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Abstract. The non-linear structural analysis of reinforced concrete beams in fire consists of three
separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (i) the
determination of the distribution of the temperature within the beam during fire; (iii) the evaluation of the
mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (i) and (ii
are dealt with in the present paper. We present a two-step computational procedure where a 2D transien
thermal analysis over the cross-sections of beams are made first, followed by mechanical analysis of the
structure. Fundamental to the accuracy of the mechanical analysis is a new planar beam finite element
The effects of plasticity in concrete, and plasticity and viscous creep in steel are taken into consideration.
The properties of concrete and steel along with the values of their thermal and mechanical parameters ar
taken according to the European standard ENV 1992-1-2 (1995). The comparison of our numerical and
full-scale experimental results shows that the proposed mechanical and 2D thermal computational
procedure is capable to describe the actual response of reinforced concrete beam structures to fire.

Key words: fire design; heat conduction; Reissner beam; finite element method; reinforced concrete;
creep.

1. Introduction

The performance-based approach to the design of structures under fire conditions is a preferable
method with respect to prescriptive approach used in the past. A large amount of experimental,
analytical, and numerical research has been performed to support the use of performance-base
approach and to expand the knowledge of fire loading and the behaviour of structures under fire.
Most of experiments have been limited to tests on a single element of a structure under controlled
conditions, e.g. Ellingwood and Lin (1991), Gustafestal. (1971), Linet al. (1981) and Linet al.

(1988). Experiments are performed in specially designed furnaces in which the temperature of
surrounding air follows the design fire temperature curves; these are prescribed by standards, sucl
as the ASTM Standard E119 (1976), ISO 834 (1999), or SDHI (1980) (see Fig. 1). There are also
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Fig. 1 Furnace atmosphere temperature for ASTM, ISO, and SDHI fire

reports on full-scale fire tests on more complex structures, such as multistory buildings. These tests
not only make possible to assess the actual behaviour of the structure, but also identify additional
mechanisms that may develop during fire in complex structures (see, e.g. Armer and O’Dell 1996,
and Lennoret al. 2000).

The theoretical analysis of the structural behaviour under fire conditions consists of several steps.
In the first step, we have to identify the characteristics of fire, sudls agpe and extent. The
spread of fire is affected by several factors which are difficult to identify reliably and their influence
and interaction are even more difficult to predict. We will not discuss these issues in the present
paper. The next step is the estimation of the heat transfer from fire into the structure. If the structure
is directly exposed to fire, radiation is the pre-dominant type of the heat transfer. If the structure or
its part is in the shadow from fire, the heat transfers through the air by the forced or natural
convection. If temperature in one part of the structure increases, the heat transfers through the
structure by conduction. In order to determine the temperature distribution within the structure, all
three phenomena should be considered in the analysis. A simplified analysis is usually performed in
which the heat conduction problem, governed by the partial differential equation of heat conduction,
is solved while the &fct of heat radiation and convection from fire to the structure is taken into ac-
count only by boundary conditions. In such an analysis it is important to note that material
parameters are strongly temperature dependent in the temperature range of fire (see, e.g. Abram
1977, Harmathy 1970, Lie and Irwin 1993). In the present analysis a 2D fiaeiteer®l computer
programme developed by Saje and Turk (1987) is applied ¢évndee the temperature distribution
over the cross-section of the structure. In the case of concrete and timber structures, there exists a
additional phenomenon which may considerably affect the temperature distribution: the elements of
structures may not be oven-dry. Therefore, water tries to evaporate from the structure which may
cause a considerable delay in temperature rise at temperatures atf@ut Tl0® delay is clearly
visible in some experimental data, see Gustafégral. (1971). Computational models that account
for this phenomenon have been proposed by several authors (among others, 8udall®99, Lie
and Irwin 1993, Vasilet al. 1998).
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In the final step, we have to estimate the mechanical response of the structure. The deformation o
the structure is caused by shrinkage, creep, temperature strains, changing mechanical propertie:
mechanical loads, etc. There are various computational models for the mechanical analysis of the
frame-like structure, e.g. the st model (often suggested by standards), the visco-elastic model,
the rigid-plastic model, the visco-elastic-plastic model.

