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Abstract. In order to consider the modified seismic response of framed structures in the prese
masonry infills, proper models have to be formulated. Because of the complexity of the probl
careful definition of a diagonal pin-jointed strut, able to represent the horizontal force-inters
displacement cyclic law of the actual infill, may be a solution. In this connection the present paper 
a generalized criterion for the determination of the ideal cross-section of the strut mentioned befor
procedure is based on the equivalence between the lateral stiffness of the actual infilled frame 
during the conventional elastic stage of the response and the lateral stiffness of the same frame 
by a strut at the same stage. Unlike the usual empirical approaches available in the literatu
proposed technique involves the axial stiffness of the columns of the frame more than their fl
stiffness. Further, the influence of the bidimensional behaviour of the infill is stressed and, conseq
the dependence of the dimensions of the equivalent pin-jointed strut on the Poisson ratio of the m
constituting the infill is also shown. The proposed approach is extended to the case of infills
openings, which is very common in practical applications.

Key words: infilled frames; masonry infill; stiffening effect; simplified model; equivalent strut; ident
cation technique.

1. Introduction

The last three decades have witnessed a growing interest of the scientific community in the 
of infill walls on the behaviour of frames. It is known that, even though infills are considered n
structural, they radically modify the frame response under lateral loads. 

It has been observed that, in a typical situation, an infill panel may stiffen a frame laterally by one
order of magnitude and increase its ultimate strength up to four times. These variations 
influenced by the system geometry and the mechanical characteristics of the material used 
infill (masonry, reinforced concrete, etc.). Moreover, the frame-infill interaction depends on
height of the infill, which can be partial with respect to that of the frame columns, on the pre
of windows or door apertures, on the ratio between the horizontal and vertical loads an
technique used for making the infill.
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The interaction between infill and frame may or may not be beneficial to the performance 
structure under seismic loads, as numerous debates and, most of all, experiences in
earthquakes have demonstrated. 

In Fig. 1 some of the positive and negative effects of the infill in framed structures are s
Fig. 1(a) and Fig. 1(b) show collapse due to a soft drift mechanism and to shear effect 
columns for partial height of the infill, respectively; instead, in Fig. 1(c) damage to the infill with
any damage to the structure can be observed.

Many codes give additional design measures for new seismic structures in order to consider
modified behaviour when infill is not taken into account in the calculus model, or sug
introducing infill in the model itself. Further, taking infill into account may be basic in 

Fig. 1 Some effects of infill on RC frames: (a) soft drift mechanism, (b) column shear collapse for p
height of infill, (c) infill saving RC frames 
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retrofitting of existing RC structures in order to predict their real seismic vulnerability and to design
proper consolidation actions.

Historically, the attempts to evaluate the stiffening and the strengthening offered by infills 
define simplified mechanical response laws have been preceded by experimental tests lea
different solution criteria. Holmes (1961) was interested in infilled (steel) frames and, on the
of the experimental evidence (the detachment of the frame from the infill as shown in Fig
proposed replacing the panel with an equivalent strut made of the same material, having a ww
equal to 1/3 of the infill diagonal length d (Fig. 2b). The lateral strength of the system was obtain
by computing the horizontal component of the axial strength of the strut.

Subsequently, Stafford Smith (1966), after an experimental investigation on diagonally
laterally loaded square infilled steel frames, developed the idea of the strut suggested by H
providing an empirical curve for the evaluation of its dimensions. The experimental and ana
investigations showed a certain analogy between the frame-infill contact phenomenon and the
behaviour of a beam on an elastic foundation, so that the definition of the nondimensional
parameter 

(1)

was proposed in order to characterise the column-infill contact length and, consequentl
stiffness of the system.

