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Abstract. This paper contains the results of the study on the development of fracture and crack

propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method
(DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic
evolution and growth of cracks up to the point of gross material failure. The model is expected to predict

the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the
interaction between aggregate materials, and bond cementation. The algorithms generate normal and she:
forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks
and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for
the fracture limit. In this algorithm the particles are moving based on the connected block logic until the

forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete
block logic. In setting up a discrete polygon element model, two dimensional polygons are used to

investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjecte
to simple applied loads. Several examples involving assemblies of particles are presented to show the
behavior of the fracture and the failure process.

Key words:  quasi-brittle materials; discrete element method; polygon block elements; Voronoi; failure.

1. Introduction

Quasi-brittle materials, such as concrete and roaks, heterogeneous composite materials for
which nonlinear behavior is caused by factors such as crushing, aggregate interlock, shrinkage anc
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creep. There have been many researchers studying the inelastic behavior of quasi-brittle materials
especially for concrete and rocks, in the structural mechanics field. In their studies, materials are
viewed as a homogeneous even though they are inhomogeneous. Most of them, however, are
primarily based on phenomenological observations designed to give information suited for use in
continuum mechanics theories. Such an approach is not sufficient if one wants to explain the
inelastic behavior under load levels sufficient enough to initiate cracking and other forms of damage
in the material. Their analysis can predict with high accuracy for small deformation and behavior.

However, the continuum mechanics formulation may have some limitations when it is used to

investigate initiating cracks or other forms of material damages; elements may undergo large
deformations and may detach from other elements. This is because those approaches seldom cowv
the behavior of discrete, disjoint materials in detail.

Fracture mechanics was first studied for brittle materials such as glass by Griffith (1920). After
about forty years, the concepts of fracture mechanics were applied to itlenemhaterials. The
first applications to concrete appear to have been made by Neville (1959) and by Kaplan (1961). A
historical review and an annotated bibliography of the applicatiomaofufe mechanics to cement
and concrete was given by Mindess (1983). The application of fracture mechanics to concrete
structures has provided new ways of understanding and modeling phenomena which could only be
treated empirically before. In recent fisbed lierature, some works covering the main parts of
development have been presented by Wittman (1983, 1986), Bazant (1985, 1986), Shah (1985)
Carpinteri and Ingraffea (1984), Sih and Ditommaso (1985), Reinhardt (1986), Carpinteri (1986),
Bazant (1992), Mihastet al. (1993), and by Bazamtt al (1994).

A new discrete element approach has been needed for models based on micromechanica
characterizations of inter-particle contact properties, which includes friction, normal stiffness, and
tangential stiffness. Discrete element methods (DEMs) are numerical techniques designed
specifically for simulating the complete behavior of a discontinuous material, and to solve problems
in disconnected, partially connected, or fully connected structural assemblies. For example, the
DEM can be applied to analyze interacting rigid or deformable bodies undergoing large dynamic or
pseudo static motion, governed by complex constitutive behavior.

The discrete element approach has been developed over the last three decades to represent t
behavior of cohesionless granular materials (Cundall 1971, Cundall 1974, Cundall and Strack 1979).
It has since been modified and improved by a number of researchers to include applications such a:
deformation of sand, snow, pack ice, ceramic powder, blasting, and fluid mechanicsnlfRahe
1980, Bathurst 1985, Nelson and Issa 1989, Bruno and Nelson 1991, Van Baars 1996, Tran anc
Nelson 1996). Zubelewicz and Mroz (1983) and Zubelewicz and Bazant (1987) used a micro-
mechanical approach to model concrete fractures. In the discrete element method, the systen
consists of discrete, disjoint interacting particles that are free to move except during contact with
neighboring objects. Particles can undergo large displacements and large rotations, and they ar
typically used to model failure of weakly connected discrete systems under high loads. The equation
of motion for each individual particle relates all contact and body forces to the particle mass,
acceleration, and the inertial damping coefficients. The particle movement and mechanical
interaction are tracked over time with an explicit central difference technique (Bathe isod W
1976). The contact forces in the microstructual level are then related to macroscopic boundary
stresses through the principal of virtual work (Bathurst and Rothenburg 1990).