Also, the structure can be modelled by 1D, 2D or 3D elements. The more advanced non-linear
fire analyses are based on the 2D and 3D finite elements (see, e.g. élw@ny997, Nechnech
et al. 2002). The 3D theories are computationally very demanding and are at present limited to the
prediction of the fire resistance of only simple concrete members. Therefore, most researchers bas
their analyses of reinforced concrete frame structures exposed to fire on beam finite elements anc
the plane section hypothesis (see, e.g. Ellingwetoal. 1991, Lieet al. 1993, Sidibéet al. 2000).

In this paper, we present the two-step computational procedure for the non-lireao-th
mechanical analysis of reinforced concrete planar beams subjected to fire. Fundamental to the
mechanical analysis is a new and very efficient planar beam finite element derived by &lalinc
(2001). The physical, material and geometric non-linearity of the beam as well as temperature
dependent material properties are taken into account.

2. Heat conduction

The temperature distributiof(x;, %, X3) at timet is governed by the dérential equation of heat
conduction

S o2 ogTU aT
v —0OY ki=—O+ Q—pc— =0 (1)
i:zl 0Xi I]Zl ! 0XJD (7(
and the boundary conditions
f: T~=T=0 (2)

on surface., where the temperaturg&, is prescribed, and

3 3
%; _z:z.,dx g, = 0 ®

on surface¥, where the heat flowgs, is prescribed. The initial terapature distribution in the
structure must be known:

v T(Xy, Xo Xz, 0) = To(Xyq, X, X3)- (4)

Material parameterk;, p, andc denote the symmetric tensor of the conductivity, the density, and
the specific heat, respectivel. is the specific volumetric heat source, in o@te often due to the
heat of hydration, some other chemical reaction in material, or plastic deformations. As already
indicated, Cartesian coordinates are denotedxbyx,, %, whereas the components of the unit
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normal to the surface of the structure are denoteahpy,, n;. The prescribed heat flow at the
surface may be decomposed into several parts

=0+ 0 + 0 + 0

whereq., g, g andq; are the convection, the radiation, the fire induced and the insolation parts of
the surface heat flow, respectively. The convection part is usually assumed to be a linear function of
the difference between the surrounding air temperature and the temperature at the surface of the
structure

dc =he(Ta =), )]

whereh. is the convection heat transfer coefficient, which depends on the wind speed, the shape of
the structure, roughness of the surface, etc. [©4i885). Heat flow due to the radiation depends

on the geometric shape of the structure and the radiative body. It is usually assumed to follow the
Stefan law, see, e.g. Qikg(1985):

9 = &B(T/-TY, (6)

whereT, is the absolute temperature of the radiative bddg, the absolute temperature of the body
surface,&; is the emissivity, an& the Stefan-Boltzmann constant.
The heat flow due to the solar radiation is given by a simple equation (Btlgé&r1983)

4 = lsckr acosd (7)

wherelgis the solar constank; is the air transmissivity factor which depends on the air pollution,

the date and the height above the sea levés, the surface absorption coefficient, a@ds the
inclination angle which depends on the space orientation of the boundary surface, the date, the
geographic latitude and the height above the sea level. In assessing the effect of fire, the influence
of the insolation is neglected.

Alternatively, the effect of fire can be accounted for by a single comprehensiveytésee, e.g.
Mendes et al. 2000), which is the function of the emissive power of fire, an atmospheric
transmissivity, the shape of the structure, the distance from fire, etc. We do not follow this approach
here.

A large set of experiments has been performed by several research groups, and they all indicat
that thermal properties of concrete are strongly temperature dependent (see, e.g. Abrams 1977
Harmathy 1970). According to the European code EVN 1992-1-2 (1995), the conductivity, the
specific heat and the density depend on temperature by the following relations:

k(T) = 1.6— 0.161T?0+ o.ooﬁ%d%f [ V(YC] (8)
m
_ T _,0Tf J
Co(T) = 900+ 80— — 45— [kgoc] , 9)
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2400 20 C<T<100°C
p(T) = O [kg/ m]. (10)
2300 100 CGxT<1200°C

Thermal properties of steel reinforcement are not given because the effect of reinforcement on the
heat conduction in concrete is only minor and therefore was not considered.

The solution of the boundary value problem (1) and (2)-(4) was obtained numerically by the finite
element method (Saje and Turk 1987).