In Eq. (1) t and h are the thickness and the height of the infill, respectively; h' is the height of the
frame, measured between the centrelines of the beams; Ei is the Young modulus of the infill while
Ef and If are the Young modulus of the material constituting the frame and the moment of inertia o
the cross-sectional area of the frame elements (beams and columns having the same dimens

The curve provided by Stafford Smith was based on experimental evidence and on the res
several numerical investigations carried out by means of the finite difference method. It give
dimensionless parameter w/d for a fixed value of λh'. 

Referring to infilled frames subjected to vertical and lateral loads, Stafford Smith observe
increase in the horizontal stiffness when a vertical load was applied as a consequence 
increase of the length of contact of the beam on the infill, but no parameters were inserted in
to take this phenomenon into account.

λh′ h′ Eit
4Ef I f h
-----------------4=

Fig. 2 Infilled mesh: (a) frame-infill joint under horizontal loads on true system, (b) simplified scheme
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Later, Stafford Smith and Carter (1969) extended the concepts developed before to the 
rectangular frames, defining the characterising parameter 

(2)

θ being the slope of the infill diagonal, obtained by the expression θ = arctg( ), and Ic the
moment of inertia of the columns. 

Different curves w/d-λh' were defined with variation in the value of the slope θ. Further, the
influence of the infill stress state along the diagonal direction was considered in the evaluationw,
due to the different secant stiffness observed with variation in the lateral load. So a set of 
was derived, for different stress levels and fixed ratio /h. Comparing these curves with the on
provided by Stafford Smith (1966), it is not clear how the former are related to the latter. Note t
no analytical form of the curves mentioned before is provided so every comparison has 
performed graphically, as is done in Fig. 3 for the case of square infilled frames.

Klingner and Bertero (1978), basing their work on the conclusions of Mainstone (1974), pro
calculating the width of the strut equivalent to the infill for frames having proportions 2.4 (len
against 1 (height) by means of the following expression:

(3)

This value of w/d allows one to calculate the mean lateral stiffness of the infilled frame before th
cracking of the infill. In the cases examined by Klingner and Bertero, unlike the more usual 
the infill was connected to the frame by means of proper reinforcement passing from the infill to the
surrounding reinforced concrete frame. Nevertheless, comparing the curve w/d-λh' expressed by
Eq. (3) with the curves provided by Stafford Smith and Carter (1969) for an infill having the 
aspect ratio, one concludes that in the first case much lower stiffness of the system is obtain

λh′ h′ Eit 2θ( )sin
4Ef Ich

--------------------------4=

h�⁄

�

w
d
---- 0.175 λh′( )0.4

=

Fig. 3 Available w/d against λh' curves for square infilled frames
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respect to that expected in relation to the different frame-infill connection (Fig. 4).
Durrani and Luo (1994), on the basis of the experimental work of Mainstone (1974), propos

following analytical relation for the evaluation of the width of the strut:

(4)

where

(5)

and Ib is the moment of inertia of the beam cross-section. Fig. 5 shows the results provided by 
for square infilled frames with Ib/Ic = 1 and the ones given in Stafford Smith (1966) commented
above. It is evident that there is good agreement.

With reference to a further approach relating the initial lateral stiffness of the equivalent strut t
the collapse condition of the system, in Saneinejad and Hobbs (1995) the dimensions of the s
assumed to be constant with variation in the stress level, while the initial value of the Y
modulus is assumed to be twice the secant modulus derived from the maximum res
condition. This criterion does not allow one to compare the cross-sectional dimensions of th
with those derived by Stafford Smith and Carter (1969) and by Mainstone (1971, 1974) va
with the level of the diagonal stress. Nevertheless, if the comparison is made in terms of 
lateral stiffness, very different values of w/d are obtained. 

