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Abstract. In order to consider the modified seismic response of framed structures in the presence of
masonry infills, proper models have to be formulated. Because of the complexity of the problem, a
careful definition of a diagonal pin-jointed strut, able to represent the horizontal force-interstorey
displacement cyclic law of the actual infill, may be a solution. In this connection the present paper shows
a generalized criterion for the determination of the ideal cross-section of the strut mentioned before. The
procedure is based on the equivalence between the lateral stiffness of the actual infilled frame scheme
during the conventional elastic stage of the response and the lateral stiffness of the same frame stiffenec
by a strut at the same stage. Unlike the usual empirical approaches available in the literature, the
proposed technique involves the axial stiffness of the columns of the frame more than their flexural
stiffness. Further, the influence of the bidimensional behaviour of the infill is stressed and, consequently,
the dependence of the dimensions of the equivalent pin-jointed strut on the Poisson ratio of the material
constituting the infill is also shown. The proposed approach is extended to the case of infills with
openings, which is very common in practical applications.

Key words: infilled frames; masonry infill; stiffening effect; simplified model; equivalent strut; identifi-
cation technique.

1. Introduction

The last three decades have witnessed a growing interest of the scientific community in the effects
of infill walls on the behaviour oframes. It is known that, even though infills are considered non-
structural, they radically modify the frame response under lateral loads.

It has been observed that, in a typical situation, an infill panel may stiframa laterally by one
order of magnitude and irgase its ultimate strength up to four times. These variations are
influenced by the system geometry and the mechanical characteristics of the material used for the
infill (masonry, reinforced concrete, etc.). Moreover, the frame-infill interaction depends on the
height of the infill, which can be partial with respect to that of the frame columns, on the presence
of windows or door apertures, on the ratio between the horizontal and vertical loads and the
technique used for making the infill.
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Fig. 1 Some effects of infill on RC frames: (a) soft drift mechanism, (b) column shear collapse for partial
height of infill, (c) infill saving RC frames

The interaction between infill and frame may or may not be beneficial to the performance of the
structure under seismic loads, as numerous debates and, most of all, experiences in recen
earthquakes have demonstrated.

In Fig. 1 some of the positive and negative effects of the infill in framed structures are shown.
Fig. 1(a) and Fig. 1(b) show collapse due to a soft drift mechanism and to shear effect on the
columns for partial height of the infill, respectively; instead, in Fig. 1(c) damage to the infill without
any damage to the structure can be observed.

Many codes give additional designeasures for new seismic structures in order to consider the
modified behaviour when infill is not taken into account in the calculus model, or suggest
introducing infill in the model itself. Further, taking infill into account may be basic in the
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Fig. 2 Infilled mesh: (a) frame-infill joint under horizontal loads on true system, (b) simplified scheme

retrofitting of existing RC structures in order to predict theal seismic vulnerality and to design
proper consolidation actions.

Historically, the attempts to evaluate the stiffening and the strengthening offered by infills or to
define simplified mechanical response laws have been preceded by experimental tests leading ftc
different solution criteria. Holmes (1961) was interested in infilled (steel) frames and, on the basis
of the experimental evidence (the detachment of the frame from the infill as shown in Fig. 2a),
proposed replacing the panel with an equivalent strut made of the same material, havingva width
equal to 1/3 of the infill diagonal length(Fig. 2b). The lateral strength of the system was obtained
by computing the horizontal component of the axial strength of the strut.

Subsequently, Stafford Smith (1966), after an experimental investigation on diagonally and
laterally loaded square infilled steel frames, developed the idea of the strut suggested by Holmes,
providing an empirical curve for the evaluation of its dimensions. The experimental and analytical
investigations showed a certain analogy between the frailiegohtact phenomenon and the
behaviour of a beam on an elastic foundation, so that theitefirof the nondimensional
parameter

Et
4EI;h

was proposed in order to characterise the column-infill contact length and, consequently, the
stiffness of the system.

In Eq. (1)t andh are the thickness and the height of the infill, respectivélis the height of the
frame, measured between the centrelines of the bdgns;the Young modulus of the infill while
E:; andl; are the Young modulus of the material constituting thené and the moment of inertia of
the cross-sectional area of the frame elements (beams and columns having the same dimensions).

The curve provided by Stafford Smith was based on experimental evidence and on the results of
several numerical investigations carried out by means of the finite difference method. It gives the
dimensionless parametevd for a fixed value ofAh'.