In the present study, the discrete element approach is used to simulate the response of material
up to the point of complete failure by modeling the intergranular deformation between aggregates
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and bond cementation. Bond cementation, which is composed by a series of spring elements,
attaches to the edges of the aggregate cores. Thus, the material response is simulated by a two-pha
mortar aggregate composite (Rhie 1996, Rhie and Tran 1998, efrah 1998). This can be
accomplished by representing the material as an assembly of two dimensional (2D) polygon blocks,
where each block is made up by a rigid aggregate center and a deformable cement paste enclosin
the rigid core. A realistic quasi-brittle material response is achieved by combining the discrete
element method - to model arbitrary motion of a large assembly of objects - with a Mohr-Coulomb
fracture limit for the spring elements interconnecting the edges of neighboring aggregate particles. It
helps to develop an improved understanding of the process of fractures or crack propagations, anc
to develop a realistic and simplified non-continuum model to simulate failure in this quasi-brittle
material.

2. Discrete element formulation and implementation
2.1 General concept of modeling and algorithm

In setting up a dgete element model, the first major decision is whether or not to use two
dimensional (2D) or three dimensional (3D) models. If the decision is to use 3D models, the only
computationally practical shape of the particles, which can be treated for large systems of variable
sized particles, are spheres. These types of systems can be used to study a number of processes. |
assemblies of spheres are unstable unless subjected to external confinement. This is not the case f
real geologic assemblies (e.g. piles of stones). The shape of the individual components of the
aggregate is an important effect which is not accounted for when using spheres. If 3D objects other
than spheres are considered, the computational burden becomes overwhelming even for smal
models. If, for example, a 200 x 200 2D array of objects appears on the faces of a cubical 3D
assembly, on that face 4 x*Iiflocks may be seen. But actually more than 8@ x 1¢ objects
will be needed to make up the 3D assembly, in fact, 1>8D0objects. The object therefore must
have an extremely simple shape and obey extremely simple physical contact rules if any hope exist:
for analysis of the assembly. If a 2D model is used, the individual objects making up the discrete
element assembly (say our 200 x 200 model, with 4*xlocks) can be assigned a variety of
shapes from round (disks) to arbitrary polygonal. The 2D disk model is simplest, but suffers from
the same problems described for 3D sphere assemblies. The 2D polygons can be usda@jateinves
a large number of different shapes, sizes, and orientation effects of blocks. It is more costly to
perform this because the contact logic between large numbers of polygons has been prohibitive until
recently. Now it is the preferred 2D type of block or basic element. Of course, a 2D model has
many limitations, the main one being that crack growth is 3D and the growth around blocks may
not be as realistic as a 3D model could treat. Also, interstitial filing and ar@ichot effectively
captured with 2D models. Thus, in this study, we are going to adopt a model based on assemblies
of 2D polygonal objects. Even then, very significant computer costs will occur, especially when
complete physical modeling is required.

The important aspects of any discrete element program are the representation of contacts, the
representation of solid material, and the scheme used to detect and revise the set of contact
between the discrete objects or blocks making up the assembly. Contact logic is surprisingly
complex even for 2D blocks (circular disks or polygons), especially under the general motion and
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when blocks of significantly different sizes are being considered. This is often one of the most time
consuming parts of discrete element analysis. But a more difficult problem is defining a general and
reliable contact force logic, especially when it involves a combination whaloand shear force
effects. On top of this problem is the problem of effectively treating ftiation and evolution of
cracking between blocks.

Concrete is a heterogeneous material made up by a finite-sized randombutdidtraggregate
embedded in finer bond cemeima and a number of voids. This multiphase material is
approximated by a two-phase cementation-aggregate composite, in which the aggregate cros:
sections are modeled as random shaped polygons with different sizes. The shape of the individua
aggregate components has an important effect on the mechanical behavior, and it needs to b
accounted for.

Several algathms are known to gemate randomly shaped polygons in different sizes. Voronoi
polygons (Finney 1979) divide the plane into an assembly of regions whose boundaries are the
perpendicular bisectors of the lines joining the point pair of the nearest neighboring data points. To
generate somewhat simpler and more realistic shaped aggregate particles, a procedure based on t
Delaunay triangulation method is used (Delaunay 1934). This formulation is based upon a single
observation that three given points will form a Delaunay triangle if the circumcircle defined by these
nodes contains no other points. From the set of all possible triangles, the Delaunay method reject:
the triangles with non-empty associated circumcicles. The algorithm was modified by Watson
(1981), Sloan (1987), Cline and Renka (1984) to get an improved and more efficient formulation.
Polygon shaped regions are then obtained from the given triangles by connecting the midpoints of
those triangles connected at the vertex, see Fig. 1.