3. The mechanical analysis of a planar beam
3.1 Basic equations of a straight planar beam

The present finite element formulation is based on Reissner's kinematically exact model of the
beam (Reissner 1972). It is assumed that the conipgatif deformations at the contact of the
reinforcement bar and concrete holds. Large membrane and flexural deformations are allowed in the
analysis, whereas shear strains are small and their effect can be neglected.

The stress-strain state of the beam of initial legib analysed in the plane zof the Cartesian
coordinate systenx, y, z The x-axis coincides with the centroidal axis of the undeformed beam
element(x [0, L]) . The beam element is assumed to be loaded by a time-dependent temperature
over the cross-section, by conservative distributed fgoc@sd p,, conservative distributed moment
my,, and generalised conservative concentrated loads at the ends of the beam &lgmeht?, ..., 6)

(see Fig. 2).

The so called ‘geometric’ (or total) extensional strdin, of an arbitrary fibre is a function of
extensional strain of the centroidal axds(membrane deformation), and its pseudocurvatire
(flexural deformation). In Reissner’'s beam model geometric extensional strain is linear with respect
toz

D(x, 2 = £(x) + zx (%), (11)

Fig. 2 Beam element in the initial and deformed state
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and it is assumed to be the sum of mechanical extensional strain, thermal strain and viscous strain
The deformation quantitiess, k, are related to the kinematic ones, w, ¢, by the kinematic
equations (Reissner 1972):

1+u-(1+¢cosp =0, (12)
w +(1+¢)sing = 0, (23)
' -k =0, (14)

where the prime') denotes the derivative with respect xo In Eqgs. (12)-(14),u and w are
displacements of the centroidal axis in #aendzdirections, andp is its rotation about thg-axis.

The equilibrium generalised internal forcég, Q, M, and the conservative distributed loagls,
pz, my, of the element are related by the equilibrium equations

(Ncosp + Qsing)’ +p, = Ry +p, = 0, (15)
(—Nsing + Qcosp)' +p, = R, +p, = 0, (16)
M —(1+ g)Q+my= 0. a7

The third set of basic equations is provided by the constitutive law. Two equations of the
constitutive law are used to relate the equilibrium quantitds,and M, with the constitutive
internal forces\, and M., via the deformation quantify,.;

N-=-N;

0, N.=[,0(Dy)dA, (18)

M =M,

0,  M,= [,z0(D,)dA. (19)

It can easily be derived from (18)-(19) that the constitutive quantitiegnd M., depend on a
chosen material model which is defined by the relationship between the longitudinal normal stress,
o, and the mechanical extensional strddy, of a longitudinal fibre. The relationship must be
determined experimentally.

3.2 Modified principle of virtual work

Egs. (12)-(19) together with the corresponding boundary conditions constitute a set of eight non-
linear equations for eight unknowns: two deformation functie(g and « (x), three equilibrium
quantitiesR4(X) = ANcosp + 9sing, Rx(x) = —Nsing + Qcosp and M(x), and three kinematic
functionsu(x), w(x) and ¢ (x). Analytical solutions are known only for some very elementary cases
which may serve for the verification of numerical procedures. Generally, the problem has to be
solved numerically, in this case by the finite element method. A beam finite element has been
derived by the use of the modified Hu-Washizu functional
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OW = [0 (N,—N)Bedx+ [ (M~ M)Skdx+
((L) - $(0) — [, kdx) 5M(0) +
(u(L) —u(0) —J‘;(l + g)cospdx + L) R ,(0) +
(w(L) —w(0) +J*0(1 + £)singdx) dR,(0) —
(Si+ R1(0))0U; — (S, + Ry(0)) 0U, - (S5 + M (0)) U5 —

(S =R4(L))0U; = (S —-R,(L))0Us - (S — M(L))dUg = O, (20)
where u(0), u(L), .., ¢ (L) are the generalised kinematic quantities at the two ends of the finite
element. The modified principle of virtual work is very suitable for materially non-linear problems,
since the deformation quantitieg(x) and k(x), are the only functions involved, whereas
displacementsu(x), w(x), rotation ¢ (x), equilibrium forcesRi(X), R2(X) and equilibrium moment
M(X) are represented in functional (20) only by their boundary values.