Referring to inilled frames subjected to vertical and lateral loads, Stafford Smith observed an
increase in the horizontal stiffness when a vertical load was applied as a consequence of the
increase of the length of contact of the beam on the infill, but no parameters were inserted in order
to take this phenomenon into account.

Ah' = h', (1)
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Fig. 3 Availablew/d againstAh' curves for square infilled frames

Later, Stafford Smith and Carter (1969) extended the concepts developed before to the case o
rectangular frames, defining the characterising parameter

E;tsin(26)
A = hr, =) 2
N 4E1h @

0 being the slope of the infill diagonal, obtained by the expres8ierarctg(h/¢), and I, the
moment of inertia of the columns.

Different curvesw/d-Ah" were defined with variation in the value of the sldpeFurther, the
influence of the infill stress state along the diagonal direction was considered in the evaluation of
due to the different secant stiffness observed with variation in the lateral load. So a set of curves
was derived, for different stress levels and fixed ratib. Comparing these curves with the one
provided by Stafford Smith (1966), it is noeal how the former are related to the latter. Note that
no analytical form of the curves mentioned before is provided so every comparison has to be
performed graphically, as is done in Fig. 3 for the case of square infilled frames.

Klingner and Bertero (1978), basing their work on the conclusions of Mainstone (1974), proposed
calculating the width of the strut equivalent to the infill for frames having proportions 2.4 (length)
against 1 (height) by means of the following expression:

w_
d

This value ofw/d allows one to calculate thmean lateral stiffness of the infilled frame before the
cracking of the infill. In the cases examined by Klingner and Bertero, unlike the more usual ones,
the infill was connected to the frame by means of proper reinforcement passing fronill thee thd
surrounding reinforced concrete frame. Nevertheless, comparing the widvdh' expressed by
Eq. (3) with the curves provided by Stafford Smith and Carter (1969) for an infill having the same
aspect ratio, one concludes that in the first case much lower stiffness of the system is obtained with

0.175Ah")** (3)
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respect to that expected in relation to the different framk-@ohnection (Fig. 4).
Durrani and Luo (1994), on the basis of the experimental work of Mainstone (1974), proposed the
following analytical relation for the evaluation of the width of the strut:

W 5 E'th’4 |]O.l
=4 - - L |
5 0.32sir (ZQ)DnD—ECIChD (4)
where
_ 6 otg e 0
m = 6%1+ narCthcZ’ 0 (5)

andl, is the moment of inertia of the beam cross-section. Fig. 5 shows the results provided by Eq. (4)
for square infilledframes with ¥I. = 1 and the ones given in Stafford Smith (1966) commented on
above. It is evident that there is good agreement.

With reference to a further approach relating itigal lateral stiffness of the equivalent strut to
the collapse condition of the system, in Saneinejad and Hobbs (1995) the dimensions of the strut are
assumed to be constant with variation in the stress level, while the initial value of the Young
modulus is assumed to be twice the secant modulus derived from the maximum resistance
condition. This criterion does not allow one to compare the cross-sectional dimensions of the strut
with those derived by Stafford Smith and Carter (1969) and by Mainstone (1971, 1974) varying
with the level of the diagonal stress. Nevertheless, if the comparison is made in terms of initial
lateral stiffness, very different values wifd are obtained.

This partial review of the experimental and analytical investigations shows that the results
obtained by different researchers are strongly influenced by the types of infill and test, and this
conclusion is confirmed by examining and comparing results of other researches (e.g. Bertero and
Brokken 1983, Valiasis and Stylianidis 1993, Panagiotakos and Fardis 1996, Mehrabi and Benson
Shing 1997, Madaet al. 1997) not commented on in detail for brevity’s sake. On the whole, it is
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possible to derive qualitative rather than quantitative considerations, without the possibility of

generalising the very different empirical expressions proposed for the evaluation of the lateral

stiffness for practical applications. Analogous comments can be made with reference to the
expressions which have been proposed for the evaluation of the lateral collapse load and for laws
modelling the hysteretic behaviour.

Referring to the possibility of obtaining generalised tools, the work presented in this paper is an
attempt to make a contribution to the definition of a general procedure folllimpdiee behaviour
of infilled frames to be adapted to any particular situation. In this first stage the elastic behaviour of
the system is studied in order to obtain the dimensions of the equivalent strut and define the first
branch of a more complex law for the prediction of the response under cyclic loads (ultimate load,
softening branch, hysteretic characteristics, etc).