The geometric layout of the mortar-aggregate composite is generated by shrinking the size of the
original polygons such that the rigid aggregate takes up to seventy five percent of the block and the
remaining twenty five percent representing the cement paste matrix. In this idealization, two
opposite-facing edges of neighboring polygon aggregates always exist, and they are connected by
deformable cement interface (Fig. 2). The stiffness and constitutive law of the interface bond will
determine the overall strength and crack propagation characteristics of the block.

H (&l

Fig. 1 (a) Delaunay triangulation (bold line) and Voronoi diagram (fine line) (b) Assembly of Voronoi polygon
particles
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Fig. 2 Discrete element representation of cement-aggregate interaction

The cement properties are idealized and modeled as shown in Fig. 4. The physical mortar aree
enclosed by edges of neighboring aggregate particles is approximated by a rectangular shapel
interface area; the interface area is modeled by equivalent non-linear spring elements. Depending ot
the force state, springs are either connected to the rigid polygons or separated from them. The
separation occurs when the springs exceed a given limit state. Thus, the analysis must be able t
distinguish and select between two possible states. First, the assembly behaves as a complets
connected system, and it is considered a continuum media. By increasing the applied load, some o
the links will fail and the assembly will start to generate microcracks accompanied by a reduction in
the overall strength of the material. Second, as the cracks propagate, fewer links exist to transfer the
applied loads, aggregate particles will eventually be completely separated, and the analysis will be
carried out following the discrete element logic. In this second state, the system consists of discrete,
disjoint interacting particles, free to move except during contact with neighboring objects.
Intergranular contact forces are determined by a discrete block logic where thigudeglepends
on a contact detection law and an associated stiffness formulation. The flowchart for the main
discrete element algorithm is shown in Fig. 3.

2.2 Formulation of connected blocks (Continuum state)

The discrete block should be connected to other similar blocks to simulate the behavior of a
guasi-brittle material mass. Each polygon block is connected by four springs whose moduli are
selected by experimental results. Actually each spring shown is two separate springs: a shear sprin
and a normal spring. Blocks (or polygon elements) start to move when forces are applied. Then the
spring forces are produced.

The equivalent rectangular element interface is shown in Fig. 4(a). Considerothigid blocks
A and B that share a common edge. P and Q are the two ends of this common edge. Aggregat:
core A is defined by vertices A A,— Az— A,— As, and aggregate core B is defined by vertices
B:—B,—B3;— B, The cement paste region C that is connecting the two blocks is defined by the
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Fig. 3 The flowchart for the main discrete element algorithm

polygon P- A;— A,—Q-B,—Bs. This irregular cement paste region C is then transformed to a
rectangular shape A A,—B,— Bz That area is the same as that cdr@ is illustrated in Fig. 4(b).

The new rectangular cement paste region is then subdivided into 4 equal rectangular shapes, witl
lengthL as the distance between the two parallel line segmawts aad BB3;, and widthW as the

length of the equivalent cement. Each small rectangular shape is modeled as a spring, and it
normal stiffnessk,) and shear stiffnes& respectively can be calculated as follows:

_ EoWVg - oMo
k, = L OND and kg= L OND (1)

where E is the Young ModulusG is the shear modulugy is the number of springs (i.eN = 4),
andL is the length of the rectangular shape. The shear direction for these four springs is defined as
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Fig. 4 DEM model of the cement paste between 2 rigid blocks

follows: The skear line of action is the line connecting the midpoint P of the line segmBataAd
midpoint Q of line segment B&,. The normal direction for the springs is the direction that is
perpendicular to the shear line of action PQ. The normal and shear forces generated by the cemer
paste springs can be computed as:

4 X 4 .
Fo=' S k.0, and Fg= S KOs (2)

=1 =1

where &, is the change in length in the normal direction of cement paste Epaind d, is the
change in length in the shear diten of the @ement paste sprinig