3.3 The finite element formulation
In our previous formulation (Planinet al 2001), we assumed thaf, — N = 0. Therefore only
k(X) was interpolated. In the present paper, both strain measures, extensionak (jraémd

pseudocurvature (x) of the centroidal axis, are interpolated over the finite element length. We use
the Lagrangian interpolation through equidistant nodes. Thus,

N, N,
£(x) = % PrX)&n, 0&(x) = 5 Pne(X) 0y, (21)
n=1 n=1
NK NK
K(X) = 5 Pud(X)Kn, OK(X) = 5 Pnx(X) 0Ky, (22)
n=1 n=1
where g(n = 1, 2, .., Ny and k,(n = 1, 2, .., Ny) are nodal extensional strains and

pseudocurvatures, respectively, adgl and Jk, are their variationsP,,; and P, are the Lagrangian
polynomials of order$, — 1 andN, — 1, respectively.

After expressions (21)-(22) are introduced into functional (20), the Euler-Lagrange equations of
the finite element are obtained. There Hget N + 9 non-linear algebraic equations fdy + N+ 9
unknowns of the fornG(x, A) = R(x) — AP = 0, wherex is the vector of unknowns of the element,
and A is the loading factor. Among the unknowns, thereNare N, +3 internal degrees of freedom
&n =1, 2, ...,Ny), Ko(n = 1, 2, ...,Ny, R4(0), R2(0), and AM(0), and six external degrees of
freedomu(0), u(L), w(0), w(L), ¢ (0), ¢ (L) of the element.

In the analysis of reinforced concrete structures under fire conditions, where the geometric and
material non-linearity is taken into account, the algebraic system of non-linear equations when
written for the structure needs to be solved by an incremental-iterative way. The time intetjval [0,
is divided into time stepst'[%, t']. For each step and a given loading factor incremetd’, the
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iterative corregbns of nodal displacementﬁx’@,l , are determined by Newton'divenmethod
i=1,2,..)

K(x, aX, T t)ox!,, + G(x, aX, Tt = o, (23)

where K=[xG is a tangent stiffness matrix of the structure. The corrections of displacement
incrementsAx/, ; at the end of time sjepnd the loading factor are determined by the equations

AXij+1 = AXij"‘5>(ij+11
Xij+1 = Xj_1+AXij+1!
A= A7ty AN, (24)

3.4 The decomposition of the geometric strain increment

The geometric, i.e. total extensional strain increndddt is assumed to be the sum of mechanical
extensional strain incremeD;),  and thermally induced strain incref@ht . In addition, a part
of geometric extensional strain of the steel reinforcement is attribute to the influence of viscous
creep in steelAD: . Thus,

for concrete:AD’ = AD!_+AD.; - AD! =AD'-AD.;
for steel:AD' = AD! +AD.!.+AD. - AD! =aAD'-AD!.-ADL.
3.5 Numerical computional procedure

In Box 1 the numerical computional procedure to determine the mechanical behaviour of
reinforced concrete planar beams due to simultaneous action of static and fire load is presented. Th
detail evaluation of several strain components is shown in the next chapter.

4. Mechanical properties of concrete and steel
4.1 The constitutive law of concrete and steel

The mechanical part of the geometric extensional strain incref@pt,does not directly depend
on temperature or time. It is related to the longitudinal normal stress bysttuwore law. The
reliability of results of a fire analysis is strongly affected by the choice of the constitutive law and
the values of its parameters. Again the parameters are temperature dependent (see, e.g. Abran
1977, and Harmathy 1970).

In the present analysis, the constitutive law for concrete is used according to the European
standard ENV 1992-1-2 (1995) (Fig. 3):
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Box 1 Numerical computional procedure
TIME STEP P4, t]:

t=t+At, TI=T7+AT, A =A72+A0
AchT(sn = chT(S'I)_ch'_I'(ls'I)

* Structure level - Newton'’s iterative methdd=(1, 2, ..):
» Element level: |n|t|aI d|splacement increments/ ., =
o Reinforcing bar(yk, Z£) of cross-section with coordinaten centroidal axis:
Newton’s iterative method to evaluaies! I(D ) ahdl (0 )
o Element level at cross-section,;  and.
° The tangent stiffness matrix of the elemﬁgtand corresponding loading vectGg;:

Ka(X' "+ Ax, AL T t))
Go(X 7+ X, A0, T )
» The tangent stiffness matrix of the structre= 0xG and corresponding loading @ector
KXt +Ax AL Tt
G(X T+ ax, AL T )
» The corrections of displacement increments:

x,, = K'G

AX|+1 - AXJ + 5X|+1
« Stop iteration if:

dx!, . < prescribed precision

i _ 1
XJi+1_XJ +AX|+1

o Dem> 0 0F Doy < Dey(T)
D O

O

Erfc(T)Ep 3 D.(T)<D.ps0 (29)

N cl(T)2 Dem [fl:l

0 [(Dey(T)OD

Temperature dependent mechanical characteristics of concrete according to this law are: ultimate
strain D¢, compressive strength, and strain at compressive stren§tfy. The beneficiary effect of
small tensile strength of the concrete is at this stage of research neglected. The stress increment i
concrete in thé" iteration of time stept{?, t!] is determined by the equation

ACL; = 0(Dim ) — (D). (26)

The constitutive law of the steel reinforcement is also taken according to the European standard
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Fig. 3 Stress-strain relations for concrete and steel at various temperatures

ENV 1992-1-2 (1995). There, the stress-strain law is described by four functions, as indicated in
Fig. 3, and given by the relations

Eo(T)Dsp o
0
E}bgr(Dsm)%(%Ja(T)z—(o.oz—|Dm|)2+ Op(T)—c(ME ..
0, = B5gn(Dan)f,(T) ll 27)
0
|Dsn4_D T] O
|?#fgr(Dsm)fy(T)%L - Dyu(T) _ [;ljz(T)D LV
Co .V

where I, 1, Ill, 1V, and V are the domains defined by:



Non-linear fire-resistance analysis of reinforced concrete beams 705

Tsp(T)
... 0S|Dsm|SEg(PT),

Tp(T)
... EszT)spsniso.oz,

... 0.02<|D,| < Dy,(T),

IV... Dyy(T) <|Dgy| < Dyy(T),

V... |Dgn > Dyy(T).
The temperature dependent steel parameters are: elastic mdégukeigstic limit stressgs,,; yield
stress,fy; strain at yield stres),,; and ultimate strain of steel,. Precise functional relations
between the above listed parameters as well as the paramdigedc, and temperature are given

in the European standards ENV 1992-1-2 (1995). The stress increment in the reinforceifient in
iteration ofj™ time step {', t'] is determined from the equation

AcY; = 0y(Dly ) — oy(DL). (28)
4.2 Thermal deformation of concrete and steel

When a piece of material is heated or cooled, its dimensions increase and decrease which result
in thermal strains. We assume thermal strains according to European standards ENV 1992-1-2
(1995) (Fig. 4). The thermal straid.r, for concrete with calcareous aggregates, as a function of
temperature, is given by

-1.2007% +6 MO°T +1.4010 T3, 20°C<T<805°C

D(T) = O . (29)
20107, 805 C< T<1200°C
0.015 ‘
—— concrete with calcareous aggregates 7
0.012 | ——— reinforcing steel z

0.009

DcT, DsT

0.006 -

0.003

0 200 400 600 800 1000
T [°C]

Fig. 4 Thermal strain of concrete and reinforcement
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Similarly, the thermal strain for reinforcing steBky, is given by
[F2.41600107" + 1.2010°T + 0.4010°T°, 20°C<T<750°C
Dsr(T) = %11 10°, 750 < 860°C (30)
%—6.2 0>+ 2 [010°T, ° <T<1200C

The expressions (29)-(30) are used to determine the thermal strain incremghtsmia step for
concrete

ADgr = Dir-Di7' (31)
and likewise for the reinforcing steel
ADYy = Dig—Dir'. (32)
4.3 Viscous creep strain in steel reinforcement

The viscous creep strain in steel is negligible if the temperature is moderate. Only if the
temperature of steel exceeds ADOthe strain rate becomes considerable. There are a number of
creep models available. In our research, théians-Leir model is chosen (Williams-Leir 1983).