In contrast with the available methods for the detertimnaof the width of the strut and the
definition of the lateral stiffness of the system, it is shown here that the cross-section of the strut
also depends on the axial stiffness of the elementsitimst the frame, especially the columns.

The analysis implies the resolution of thame-infill system by a so-called micromodel approach,
performed by adopting for the infill a discretization in agreement with the Boundary Element
Method. This method allows an easy and reliable resolution of the contact problem in the regions in
which frame and infill transmit compressive stress to each other. The shear stress in the same
regions is assumed to be governed by the Coulomb friction law, this assumption being different
from the constant distribution of normal andeah stresses considered by Saneinejad and Hobbs
(1995). Moreover, since the infill is considered to be a plate in plane stress state characterised by ai
elastic modulus and Poisson ratio, the width of the equivalent strut is also recognised to depend or
the latter parameter.

By using the same procedure as proposed for the evaluation of the strut equivalent to i#, full inf
the case of infill with a window opening is also analysed, relating the reduction in the lateral
stiffness to the dimensions of the window itself.

2. ldentification of equivalent pin-jointed strut

The identification of the section of the equivalent pin-jointed strut can be made by imposing the
condition that the initial stiffness of the actual system in Fig. 2(a) be equal to the initial stiffness of
the equivalent braced frame in Fig. 2(b); further parameters able to describe the nonlinear behaviout
of the panel will be defined in a subsequent study concerning adequate characteristics to be given t
the strut.

The response of the scheme in Fig. 2(a) can be obtained by using a micromodel approach in whict
every structural element is modelled maintaining its geometrical and mechanical features. Assuming
the columns to have the same dimensions and orientations in plane, in order to attain the anticipate
aim, a micromodel that formally reproduces the scheme shown in Fig. 6(a) is used here, while the
simplified model corresponding to the equivalent braced frame is reduced to the scheme in Fig. 6(b).
Note that columns of both schemes are constrained at the base. Hence these schemes do not exac
represent a generic mesh of a framed structure (as shown in Fig. 2) because the lower beam i
assumed to be rigid. Nevertheless, this assumption is in agreement with the conclusions of many
experimental tests, showing that the flexural stiffness of the beams does not influence the lateral
stiffness of the infilled mesh (Mainstone 1971, 1974, Stafford Smith and Carter 1969).
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Fig. 6 Structural schemes: (a) infilled mesh, (b) braced frame with equivalent strut

If the problem is first solved by means of a micromodelling approach and subsequently by means
of the simplified scheme in Fig. 6(b) (macromodelling approach) then, by imposing the equivalence
of the stiffnesses obtained from the two models, the dimension of the strut can be evaluated.
Therefore, denoting aPi ard the stiffnesses of the two different schemes, thaliton of
equivalence can be written as

D; = Di 6)

When this equivalence is imposed, assuming the Young modulus and the thickness of the strut tc
be the same as for theilhfthe width w of the strut can be determined, it being the only unknown
quantity.

It can be observed that the results which will be shown later are obtained by considering the panel
made of homogenous and isotropic material to be affected by the Young modulus value derived
from compression diagonal tests or correlated to that derived from a compression load acting
orthogonally to the bed joint direction by using an adequate reduction coefficient (Jones 1975). This
assumption, which could be removed, simplifies the micromodelling procedure, while maintaining
the same level of precision as the approaches desciosd.a

3. Lateral stiffness of equivalent braced frame

The lateral stiffness of the scheme in Fig. 6(b), equivalent to the scheme in Fig. 6(a), can be
evaluated with good approximation by imposing the condition that the horizontal forces to be
applied to the schemes in Fig. 7(b) and Fig. 7(c) produce unitary displacement of the ipoihe
middle span of the beam. It can easily be found that the following &jusf lateral stiffness is
obtained for the scheme in Fig. 7(b):

D, = kyco0s' 0 @

Kq 1ky -
1+ kcser126+ 4kbcos o
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Fig. 7 Decomposition of lateral stiffness of macromodel

where the following equivalencies hold:

Egdw  E A, E A,
d ' kC - h' ’ Z: (8)

In Eq. (8)ky, ke and k are the axial stiffnesses of the diagonal strut, of the columns and of the
beam, respectivel\Ey, E; are the Young modulus of the infill along the diagonal direction and the
Young modulus of the frame respectivelys the thickness of the infilly is the previously defined
width of the equivalent strufy, andA, are the cross-sectional areas of the columns and the Beam;
defines the diagonal direction as specified before; finallgnd ¢’ are the height and the length of
the frame in agreement with Fig. 6.