The failure criterion, which has been found as the most widespread use for both rocks and
concrete, is the Mohr-Coulomb criterion. The Coulomb internal friction theory is usually expressed
in the formt = C + uo, whereC is the shear strength when= 0, andu is the coefficient of
internal friction. The Coulomb theory, in its original form, is applied only to compressive states of
stress, in which failure was considered to occur in a shearing mode. There are two different types of
failures in quasi-brittle materials such as concrete or sedimentary rocks: tensile or cleavage failure
and compressive aghear failure. Compressive or shear failure is governed by the linear Coulomb
equation, and the criterion for cleavage splitting is a limiting maximum tensile stréd%e cement
paste springs are assumed to deform in an elastic manner within limits of a bilinear failure of the
Mohr-Coulomb criterion, illustrated in Fig. 5. In the Fig. 5, normal stress is plotted along the
horizontal axis, and the shear stress is plotted on the vertical axis. The cement paste spring i
defined to yield when the combination of shear and normal stress acting across the bond define &
point on or above the solid failure lines shown. In oucrdie element model, the two discrete
blocks are connected by four springs. If one or more springs yield, the fracture process starts. Wher
all four springs yield, a crack is formed between tie rigid aggregate blocks. Treement paste
springs are permanently disabled after the forming of the crack, and the bond between the blocks is
no longer holding them together.
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Fig. 5 Modified Mohr-Coulomb failure model for interface bonding

The Mohr-Coulomb equation for each cement paste spring is defined as:

Fs Fo
= Co+ Uy (3)

whereF, is the maximum resistant shear force between aggregates in the tangential diggasion,

the cohesive constany is the friction coefficient, and~, is the normal force acting between
elements. Once a fracture occurs, ti@&rand i both tend towards zero. The cohesion and friction
coefficients may decrease with each increassig disphcement. As the number of springs
connected to aggregate blocks increase, the abrupt detachment effects of the blocks will be reduced

2.3 Formulation of disconnected blocks (Discrete state)

Being the preparing step for the disconnected block logic, the contact detection logic should be
executed first. This logic is a basic and complex procedure in the DEM. The contact logic procedure
is the most costly and time consuming part of the analysis. The contact detection process uses
box-based logic where every 2D polygon is circumscribed by a rectangular box. The scheme for the
contact detection consists of three level checks. In the first level, the check is performed to
determine whether any two rectangular circumscribing boxes are in contact. In the second level, if
the two boxes are in contact, the check is performed to eliminate cases in which the two polygons
are not in contact, despite the contact of boxes. If the second level check shows that contact migh
occur, the third level check is performed to determine whether contact has in fact occurred (Tran
and Nelson 1996).

Even if complete information regarding the interference between two blocks - including the block
velocities in the region of the interference - is given, the contact shear and normal force directions
are far from obvious, and the emaction between these forces is not fully understood. Tran and
Nelson (1996) suggested “reasonable” definitions of the contact forces. They tested several
examples, which are triaxial compression tests, dynamic analysis of hopper granular flows, etc., by
using discrete block models. The results were reasonable and not far from realistic. This logic plays
an important role in the present approach to modeling the behavior of quasi-brittle materials under
several applied loadings.

To derive reasonable mathematical definitions of the contact forces, the velocity of the centroid of
each block in the contact region is needed. The relative velocity, i.e. the difference in velocity of the
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centroid of the contact area in block A and the vigloin block B, gives some sense of relative
motion of the blocks.

The normal contact force is assumed to be independent on the contact area while the shear forc
is assumed to depend on both the contact area and the relative velocity of the centroids of the
bodies in the contact zone, as well as the frictional properties between the two bodies.

Let the two intersection points be intersection p&itfk;, y;) and intersection poirRx(x,, y»). The
line connecting these two points is the line of action of tlearsforce. This line is represented by
the vectorS

S = (X =X)i + (Y1 =2 (4)

During the sliding, the magnitude of the shear force is to be proportional to the area of the
contact. However, the contact area alone is inadequate in defining the shear force. To illustrate this,
consider two blocks approaching each other with the same speed but in opposite directions. Wher
they are in contact, only normal contact force exists. In this case, the contact area is not zero, bu
the shear force equals zero. Thus, the shear force must depend on not only the contact area but al
the differential motion of the two blocks. In the current formation, a relative velocity between the
centroids of the overlapping regions of the blocks in contact is defined to formulate the contact
shear force. This velocity is the velocity of the centroid of the contact region of one block as seen
from a reference frame fixed at the same point in the other block. The relative velocity of the
contact centroid is defined below. The velocity in polygon A is

Veg,,, = Vi+ @ 01" 5)
and polygon B is
Veg,,. = V@ Or (6)

where, @ andw” are the angular velocities of blockandl B, andr® andr® are the distances
between the contact centroid and the centroids of blocks A and B.