This partial review of the experimental and analytical investigations shows that the r
obtained by different researchers are strongly influenced by the types of infill and test, an
conclusion is confirmed by examining and comparing results of other researches (e.g. Berte
Brokken 1983, Valiasis and Stylianidis 1993, Panagiotakos and Fardis 1996, Mehrabi and B
Shing 1997, Madan et al. 1997) not commented on in detail for brevity’s sake. On the whole, 

w
d
---- 0.32sin1.5 2θ( )

Eith′4

mEcIch
----------------- 

 
0.1

=

m 6 1
6
π
---arctg

Ibh′
I c�′
------------+ 

 =

Fig. 4 Available w/d against λh' curves for rectangular
infilled frames ( /h = 2.4) �

Fig. 5 Comparison of w/d against λh' curves for
square infilled frames
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possible to derive qualitative rather than quantitative considerations, without the possibili
generalising the very different empirical expressions proposed for the evaluation of the 
stiffness for practical applications. Analogous comments can be made with reference 
expressions which have been proposed for the evaluation of the lateral collapse load and f
modelling the hysteretic behaviour.

Referring to the possibility of obtaining generalised tools, the work presented in this paper
attempt to make a contribution to the definition of a general procedure for modelling the behaviour
of infilled frames to be adapted to any particular situation. In this first stage the elastic behavi
the system is studied in order to obtain the dimensions of the equivalent strut and define th
branch of a more complex law for the prediction of the response under cyclic loads (ultimate
softening branch, hysteretic characteristics, etc). 

In contrast with the available methods for the determination of the width of the strut and the
definition of the lateral stiffness of the system, it is shown here that the cross-section of th
also depends on the axial stiffness of the elements constituting the frame, especially the columns. 

The analysis implies the resolution of the frame-infill system by a so-called micromodel approac
performed by adopting for the infill a discretization in agreement with the Boundary Ele
Method. This method allows an easy and reliable resolution of the contact problem in the reg
which frame and infill transmit compressive stress to each other. The shear stress in the
regions is assumed to be governed by the Coulomb friction law, this assumption being di
from the constant distribution of normal and shear stresses considered by Saneinejad and Ho
(1995). Moreover, since the infill is considered to be a plate in plane stress state characterise
elastic modulus and Poisson ratio, the width of the equivalent strut is also recognised to dep
the latter parameter. 

By using the same procedure as proposed for the evaluation of the strut equivalent to a fuill,
the case of infill with a window opening is also analysed, relating the reduction in the la
stiffness to the dimensions of the window itself.

2. Identification of equivalent pin-jointed strut

The identification of the section of the equivalent pin-jointed strut can be made by imposin
condition that the initial stiffness of the actual system in Fig. 2(a) be equal to the initial stiffne
the equivalent braced frame in Fig. 2(b); further parameters able to describe the nonlinear be
of the panel will be defined in a subsequent study concerning adequate characteristics to be 
the strut.

The response of the scheme in Fig. 2(a) can be obtained by using a micromodel approach i
every structural element is modelled maintaining its geometrical and mechanical features. Ass
the columns to have the same dimensions and orientations in plane, in order to attain the ant
aim, a micromodel that formally reproduces the scheme shown in Fig. 6(a) is used here, wh
simplified model corresponding to the equivalent braced frame is reduced to the scheme in Fig
Note that columns of both schemes are constrained at the base. Hence these schemes do n
represent a generic mesh of a framed structure (as shown in Fig. 2) because the lower b
assumed to be rigid. Nevertheless, this assumption is in agreement with the conclusions o
experimental tests, showing that the flexural stiffness of the beams does not influence the
stiffness of the infilled mesh (Mainstone 1971, 1974, Stafford Smith and Carter 1969). 
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If the problem is first solved by means of a micromodelling approach and subsequently by 
of the simplified scheme in Fig. 6(b) (macromodelling approach) then, by imposing the equiva
of the stiffnesses obtained from the two models, the dimension of the strut can be eva
Therefore, denoting as  and Di the stiffnesses of the two different schemes, the condition of
equivalence can be written as

(6)

When this equivalence is imposed, assuming the Young modulus and the thickness of the 
be the same as for the infill, the width w of the strut can be determined, it being the only unkno
quantity.