The lateral stiffnes®; of the frame in Fig. 7(c) can be simply evaluated using the expression

ky = ky =

= oqEr! Odo ﬁD
Dy = 24— FH - 15 o + ©)

wherel, andl, are the moments of inertia of the columns and the beam sections respectively. Hence
the global stiffness of the simplified scheme constituting treecdat frame in Fig. 7(a) can be
assumed to be:

Di = Df+ Dd (10)

4. Lateral stiffness of infilled frame
4.1 Modelling of the frame-infill system

The modelling of the infilled frame for the evaluation of the lateral stiffness is based on a different
discretization of the infill and of the frame. For the former the boundary element method (B.E.M.)
is used while for the latter the finite element method is applied. The typical discretizations adopted
are shown in Fig. 8. The bases of the columns (n&asd C) are fully constrained on the rigid
lower beam (the validity of this assumption has been better clarified in the previous sections) and
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Fig. 8 Micromodel approach: discretization of infilled frame

their deformations are defined as a function of the three degrees of freedom of eachmohtiues
belonging to the framem being the number of nodes that defines the beam and each of the two
columns.

The boundary of the infill is divided inton# elements having the same dimensions. By a
discretization technigue commonly used in the B.E.M., the corners are removed in the model,
considering two distinct nodes very close to the actual edges, one being in contact with the beam
and the other with the column. This strategy allows one to distinguish shear and normal stresses fol
these regions also, maintaining a good level of approximation in the results.

The infill is assumed to be a plate in plane stress state, made of homogeneous and isotropic
material, having elastic modulls; and Poisson rativ. The path of displacements and stresses
along the horizontal and vertical directions is assumed to be linear from the generic node to the
subsequent one. In agreement with this assumption, every frame element is modelled as s
Timoshenko beam so that, considering two consecutive nodes where infill and frame are in contact,
the compatibility of the displacements is ensured. lreemgent with the discretization adopted for
the infill, the nodal pointgn, m + 1 and 2n, 2m + 1 are connected by rigid elements. The horizontal
forces are concentrated at the nodes 1 and 2n marked in Fig. 8. The stresses transferred from
the infill to the frame (and vice versa) can be decomposed into a normal component and a
tangential component. Normal stresses are admitted only in the case of compression; in this
condition mutual tangential sliding of corresponding nodes belonging to the two sub-structures
occurs, and the mutual tangential stress can be calculated by means of the Coulomb friction law.
Therefore, denoting as the shear stress and the normal compressive stress, thdloWing
equation holds:

7| = uo (11)

U being the friction coefficient. On the other hand, when the assumption that corresponding nodes
are affected by the same normal displacement would lead to mutual normal tensile stress, complete
detachment between these nodes is considédegiously, the solving procedure proves to be
iterative. The next section shows the criterion by which each step can be carried out, with reference
also to the sign to be given to the stress Eq. (11).



684 M. Papia, L. Cavaleri and M. Fossetti

4.2 Solving iterative procedure

In the first step of the analysis all the nodes that define the infill (from inNf@a#e assumed to be
connected to the corresponding nodes that define the frame. In this condition, for the nodal points
from 1 to 3n five unknowns have to be calculated: two displacements, one rotation, and the mutual
normal and shear stresses. Therefore, considering that for the nodes numberegh frdnta34n
the displacements and the rotation must be considered to be null, the total number of unknowns is
5x3m + 2xm =17m. Further, 83m equilibrium equations for the nodes of thame and 24m
boundary integral equations for the infill are available; moreover, the coefficients of the boundary
integral equations can be expressed in closed form as a consequence of the degree fixed for th
shape functions of the displacements and stresses. Therefore, the first step of the analysis can &
performed without any difficulty. Among other things these first results give the lateral stiffness of
the system when a reliable frame-infill connection device has to be ewetkid

At the end of the first step the sign of the normal stress at each node must be checked. If a
normal compressive stress is found at the generic node of the columns and of the upper beam, i
the next step the unknowns at this node will be tangential displacement of the node considered a:
belonging to the infill; tangential displament of the node considered as belonging to the frame;
normal displacement of the node considered as belonging to the infill and the frame; rotation of the
node considered as belonging to the frame; normal stress. The mutual tangential stress is assumed
be known: its value is calculated lmyeans of Eqg. (11), where is the normal stress which was
found at the previous first stage; its sign remains #mesas at that stage. For nodes common to
the infill and to the rigid lower beam the following unknowns are assumed: tangential displacement
of the node considered as belonging to the infill; normal stresthidncase too the value of the
shear stress is evaluated as specified above.