The velocity of A relative to B at the centroid of the contact area may then be computed by
subtracting the velocity of block B from the velocity of block A

rel _ A B
chDHIaCI - chCDHIaCI_ chCDHIaCI (7)

A unit vector in the direction of the relative velocity is determined.

Vv rel
Uyw = — (8)

Once this unit vector is found, its projection on the unit vector defining the direction of shear force
(the cosine of the angle formed by these two vectors) will determine the fraction of the relative
velocity that will be used in the shear force calculation.
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Then, the shear forde; is defined as
I:s = (A* kn*l*lk* Uvrceg\ |:Us)us (9)

whereUg = unit vector in the direction of the sheag,= dynamic coefficient of friction between the
polygons,A = overlapping contact area, akgd= constant proportional factor to be used in defining
the normal force between the two polygons in contact.

The normal force is perpendicular to the shear force and can be easily found. It should be noted
that the normal force is always compressive; therefore, the compressive normal force acting on a
given polygon always points towards the body of the polygon such that, i.e., the force and the
vector from the centroid of the interface area to the centroid of the polygon form an acute angle.
Let the normal force vector unit lme The simplest normal contact force law may be written as

Fn = Akn (10)

It is noted that this normal contact force logic has a linear relationship between the contact force
and the contact area for both the unloading and loading stages.

The contact forces are constructed differently in the loading and unloading stages by changing the
relationship between the moal contact force and the contact area. During the loading, the normal
contact force is taken to be a quadratic function of the overlapping contact area. Upon unloading,
the contact force is taken to be a linear function of the contact area where the slope depends on th
past history of loading. The contact normalcks between the discrete rigid blocks in the loading
stage are related to the contact area as follows.

4
Fr= FestaA+aA" with F.= §F, (11)

i=1

When the blocks are in the unloading stage, the contact normal force is computed as shown below

|
FU = FI™_ K (Apm—A) 3 (12)
dA|a

'max

max

where Anax = maximum overlapping contact ards, = maximum normal contact fmregd a,

= input parameters describing the nonlinear force relationdhip; parameter controlling the

unloading rate of the linear force relationshdh?rﬂ/ dA‘ A = derivative of the loading curve with

respect to A evaluated Atay F, is the normal force of cement paste spiingndFs is the sum

of the spring yielded forces carried over to the contact force to avoid a jump in the contact force.
The contact shear force between two polygons in the loading and unloading stages is taken to be

proportional to the contact normal force

I:s = l*lan (13)

where L is the dynamic coefficient of the friction between the polygons. The dynamic coefficient is
needed to get contact forces which depend on the relative velocity of the centroid of each block in
the contact region. The difference in velocity of the centroid of the contact area of the two blocks
gives some sense of relative motiontlod blocks.
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Fig. 6 (a) Direction of relative block velocities (b) Shear force line of action and normal force direction for
disconnected blocks

3. Equation of motion

Each rigid block element, having malss and moment inertid, is assigned three independent
degrees of freedom at its centroid: namély Uy, the displacements in theandy directions, and
©, the rotation about theaxis. The equations of motion of each block can be written as

MU,+CUs = F, (a=xY) (14)
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10+DO = T (15)

where F, is the sum of all forces acting on the elemeniimlirection, andT is the sum of all
moments acting on it about its centrofd.and D are (inertial) damping coefficients), is the
displacement, an® is the angular displacement. Egs. (14) and (15) can be solved using a direct
time marching algorithm, such as the explicit central difference method (Bathe and Wllson 1976).
Assumlng that the displacement, velocity, and acceleration vectors aittingenoted byUo,, ug ,
and Ug' respectively - arknown, then in this time integration sshe, the saition is advanced to
timeskAt, k= 2, 3, ... to solve for all times from O ® In other words, the method establishes an
approximate solution at times 8, 2At, 3At, ..., T.

The critical stability limit, which is known as Courant’s stability limit A, is Aty = T /7T
Actually this critical time step is only an estimate for weasons. First, the stiffnegsdepends on
the number of blocks in contact, which may be very hard to predict for an entire solution over an
extended time. Second, the contact forces which make aqd T are higher nonlinear functions of
block motion. If the blocks are permitted to move too far in any one time step (eer i),
the new positions of the block may generate extremely large forces and cause the assembly o
blocks to appear to blow up. Irgetical numerical computations, control of the time step size is
complicated, yet it is an important aspect of the numerical analysis.

