characteristics of the shell with varying thickness

Length of the shell L=04m
Inner diameter 80 mm
Thickness ak = 0 40 mm
Thickness ak = L 10 mm
Internal pressure at= 0 100 MPa
Internal pressure at= L 25 MPa
Young’'s Modulus 210 GPa
Poisson’s ratio 0.3
Shear correction factok?) 5/6

integrate all terms of the right hand side of Eq. (12].(¥) contains these unintegrable terms, the
Taylor expansion of (x) is calculated and then, the integrationf ¢f) has been determined. Radial
and axial displacements of inner wall are presented later.

6. Numerical analysis

The coefficients of Egs. (13a) are variable and solving them by elementary theory of differential
equations is not possible. So, for comparison purpose, one can use numerical methods for analyzin
a thick shell with varying thickness. The finite element method (FEM) is enhgdwnumerical
method in structural analysis and can be used in our studies. For a thick cylindrical shell with
varying thickness, due to geometrical and loading symmetric, the shell is studied in the field of
plane elasticity. In this field, it suffices to model only the shell section which reduces three
dimensional analysis to a problem in two dimensions. Characteristics of the shell are listed in Table 3.
For analysisAnsys5.4package has been used. The elememLANES2which is an axisymmetric
element, have been used for meshing. It is a quadrilateral element with eight nodes, the degrees ¢
freedom are two translations in the radial and axial directions for each nodes and the stiffness
matrix is 16+ 16. Fig. 5 shows this element. The pressure is imposed linearly. The boundary
conditions are clamped-free and the shell is assumed isotropic and elastic (Table 3). By investigating

i |
e M

‘ M l
IRl

Fig. 5 PLANE82 Element (Ansys Element Manual 1997)
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of several mesh configurations,refined mesh pattern which include 272 elements was chosen. In
Fig. 6, the mesh pattern, loading and boundary conditions of the shell, have been shown. Figs. 7 and
present the radial and axial displacements of the shell on inner surface that is calculated by FEM
and perturbation method. Displacements are dimensionless with respedrtd distance from the
edgex = 0 with respect td. Deformation of the shell is shown in Fig. 9.

LU ]1]:.=;=JrJ 1L

JISET T T TTY
PR

2544

ILLLLLALLLLL

.

Fig. 6 Finite elements model
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Fig. 7 Radial displacement with respect to distance (dimensionless)
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Anial Displacenent
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Fig. 8 Axial displacement with respect to distance (dimensionless)

4

—————
l.l.li.l._!._h.l’..l 5

Fig. 9 Deformation of the shell (FEM)

7. Discussion of results

Figs. 7 and 8 comprise analytical and numerical solutions of radial and axial displacements on
inner wall of the varying thickness shell from the edge. Non-uniform radialadesplent caused
axial reaction and results the axial deflection. The maximum axial deflection is at the free edge of
the shell. These axial and radial displacements are physically reasonable as shown in Fig. 9. The
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e} Randinl Displacement]¥iddle Sarfuce)
THIE-TH
o /\
SHIE-Y F,
L]
d iHiE - i'
#
*
BiMIE-4 P
Ll
THIE- D4 _'
L d
| HTE-T |
B (5
1] i L% ] i 1] i [ & K i 1
w1
— l-Terma + I-lerms

Fig. 10 Displacement for one and two terms of series

prediction of displacements of the cylinder with constant thickness (Table 2) show the percentage of
difference between Navier and ODE solutions divided to Navier solution is about 10.8% for this
shell which is adapt with Fig. 3 fan = 6/4 It is possible to approximate this difference for varying
thickness shell. For this cagm,is a function ofx and6/4<m<9/2 , so the difference is 1 to 11
percent (Fig. 3). In solving the problem by the boundary layer technique, only two terms of the
series is considered (to ord€r These two terms suffice as a good approximation and one reason is
that the perturbation parameter is small. Fig. 10 shows the radial displacement of the shell with
respect to the distance from clamped edge (dimensionless) for one and two terms of series. It is
seen that even the order one term doesn’t have significant effect on the order zero term. So, in spite
of the Freobenius series which requires a large number of terms for the desired convergence, this
method requires few numbers of terms in series. Also the exact solution of Egs. (13a) for the thick
shell with constant thickness by ODE and solution of (15a) for this shell by the perturbation
method,do nothave any significant difference. Sihie perturbation theory could present an exact
approximation for the solution and the differences of the solutions are due to the first order theory
and not the boundary layer methdebr the varying thickness shell, calculated displacements are in

a good agreement with FEM results and away from the boundaries, the difference is about 8%.

8. Conclusions

The presented method is successful in determining the displacementsligfwstie varying
thickness and pressure. This method relates the solution of a system of differential equations with
variable coefficients to solutions of a system of algebraic equations and two systems of differential
equations with constant coefficients. In contrast with the Frobenous and Galerkin weighted residual
methods, the formulation of problem does not depend to the form of pressure and outer radius
distributions, i.e. this formulation is correct not only foreln functionality of the pressure and the
outer radius but also for all functions which could describe these parameters. In comparison with
the Frobenous and Galerkin methods, this methoddssscomputationdast rate of convergenge
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closed form solutiorfor displacements andhort running timeof computations. Boundary layer
method could predict the deflection of shells well, even near the boundaries and compatible with the
physics of the probleniThis method can be used werifying the finite elements resuisid vice

versa. Also one can use this method in optimizing the shell thickness with trial and error, provided
that displacements are considered as the optimization criteria because various models can be define
and analyzed by a few variations in the program amtbéts not require meshin@his formulation

can be extended to axisymmetric shells subjected to various kinds of axisymmetric loads (static or
dynamics).
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Notation
Ko, K1, Ko, Co, C1, Co, V : Constants
r : Horizontal coordinate (radius)
X : Vertical coordinate
z : Distance from middle surface
h, R : Thickness and mean radius
hy : Characteristic thickness
u, w : Axial and radial displacement of middle surface
W Yy : Rotation components of approximate solution
Oxxr Exx : Axial stress and strain
Oy &7 : Radial stress and strain
Ogs » Eoo : Hoop stress and strain

Oxz, Yaz : Shear stress and strain
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Parameters that are designated with * and do not enter in above list, are dimensionsis @ignensior
less form ofR

H.R. Eipakchi G.H. Rahimi and S. Esmaeilzadeh Khadem

: Variation operator

: Variation of strain energy and external work
: Radial Displacements on the inner surface

: Vectors of displacements

: Perturbation parameter

: Outer expansion

: Components of

- Inner expansion at = 0

: Components o,

- Inner expansion at = 1

: Derivatives of the matrices df;, A3, Az, A, at X
: Derivatives of the matrices d%;, A,, A;, A, &
: Fast variable at" = 0

- Fast variable at’ = 1

: Lame coefficients

: Length of the shell

: Volume

: Approximate solutions for axial and radial displacements
: Stress resultants

: Matrices of coefficientsi = 1..3,j = 1..4)

: Vectors of force

: Defined operators

: Components ofjy

: Common parts of inner and outer solutions
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