For nodes where normal tensile stress is found, the infill and the frame will be considered
disconnected. Hence, if the node is one of those numbered fromni, theBunknowns will be the
two displacement components and the rotation of the node considered as belonging to the frame
and the two displacement components of the node considered as belonging to the infill. If the node
is one of those numbered froorm3 1 to 4m, the unknowns will be the two displacement
components of the node considered as belonging to the infill. In each of the two cases the mutual
stresses must be considered null.

What has just been said shows that both for mutual compression and mutual tension at the generi
node the whole number of unknown quantities to be determined in the next step of procedure
remains unvaried.

The following steps are characterised by verification of the normal stress in each node and of the
displacement compdiiity for the definition of the unknowns. ffame and infill are connected at a
node during the previous step (only tangential sliding is allowed) and mutual compression is found
again, the unknowns do not vary and the value of the shear stress is updated by using Eg. (11) an
assuming its sign in agement with the relative sliding; if frame and infill are connected in the
previous step and normal tensile stress is obtained, in the following step the frame and the infill will
be considered disconnected; if frame and infill are not connected at a node in the previous step anc
displacements producing penetration of the two sub-systems are obtained, in the following step infill
and frame will be considered as connected at this node. The criterion by which the solving
equations are reordered according to the unknowns to be determined is the same as in Papia (1988
where, however, different degrees of elements and contact laws were adopted.



Infilled frames: developments in the evaluation of the stiffening effect of infills 685

The numerical analysis shows that, if a proper discretization is adopted, the procedure converges
very rapidly, highlighting the part of the infill boundary whiobnrains connected to the frame.
Once the convergence is obtained, the lateral stiffbess of the system can be calculated by mean
of the ratio between the applied loBdand the average of the horizontal displacements obtained for
the nodes numbered from + 1 to 2m.

5. Cross-section of equivalent strut
By substituting the value @; obtained from Eg. (10) into Eq. (6), one obtains
Di = Dy+ Dy (12)
Further, by substituting Eq. (7) into Eqg. (12) thél ratio proves to be expressed by

w_ Di-D; O Di-Dypn’? +lk_c%
d  Eitcofen ke Ugz2 o 4k,

(13)

By evaluating the “exact” lateral stiffness of the system by the procedure described before, and
the bare frame stiffnedd; (Eq. (9)), the value oiv/d can be obtained by means of Eq. (13). The
bare frame stiffnes®; can be evaluated once the geometric features of the frame elements and the
mechanical charactstics of the materiahre known. If the procedure is repeated many times for
different elastic and geometrical features of the infilled frame, a correspondence between the actual
features of the generic infilled frame and the characteristics of the equivalent strut can be found.

Eq. (7) and Eqg. (9) can be simplified if the upper beam is considered flexurally and axially rigid
(this assumption would be in agreent with the effect of the slab), obtaining a simplified version
of Eg. (13). In any case it is not acceptable to neglect the axial deformability of the columns in the
evaluation ofDy.

Since the procedure is based on columns having the same cross-sections artrgriesizn
this condition is not verified, average values of moment of inertia and area of the columns have to
be assigned in order to obtain a structurally symmetrical ideal scheme like that considered in the
proposed approach. In this case the level of approximation in the results can be considered of the
same order as that achievable by other models available in the literature, like those discussed above

Once the investigation mentioned before is concluded, the direct evaluation of the width of the
strut, in agreement with the most widespread tendencies in the literature, requires the definition of a
parameteit” depending on the elastic and the geometric features of the system in such a way that a
function wtl = f (A") can be defined. In conclusion, the numerical investigatioried out by means
of an “exact” model must make it possible to define a direct relation betweenilled iinhme and
the equivalent braced frame, with a strong reduction in the computational effort for practical use in
the structural analysis.

6. Definition of parameter A

The definition of a parameter that, concisely and with good reliability, univocally defines the ratio
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w/d to be adopted for the simplified model, can be obtained by imposing the condition that the
difference Di —D; on the right side of Eq. (13) be the true lateral stiffdgssf the infill panel,
obtainable from the true load condition on the panel itself.