4. Applications
4.1 Numerical input parameters

To simulate the sample concrete models shown in this study, numerical input parameters for the
cement paste are used as followspung’s modulus is 20,700 MPa (3 x®1psi), Poisson ratio is
0.25, the bond tension limit is 6.9 MPa (1 ¥ 18i), and the bond shear limit is 13.8 MPa (2 % 10
psi) (Newmanet al 1969). The parameters for the discrete contact force relationships for the
aggregates are applied to simple primitive models in soil mechanics. The vahjespK and Lk
used in these tests are 20,700 MPa (3%pK)), 20,700 GPa (3 x i@si), 2.5, and 0.3 respectively
(Tran 1993).

4.2 Compressive failure simulation

Compression strength is the major criterion when assessing the quality of ctikerepeasi-
brittle materials. Knowledge of the compression strength means that we have fairly accurate ideas
about its strength when subjected to other loads, as well as its other mechanical properties. The
methods applied throughout the world to assess the compression strength of concrete are similat
The differences consist only in shapes and sizes of the test specimen used, which can be cube:
cylinders, or prisms of various sizes. The testing technique in a laboratory is very important because
friction between the specimen, the loading machine plates, and the quality of the contact between
the two active surfaces - as well as the loading rate - greatly affect the test results. The numerical
tests performed must recognize the effect of friction and the loading rates.

A rectangular shaped specimen model shown in Fig. 8(a) represents the prismatic or cylindrical
specimen. The model shown in Fig. 8(b) is made of an assembly of 626 aggregate particles, and the
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Fig. 7 Fracture patterns for rectangular and square specimens under compression of concrete-like material
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geometric dimensions are a height of 30 cm and a width equal to 15 cm. The shapes of the 62€
particle elements vary between 3 to 9 nodes for the rectangular specimen. The specimen is place
between two moving end platens to apply a constant strain rate loading. Friction between contacting
surfaces generate shear stress components and induce a lateral confinement to the test specimen. |
the non-lubricated specimen, cracks propagate parallel to the loading direction in the central zone of
the specimen and slanting at the ends as the results of the shear force which is induced by plate
friction. This state of stress generates a failure mode which is different from the ones with
lubricated end platen as shown in Fig. 7 (Avratral 1981). Regardless of the specimen size, the
ultimate compressive strength value of the lubricated specimen is slightly lower than the case of the
non-lubricated specimen.

The top block is moves down gradually over time to apply the compressive strain. In these
numerical tests, three different end conditions are considered. The first assumes lubricated end face
with zero friction. In the second model, friction exists between contacting surfaces. And finally, in
the last model, the end faces are not allowed to expand in the lateral direction. Fig. 8(b) shows the
compressive failure mode of the specimen without friction. Cracks develop parallel to the applied
load. In Fig. 9(a), friction exists between end faces and loading platens. Crack propagation occurs to
form typical failure cones. The failure process, with fully constraint end faces, is shown in Fig. 9(b).
The failure mode is again influenced by the boundary conditions at the top and bottom faces of the
specimen.

Numerical tests have been performed with three different heights specimens. The heights of the
compressive specimens are 50 mm, 100 mm, and 200 mm. All specimens’ widths are the same, 5(
mm. Specimens with different heights have almost identical stress-strain behavior up to the peak
stress. However, longer specimens exhibit less strain after the peak stress compared to shorte
specimens (Fig. 10a), i.e., the softening part of the compressive stress-strain curves depends on th
length of the specimens. The numerical results indicate that post-peak compressive stress-strai
curves depend on the height of prismatic specimens. In Fig. 10(b), the stress-displacement curve:
show similar values for the post-peak behavior. The numerical results match well with Van Mier's
(1986) experimental results for the plain concrete.
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4.3 Tensile failure simulation

Concrete material strength and limit strains under tensile stresses are essential parameters to b
considered by the structural engineer confronted with practical or theoretical problems such as crack
initiation and development, behavior to major stresses, torsion, etc. Although the strength under
tension is of high practical interests, there are some difficulties in the test of specimens under
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Fig. 11 (a) Direct tension specimen (b) Crack Fig. 12 Tensile stress-strain curves, corresponding to
propagation in direct tension the function of cohesions

tension, namely the manner in which the samples have to be fastened between the jaws of the
testing machine. Also it is not easy to obtain an even stress distribution over the cross section,
because the stress field is disturbed by the specimen holding devices which introduce secondan
stresses. By those reasons, direct tension tests of quasi-brittle materials are seldom carried out. T
avoid all secondary effects and to obtain reliable results, the tests should be well instrumented anc
carefully executed.