The original model offers analytical expressions for viscous creep strain under constant stress anc
temperature. After an appropriate modification has been completed, the model can also be used fo
changing temperature and stress, se&i&(@000). Viscous creep stra. at the end of time step

[t t] is determined by the following equation

: : . 1. by
b,D% — tanh(b,D%) —b,D% * + tanh(b,DE ) —Ezﬂi,lbl(e)de = 0. (33)

The related viscous creep strain increment is given by
ADL = Dp-DE 1, (34)

where D5 is the viscous creep strain at tim&* , coefficiebtsand b, in (33) are given
functions of stress, temperature and some additional material constants to be determined by the
laboratory experiments. Parametgr= AT/At is the average rate of temperature change in a time
step. Non-linear Eq. (33) is solved numerically by Newton's method, while the integral in (33) is
evaluated numerically.

5. Numerical example

The proposed numerical method is verified by the comparison of numerical results to the results
of a full-scale laboratory test of a simply supported reinforced concrete beam exposed to the ASTM
119 standard fire load (Gustafered al. 1971). Geometric, material and loading data are given in
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e— 66.04 c —4

P,=31.97 KN/m
i ‘X~ 10.16 i ? | T
insulation 63.50 cm
hc= 0.8 seen
//. LN N ]
L ! A=8628.6mm” 4556

L=1220m

£, (20°C) = 4.075 kN/cm?
f, (20°C) =76.137 kN/cm®

Fig. 5 A simply supported beam (Gustafegetoal. 1971)

Fig. 5. In the experiment, the web of the beam was exposed to hot air with the temperature
changing according to the ASTM standard fire curve, allowing for the tolerance4°Gf The

flange was isolated from the bottom and lateraly, whereas the upper side of the flange was not
exposed to fire or isolated. The thermal properties of concrete and steel used in the experiment are
not given in Gustaferr@t al. (1971); therefore, these values are assumed to follow the European
standard ENV 1992-1-2 (1995) (see Egs. (8)-(10)). The heat transfer coefficient is assumed to be
h. = 25 W(m?°C) for the exposed surfaces, and= 9 W/(m?°C) for the upper surface. For the
isolated part of the flangd). is taken to be .8 W/(m?°C) (see Eq. (5)). The emissivity of the
concrete surface was not determined in the experiment and is here assumed to be=e5€r or

& = 0.3 (see Eg. (6)). The fire induced part of the surface heat tpnatid the solar radiation part

(g) was neglected and have no effect on temperaistebdtion.

It is further assumed that the heat transfer in the longitudinal direction is sufficiently small
compared to the heat transfer across the cross-section, so that it can be neglected. Consequent|
only the 2D transient heat conduction problem over a typical cross-section governed by partial
differential Eq. (1) is solved. A computer programme based on the finite element method is used
(Saje and Turk 1987). The cross-section is modelled by 796 four-node finite elements and 873
nodes (Fig. 6a), which we find to be sufficient for our purposes.

The beam is modelled by two beam finite elements described previously, for which the
extensional straing, and the pseudocurvature, are interpolated by the Lagrangian polynomials of
the fourth order, whereas the numerical integration along the element is performed by the five-point
Lobatto integration rule. The integration &f, M., and the cross-sectional tangent stiffnesses over
the cross-section is performed by the Gaussian integration (using Bitegration points) over 12
sectors (Fig. 6b).

The reduced value of emissivitg, = 0.3, gives better results for temperature development in time;
this is indicated in Fig. 7, where the temperatures in the least and the most exposed bars are shown

The actual time to failure as measured in experiment is 373 minutes, and the related vertical
displacement is 66 cm. If viscous effects in steel are neglected, and the reduced emissivity 0.3
employed, the nuerically estimated vertical displacement at 373 minutes is 52.77 cm (curve A in
Fig. 8), which is considerably better than the displacement 85.11 cm obtained for higher value of
emissivity 0.56 (the curve is not shown in Fig. 8).
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(a) (b)
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Fig. 6 (a) Finite element mesh for heat conduction analysis, (b) stress integration scheme over cross-section
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(b) The most exposed reinforcing bar

Fig. 7 Temperature increase in two reinforcement bars
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Fig. 8 Vertical displacement at the midspan of the beam

There are substantial disagreements in temperature time graphs between numerical and experiment
results at 10 (see Fig. 7). The experiments show that the temperature development is delayed
and it resumes the growing trend only after about 30 minutes. The differences between the
numerical and measured results is probably caused by the fact, that the structure was not oven-dr
before the experiment started. When the temperature of the concrete reacizdveder started to
evaporate, for which some amount of heat was consumed. The vapour which developed during the
evaporation could not escape from the concrete structure immediately, which prolonged the delay.
At this stage of our research, the coupled effect of vapour diffusion and heat conduction including
the effect of latent evaporation heat was not possible to be taken into account.