In order to linkD, to the elastic and geometrical characteristics of the panel, the loading scheme
shown in Fig. 9 can be considered. In this scheme the normal and shear stresses transmitted fror
the frame are assumed to decrease from the corners to the middle point of the panel sides, ir
agreement with a path experimentally recorded by several researchers and confirmed by the result
of the “exact” procedure proposed here, leading to a piece-wise linear sttabsittbn, in relation
to the degree of the stress functions adopted for the boundary elements.

The lateral stiffness of the panel is expressed by the ratio between the horizontal component of the
mutual resultant forceR(in the figure) and the relative displacement of the opposite corners of the
panel (pointsA andB), projected along the horizontal direction.

Considering that the material has been assumed to be elastic, homogeneous and isotropic anc
consequently, affected by behaviour only dependindgpandv, if the aspect ratio/ /h and v are
fixed, the stiffnes®, proves to be independent Bf proportional to the produét, and dependent
on the coefficients;, and ¢, marked in Fig. 9, which govern the directiorRof

Therefore, one can set

D, = (E (14)

where = (¢, ¢;) depends on the unknown extension of the frarilleeioifitact regions.
On the other hand, setting

< _ Egthrgh? 1A 20
A= EfAcDZ'2+4Ab h' O (15)
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Fig. 9 Distribution of stresses transmitted by frame to infill
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and considering Egs. (6) and (10), Eg. (13) can be written in the form

w__1 D, 1 __1 1 (16)
d  cofgBdt, Dp,» cofgEdl -
1 A A
Egt D,
which, introducing Eqg. (14), becomes

w 1 1

- = ——— a7)

d  cosoy™-2

As was stressed previously, the determination of the contact region extension was derived at first
by Stafford Smith (1966) by assuming an analogy with the foundation beam on the Winkler soil, but
considering experimental tests that do not reproduce the actual lateral lo&wesraf an infilled
frame, because they concerned squardleidfframes, made of members of equal sections, and,
above all, diagonally loaded. In these conditions, obviously, the flexural rather than the axial
stiffness of the frame members issotved; moreover, symmetric stress and strain states occur,
unlike the actual state of an infilledcafne under lateral loads.

Actually, further tests realizing a more appropriate load condition were carried out by the same
author afterwards (see also Stafford Smith and Carter 1969), but they only led him to conclude that
the dimensions of the beam cross-section do not influence the valud a$ much as the length of
the beam-irifl contact zone, which was assumed constant and equél to /2, independently of the
elastic and geometrical features of the infill and of the beams.

Although this conclusion should have made the proposed analogy insufficiently realistic and
reliable, it was assumed to be valid anyway, so that Eq. (2), derived from the subsequent studies
mentioned, is obtained from Eq. (1), by characterising the flexural stiffness of the frame only by
means of the inertia moment of the sections of the columns, in addition to considering the different
geometry of the infill by means of the andle

The comments above concerning the feeble criterion by which the extension of the frame-infill
contact regions is determined suggest attempting to correlate this extepsaonl §, in Fig. 9) to
the axial stiffness of the columns rather than to their flexural stiffness, also considering that the
former is involved at least as much as the latter in the deformed shape of the structural scheme ir
Fig. 7(a). Therefore, it is reasonable to foresee that schemes characterised by the same parameter
are affected by the same valuepf= f(¢n, ¢,), even if this value is unknown.

Under these hypotheses, Eq. (17) shows that, for assigned valué¢h cdind v, a curve
w/d = f()\*) can be searched for in a numerical way, by using the “exact’” solving method
discussed before. The resolution of different schemes featuring the same value of the parameter
(Eg. (15)) will show the validity of the previous assumptions if valuesviof which are close
enough are found for these schemes.

Finally, it must be observed that if the beam is assumed to be axially rigid, the expression of the
parameterA” is simplified by assumingd, — o . Nevertheless, by analysing Eg. (15), one can
observe that in any case the dimensions of the beam cross-section do not meaningfully influence the
width of the equivalent strut, and this confirms what was stressed by the authors cited above.
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7. Validity of the role of A

In order to confirm the validity of the approach based on the parametiefined in the previous
section, several infilledrames have been analysed by the “exact” procedure, considering different
values of the terms that define the paraméteibut maintaining unvaried an assigned value of this
parameter. After very close values wid have been found usingg. (13), a new value of has
been assigned, again varying the quantities definingabrding to Eq. (15), and so forth.

The analysis has been carried out for squar#sirfhspect ratio//h = 1) and rectangular infills
with aspect ratioZ/h = 1.5, while four values of the Poisson ratio for the infill have been
consideredv = 0, 0.15, 0.30, 0.45.