Fig. 11 illustrates the @vall response of the specimen subjected to direct tension. The failure
process is a complex interaction and redistribution of the loadying aggregate-cement
components. Experimental evidence shows that the elastic limit is around 60 to 75% of the ultimate
tensile strength. For higher stress levels, microcracking starts in the aggregate-cement interfaces, an
the interval of stable crack propagation is usually very short. Upon further loading, active cracking
zones develop suddenly and an unstable propagation is occurred normally to the loading direction.
Thus, the behavior of concrete material in tension can be describettlasiromature. Ultimately,
the specimen separates from the loading near the top and bottom face. The stress-strain response
the tension specimen, as a function of different cohesive constants, is shown in Fig. 12.

5. Conclusions

The basic concepts of using the discrete polygon element models to investigate tleasi-bri
materials have been explored. The contact logic between contacting, or nearly contacting, blocks ha:
been checked and is believed to be sound. It is essentially Tran’s logic, and a new connected blocl
logic is added and improved.

The force logic has only just begun. In that, the force definition has been exercised to work
through some basic examples with tracking the blocks by integrating their equations of motion.
Results for compression and tension tests appear to be realistic, and they demonstrate many of th
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charactestics of quasi-brittle materidtacture and failure that have been observed in the laboratory.

A host of modeling options still exist which should be explored. In particular,

1) The logic of post crack behavior has many possible options which should be considered, such
as the rate of loss of cohesion and friction coefficient, shear induced volume expansion, etc.

2) The size or type of the process zone, now believed to be of the order of the aggregate, needs t
be investigated. It appears to be rather large in the current numerical results. A larger
numerical model may be required.

The size and scope of the block model has, in the past, presented computational problems
especially when many comparative studies are being done. The nature of explicit, conditionally
stable direct time integration means that quasi-static loading is an expensive numerical exercise. If
the models, which are needed, become too large to be handled in general, special techniques t
minimize the computational burden will have to be developed. For example, it may be necessary to
limit the needs for updating contacts between aggregate and cement paste to only certain zone
where cracks are actively forming, or for control of the model which has a huge amount of
elements. Parallel processing techniques will be useful. Also, to use thimesdh practical areas,
parameters of the eqiens that are defined in this paper should be studied and adjusted more in the
future. Parameter studies will require a lot of time consuming procedures.

The DEM is a very interesting technique for exploring the nonlinear, inelastic behavior of random
multiphase engineering materials. It is believed to hold real promise for integrating the basic
mechanical behavior without relying heavily or phenomenological (experimental) test results.
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Notation
K, : normal stiffness
ks : shear stiffness
E : Young's modulus
G : shear modulus
L : length of the rectangular shape
Fs : resistant shear force between aggregates in the tangential direction
Fa : resistant normal force between elements
On : change in length in the normal direction of cement paste spring
o : change in length in the shear direction of the cement paste $pring
Cs : cohesive constant
N : number of springs attached for each faced element
S : the line of action of shears
Vo : velocity in polygonA
. : velocity in polygon B
o - angular velocity of block A
o - angular velocity of block B
rA : distance between the contact centroid and the centroid of block A
rB : distance between the contact centroid and the centroid of block B
o : velocity of A relative to B at the centroid of the contact area
Ve - unit vector in the direction of the relative velocity
Amai : maximum overlapping contact area
Fre : maximum normal contact force
a, & : input parameters describing the nonlinear force relationship
K : parameter controlling the unloading rate of the linear force relationship
dF./dA|,_ :derivative of the loading curve with respect to A evaluated,at
F, : normal force of cement paste spring
Fres : sum of spring yielded forces carried over to the contact force
M : mass of rigid block element
I : moment inertia of rigid block element
U,, Uy : displacements in the andy directions of block elements
© : angular displacement of block elements aboutzthgis.
Fq : sum of all the forces acting on the element indhgirection
T : sum of all the moments acting on the block element about its centroid
C,D : (inertial) damping coefficients
U, . displacement i direction @ = X, Y)
At

& Us Us - the displacement, velocity and acceleration vectors atAime
At : critical time step

C
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