It can be observed that the results which will be shown later are obtained by considering the
made of homogenous and isotropic material to be affected by the Young modulus value d
from compression diagonal tests or correlated to that derived from a compression load 
orthogonally to the bed joint direction by using an adequate reduction coefficient (Jones 1975
assumption, which could be removed, simplifies the micromodelling procedure, while mainta
the same level of precision as the approaches described above.

3. Lateral stiffness of equivalent braced frame

The lateral stiffness of the scheme in Fig. 6(b), equivalent to the scheme in Fig. 6(a), c
evaluated with good approximation by imposing the condition that the horizontal forces 
applied to the schemes in Fig. 7(b) and Fig. 7(c) produce unitary displacement of the point P in the
middle span of the beam. It can easily be found that the following value Dd of lateral stiffness is
obtained for the scheme in Fig. 7(b):

(7)

D i

Di D i=

Dd

kdcos2θ

1
kd

kc

----sen2θ 1
4
---

kd

kb

----cos2θ+ +

----------------------------------------------------------=

Fig. 6 Structural schemes: (a) infilled mesh, (b) braced frame with equivalent strut
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where the following equivalencies hold:

(8)

In Eq. (8) kd, kc and kb are the axial stiffnesses of the diagonal strut, of the columns and o
beam, respectively; Ed, Ef are the Young modulus of the infill along the diagonal direction and 
Young modulus of the frame respectively; t is the thickness of the infill; w is the previously defined
width of the equivalent strut; Ac and Ab are the cross-sectional areas of the columns and the beaθ
defines the diagonal direction as specified before; finally, h' and  are the height and the length o
the frame in agreement with Fig. 6. 

The lateral stiffness Df of the frame in Fig. 7(c) can be simply evaluated using the expression

(9)

where Ic and Ib are the moments of inertia of the columns and the beam sections respectively. 
the global stiffness of the simplified scheme constituting the braced frame in Fig. 7(a) can be
assumed to be:

(10)

4. Lateral stiffness of infilled frame

4.1 Modelling of the frame-infill system

The modelling of the infilled frame for the evaluation of the lateral stiffness is based on a diff
discretization of the infill and of the frame. For the former the boundary element method (B.
is used while for the latter the finite element method is applied. The typical discretizations ad
are shown in Fig. 8. The bases of the columns (nodes B and C) are fully constrained on the rigi
lower beam (the validity of this assumption has been better clarified in the previous section

kd

Edtw

d
------------; kc

Ef Ac

h′
------------= ; kb

Ef Ab

�′
------------= =

�′

Df 24
Ef Ic

h′3
---------- 1 1.5 3

I b

I c

---- h′
�′
------- 2+ 

 
1–

– 
 =

Di Df Dd+=

Fig. 7 Decomposition of lateral stiffness of macromodel
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their deformations are defined as a function of the three degrees of freedom of each of the 3m nodes
belonging to the frame, m being the number of nodes that defines the beam and each of the
columns.

The boundary of the infill is divided into 4m elements having the same dimensions. By
discretization technique commonly used in the B.E.M., the corners are removed in the m
considering two distinct nodes very close to the actual edges, one being in contact with the
and the other with the column. This strategy allows one to distinguish shear and normal stres
these regions also, maintaining a good level of approximation in the results.