On the other hand, some data have been maintained constant for every numerical test: thickness c
the section of the beam and columns (2%5®); Poisson ratio for the material constituting the frame
(vs = 0.15); shear factor for the section of beam and columns (1.2) (this factor is requested by the
Timoshenko theory on beam elements); friction coefficiewtefining the ratio between normal and
shear stresses in the contact regions, assumed to be equal to 0.45.

With reference to the latter parameter, it can be observed that the value adopted is the same a
was proposed in Saneinejad and Hobbs (1995) and suggested by the ACI Code 530.1-92 (1992) i
the case of masonry infill. Nevertheless, some numerical tests have been repeated, also assuming f
U the values 0.30 and 0.60. As a result, it has been recognised that the cogffigietite range of
the values considered, does not meaningfully influence the valu®; of . This occurrence is
accounted for by the fact that a different ratio between normal and shear mutual stresses can neithe
modify the resultant force transmitted from the frarReirf Fig. 9), nor substantially change its
direction.

The ranges of variation fixed for the geometrical parameters that concur to thtodedihA™ are
expressed in millimetres as follows:

- 300< H,<600;

- 250<H,<700;

- 2250< h<5500;

- 125<t<250;

Hy andH, being the height of the cross-sections of the beam and columns respectively. The range
of variation fixed for the ratio between the Young modulus of the two materidls s/ E4< 10

As a consequence of the previous assumptions, valugs aimprised between 0.35 and 13.30
and between 0.20 and 10.10 have been obtained from Eq. (15f/iocr1 and ¢/h = 1.5,
respectively. _

It must be observed that the values of lateral stiffridss obtained by varying the aforementioned
structural parameters prove to be comprised between 90 and 500 kN/mm, denoting the generality o
the results obtained. _

Once the values of the stiffneBs are known by means of the “exact” analysis, the vallges of
are obtained by means of Eq. (13), and for fixvegind Z/h, the dependence of these values only on
the parameted” defined by Eq. (15) is also verified.

The results of the numerical analysis are shown in Fig. 10 for infilledes with square infills,
and in Fig. 11 for rectangular infills(h £ 1.5).

For clarity's sake the results obtained for= 0.15 have not been included; however, they are
absolutely consistent with those shown in the figures, obtained#0d, v = 0.30 andv = 0.45.
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The values ofw/d obtained by the numerical investigation can be fitted by the analytical
expression:

FRly (19
where
C = 0.249- 0.0116 + 0.567/° (19)
B = 0.146+ 0.007%+ 0.126/° (20)
m if  ¢/h=1

z=0 (21)

M.125 if ¢/h=15

For practical applications, Eq. (18) allows the evaluation of the contribution of the infill to the
lateral stiffness of the generic mesh of a framed structure without any computational effort.

8. Reliability of proposed model

Considering the different definition of the pareterA” with respect to parameters having the
same role defined by other authors, a comparison has been made between thédrabtsined by
the “exact” procedure described above, by Eq. (18) and by the curve provided by Stafford Smith
(1966).
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Table 1w/d ratios from different approaches

“Exact solution” Proposed model Stafford Smith (1966)
Case Di Y wid Ah'
(kN/mm) wid [Eq. 14] [Eq. 18] [Eq. 1] wid
1 112 0.242 1.20 0.242 4.00 0.268
2 93 0.238 1.30 0.239 6.20 0.217

Since the substantial difference in the definition of the paranetghe corresponding parameter
is Ah" in Eqg. (1) or in Eqg. (2)) lies in the fact that the axial stiffness of the columns is here
considered more basic than their flexural stiffness, the comparison is made considering two infilled
frames differing in having columns with the same-crossigedut oriented diérently, in such a
way the axial stiffness does not change while the flexural stiffness changes significantly.

With reference to the symbols defined in this paper, the following data are common to the two
examples considered: dimensions of the upper beam cross-secti®60@60n); E;= 30000 MPa,

Vi = 0.15; h = ¢ = 500 cm;t = 250 mm; E; = 3500 Mpa,v = 0. The cross-sections of the
columns are assumed to be 2600mm in the first case and 6£@50mm in the second one.

The results are summarised in Table 1. It must be observed that for both cases the walue of
deduced from the “exact” procedure, are calculated by means of Eq. (13) by introducing the value
of Di derived from the scheme in Fig. 8 and the valu®:oévaluated by means of Eq. (9). Since
this method is affected by the approximation expressed by Eqg. (10) and represented in Fig. 7, the
reliability of the values o#/d has been tested by solving in both cases the braced frame in Fig. 7(a)
and by verifying that the values obtained for the lateral stiffness proved to be very close to those
(Di) inserted in Table 1.