Therefore, in the subsequent numerical analyses, temperatures in the reinforcement bars are take
to be equal to those obtained by the experiment. Fig. 8 shows that, in this case, the calculatec
vertical displacement at the midspan virtually coincides with the measured one up to about 200
minutes (curves B, C, and D in Fig. 8). Afterwards, the agreement strongly depends on the type of
viscous creep in steel considered in the analysis.

If the viscous creep strains in steel are not accounted for/timate vertical disgcement at the
midspan is much underestimated - only 40.36 cm or 61% of the observed ultimeaieetispit 66
cm (curve B in Fig. 8). The parameters of viscous creep strain in steel were taken from Williams-
Leir (1983). We employed two types of steel. Using tammeters of medium viscous creep, steel
X-60, results in the midspan displacement of 108.23 cm at time 373 minutes (curve D in Fig. 8).
Using the parameters of steel Au 50 that exhibits small viscous creep, gives the ultimate midspan
displacement 65.27 cm at 373 minutes (curve C in Fig. 8) which agrees well with the
experimentally obtained values (373 minutes and 66 cm).

Fig. 9 shows the corresponding development of viscous strain for Au 50 steel in the reinforcement
bar which is the most exposed to fire. From Fig. 9 it is clearly seen that the viscous creep becomes
an important factor once the temperature in the reinforcement reaches abf@iaé200 minutes.

The related stress in the bar is also shown in Fig. 9.

Fig. 10 shows the distributions of the calculated emrajures, stresses, mechanical and geometric
strains in concrete in the midspan cross-section at time50 minutes. Due to the non-linear
distribution of temprature over the cross-section, considerable gradients of stresses in the cross-
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Fig. 9 Viscous strain, temperature and stress developement in the most exposed reinforcement bar
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Fig. 10 (a) Temperature distributions in midspan cross-sectiars 8 min PC], (b) stress distributions in
midspan cross-section &t 50 min [kNcn?], (c) mechanical strain distributions in midspan cross-
section at =50 min [%o], (d) geometric strain distributions in midspan cross-sectiba 3@ min [%o].

section occur, regardless of the fact that the structure is statically determinate. It is interesting to
observe the compressive stresses in concrete at tioenbpart of the cross-section of theam.
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6. Conclusions

This paper has provided a study of the numerical model for the non-linear analysis of a reinforced
concrete beam under fire. Since the interaction between the fire and the structure is a complicatec
process that is not yet well understood, the analysis is simplified by decomposing the numerical
procedure into three separate steps: (i) the determination of fire extent, fire temperature developmen
and duration of fire; (ii) the determination of the temperatus&ibution in the structure; (iii) the
mechanical analysis of the structure. The determination of fire extent was not the subject of the
paper. In the thermal analysis, it was assumed that the heat flow in the axial direction of the element
was small and performed only 2D thermal transient analysis over the cross-sections. In the
mechanical analysis the structure was modelled by high precision, newly developed geometrically-
exact planar beam finite elements. The geometric and material non-linearities were considered along
with the viscous creep deformation in steel induced by high temperatures.

A relatively good agreement between the numerical results and the results of the full-scale test is
obtained. Therefore, it is possible to conclude that the present rather simple 1D mechanical and 2C
thermal model seems satisfactory to describe the behaviour of reinforced concrete frames in fire.
Further calculations of statically indeterminant structures and their comparisons to full-scale
experiments will be addressed elsewh

From the comparison between the numerical and experimental results for temperature
development with time, it is clear that the effects of evaporization and vapour transport are very
important in concrete. As accurate temperature distributions are fundamental for the accuracy of the
mechanical analysis, the coupled vapour diffusion and heat conduction problem seems to be
required in the analysis of concrete in fire. The softening of concrete in fire conditions is self
evident. Its effect on the structural behaviour and, in particular, the appearance of localized zones
and the overall softening of the structure, are also very important. These issues will be addressec
elsewhere.
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