The infill is assumed to be a plate in plane stress state, made of homogeneous and is
material, having elastic modulus Ed and Poisson ratio ν. The path of displacements and stress
along the horizontal and vertical directions is assumed to be linear from the generic node 
subsequent one. In agreement with this assumption, every frame element is modelled
Timoshenko beam so that, considering two consecutive nodes where infill and frame are in c
the compatibility of the displacements is ensured. In agreement with the discretization adopted fo
the infill, the nodal points m, m + 1 and 2m, 2m + 1 are connected by rigid elements. The horizon
forces are concentrated at the nodes m + 1 and 2m marked in Fig. 8. The stresses transferred fro
the infill to the frame (and vice versa) can be decomposed into a normal component 
tangential component. Normal stresses are admitted only in the case of compression; 
condition mutual tangential sliding of corresponding nodes belonging to the two sub-stru
occurs, and the mutual tangential stress can be calculated by means of the Coulomb frictio
Therefore, denoting as τ the shear stress and σ the normal compressive stress, the following
equation holds:

(11)

µ being the friction coefficient. On the other hand, when the assumption that corresponding 
are affected by the same normal displacement would lead to mutual normal tensile stress, co
detachment between these nodes is considered. Obviously, the solving procedure proves to b
iterative. The next section shows the criterion by which each step can be carried out, with ref
also to the sign to be given to the stress τ in Eq. (11).

τ µσ=

Fig. 8 Micromodel approach: discretization of infilled frame 
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4.2 Solving iterative procedure

In the first step of the analysis all the nodes that define the infill (from 1 to 4m) are assumed to be
connected to the corresponding nodes that define the frame. In this condition, for the nodal
from 1 to 3m five unknowns have to be calculated: two displacements, one rotation, and the m
normal and shear stresses. Therefore, considering that for the nodes numbered from 3m + 1 to 4m
the displacements and the rotation must be considered to be null, the total number of unkno
5x3m + 2xm = 17m. Further, 3x3m equilibrium equations for the nodes of the frame and 2x4m
boundary integral equations for the infill are available; moreover, the coefficients of the bou
integral equations can be expressed in closed form as a consequence of the degree fixed
shape functions of the displacements and stresses. Therefore, the first step of the analysis
performed without any difficulty. Among other things these first results give the lateral stiffne
the system when a reliable frame-infill connection device has to be considered. 

At the end of the first step the sign of the normal stress at each node must be checke
normal compressive stress is found at the generic node of the columns and of the upper b
the next step the unknowns at this node will be tangential displacement of the node consid
belonging to the infill; tangential displacement of the node considered as belonging to the fra
normal displacement of the node considered as belonging to the infill and the frame; rotation
node considered as belonging to the frame; normal stress. The mutual tangential stress is ass
be known: its value is calculated by means of Eq. (11), where σ is the normal stress which wa
found at the previous first stage; its sign remains the same as at that stage. For nodes common
the infill and to the rigid lower beam the following unknowns are assumed: tangential displace
of the node considered as belonging to the infill; normal stress. In this case too the value of the
shear stress is evaluated as specified above. 

For nodes where normal tensile stress is found, the infill and the frame will be consi
disconnected. Hence, if the node is one of those numbered from 1 to 3m, the unknowns will be the
two displacement components and the rotation of the node considered as belonging to the
and the two displacement components of the node considered as belonging to the infill. If th
is one of those numbered from 3m + 1 to 4m, the unknowns will be the two displacemen
components of the node considered as belonging to the infill. In each of the two cases the 
stresses must be considered null.

What has just been said shows that both for mutual compression and mutual tension at the 
node the whole number of unknown quantities to be determined in the next step of proc
remains unvaried.

The following steps are characterised by verification of the normal stress in each node and
displacement compatibility for the definition of the unknowns. If frame and infill are connected at a
node during the previous step (only tangential sliding is allowed) and mutual compression is 
again, the unknowns do not vary and the value of the shear stress is updated by using Eq. (
assuming its sign in agreement with the relative sliding; if frame and infill are connected in t
previous step and normal tensile stress is obtained, in the following step the frame and the in
be considered disconnected; if frame and infill are not connected at a node in the previous s
displacements producing penetration of the two sub-systems are obtained, in the following ste
and frame will be considered as connected at this node. The criterion by which the s
equations are reordered according to the unknowns to be determined is the same as in Papia
where, however, different degrees of elements and contact laws were adopted.
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The numerical analysis shows that, if a proper discretization is adopted, the procedure con
very rapidly, highlighting the part of the infill boundary which remains connected to the frame
Once the convergence is obtained, the lateral stiffness  of the system can be calculated by
of the ratio between the applied load F and the average of the horizontal displacements obtained
the nodes numbered from m + 1 to 2m.