The examples considered show the optimal level of precision obtainable with the model adopted
and the reliability of the proposed parameter

9. Lateral stiffness of infills with openings

Openings in infill panels can produce a meaningful loss of lateral stiffness, but studies on this
specific aspect of the problem are very limited. Some results and referenct®wrein (Hendry
1998) but definitive conclusionsre not available. Results of numerical investigations are presented
here, showing that the loss of stiffness due to the opening can be correlated with the ratio betweer
the dimensions of the opening itself and the ones of the infill. Specifically, a reduction factor of the
section of the equivalent strut, denoted &g the following, is obtained for the correction of Eq. (18).

The investigation has been limited to the case of openings havingiiee aspect ratio of the
panel (//h) and centred with respect to the frame. Under these hypotheses a single parameter car
be used for the characterisation of the opening; it has been assumed to be the ratio between one
the dimensions of the opening and the corresponding dimension of the panel.

The modelling of the system for the “exact” evaluation of the stiffiiess ree@gnt with the
procedure described in the previous sections, is not modified for the frame and the boundary of the
panel; but now the number of unknowns isnl¥ 2n, n being the number of the nodal points along
the boundary of the opening. The new @nknowns, which do not change at each step of the
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Fig. 12 Micromodel approach: discretization of frame with opened infill
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Fig. 13 Reduction in lateral stiffness of infilled

procedure, are the components of the displacements of the new nodes along the vertical anc
horizontal directions; on the other hand firther integral equations are available at the internal

boundary of the panel.

With reference to this new boundary, it must be observed that only one node is required for each
corner since only unknown displacements have to be calculated, unlike the external boundary, where
stress components can be unknown; therefore, the typical mesh adopted for this analysis is tha

shown in Fig. 12.

The updating of the first 1i7 unknowns, referring to the external boundary of the panel, has to be
performed as explained in Sien 4. From the numerical point of view it is worth noting that the
greater deformalify of the panel with openings allows a higher extension of the contact zones and
makes the computational effort to calculate the “exact” stiffness of the system bigger, due to a

higher number of iterative steps.
The investigation has beerarcied out again for infill having geometrical ratio§ /h=1 and
2 [h = 1.5, considering the previous four different values of the Poisson ratio for the infill.

frames with centered square openings
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Fig. 15 Comparison of results shown in Fig. 13 and Fig. 14

The results show that the reduction factoonly depends on the parameig&fi.e. r = f(¢))
defining the size of the opening: = h/h = ¢, /¢, h, and ¢, being the dimensions of the
opening itself. This conclusion is clearly shown in Fig. 13 and Fig. 14, which refer to the cases of
square infills and rectangular infills, respectively. It is possible to note that the reductionrfactor
does not substantially depend on the valua ahd on the value of .

Further, the comparison between the results in Figs. 13 and 14 highlights the fact that the
geometry of the infill panel (defined by thé/h ratio) does not influence the lateral stiffness loss
either, so a single law=f(&) can be defined, as shown in Fig. 15.

For practical application& usually proves to be in the range 0.2-0.7; it can easily be verified that
in this field the polynomial expression gfmarked in Fig. 15, can be replaced by the straight line

r=124- 1% (22)

10. Conclusions

The stiffening effect of infill panels on a generic mesh of a framed structure has been discussed.
Then an analytical procedure for the identification of a pin-jointed strut equivalent to the infill has
been proposed, and some functions for the practical evaluation of the characteristics of the strut
have been provided, sumarising the numerical relssi

In the paper it is shown that the cross-section size of the strut can be derived as a function of a
single parameter depending on the charastiesi of the mesh and the infill.

Since this function approximates results of an “exact” solution scheme, it can be used for each
kind of infiled mesh, overcoming the limit of many analogous curves given in the literature,
obtained by means of empirical approaches and applicable only to specific cases.

The procedure has also been extended to the case of infills with centred openings, showing tha
the reduction in the lateral stiffness can be related exclusively to the size of the opening itself, at
least for theZ /h ratios of the panels considered.

Finally, it is worth remarking that the modelling performed here reveals that the calibration of the
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equivalent strut can be related to the axial stiffness of the columns, unlike what is usually stated in
the literature, where only a dependence on their flexural stiffness is underlined.
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