5. Cross-section of equivalent strut

By substituting the value of Di obtained from Eq. (10) into Eq. (6), one obtains 

(12)

Further, by substituting Eq. (7) into Eq. (12) the w/d ratio proves to be expressed by

(13)

By evaluating the “exact” lateral stiffness of the system  by the procedure described befor
the bare frame stiffness Df (Eq. (9)), the value of w/d can be obtained by means of Eq. (13). T
bare frame stiffness Df can be evaluated once the geometric features of the frame elements a
mechanical characteristics of the material are known. If the procedure is repeated many times 
different elastic and geometrical features of the infilled frame, a correspondence between the
features of the generic infilled frame and the characteristics of the equivalent strut can be foun

Eq. (7) and Eq. (9) can be simplified if the upper beam is considered flexurally and axially
(this assumption would be in agreement with the effect of the slab), obtaining a simplified versi
of Eq. (13). In any case it is not acceptable to neglect the axial deformability of the columns 
evaluation of Dd.

Since the procedure is based on columns having the same cross-sections and orientation, when
this condition is not verified, average values of moment of inertia and area of the columns h
be assigned in order to obtain a structurally symmetrical ideal scheme like that considered
proposed approach. In this case the level of approximation in the results can be considered
same order as that achievable by other models available in the literature, like those discussed

Once the investigation mentioned before is concluded, the direct evaluation of the width 
strut, in agreement with the most widespread tendencies in the literature, requires the definitio
parameter λ* depending on the elastic and the geometric features of the system in such a way
function w/d = f (λ*) can be defined. In conclusion, the numerical investigation carried out by means
of an “exact” model must make it possible to define a direct relation between the infilled frame and
the equivalent braced frame, with a strong reduction in the computational effort for practical u
the structural analysis.

6. Definition of parameter λλλλ*

The definition of a parameter that, concisely and with good reliability, univocally defines the 

Di

Di Dd Df+=

w
d
----

Di Df–

Edt cos2θ
----------------------- 1
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--------- 1
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w/d to be adopted for the simplified model, can be obtained by imposing the condition tha
difference  on the right side of Eq. (13) be the true lateral stiffness Dp of the infill panel,
obtainable from the true load condition on the panel itself.

In order to link Dp to the elastic and geometrical characteristics of the panel, the loading sc
shown in Fig. 9 can be considered. In this scheme the normal and shear stresses transmitt
the frame are assumed to decrease from the corners to the middle point of the panel s
agreement with a path experimentally recorded by several researchers and confirmed by the
of the “exact” procedure proposed here, leading to a piece-wise linear stress distribution, in relation
to the degree of the stress functions adopted for the boundary elements.

The lateral stiffness of the panel is expressed by the ratio between the horizontal componen
mutual resultant force (R in the figure) and the relative displacement of the opposite corners o
panel (points A and B), projected along the horizontal direction.

Considering that the material has been assumed to be elastic, homogeneous and isotro
consequently, affected by behaviour only depending on Ed and ν, if the aspect ratio /h and ν are
fixed, the stiffness Dp proves to be independent of R, proportional to the product Edt, and dependent
on the coefficients ςh and  marked in Fig. 9, which govern the direction of R.

Therefore, one can set

(14)

where  depends on the unknown extension of the frame-infill contact regions.
On the other hand, setting

(15)

Di Df–

�

ς�

Dp ψEdt=

ψ f ς( h ς�),=

λ* Ed

Ef

----- th′
Ac

------ h′2

�′2
--------- 1

4
---

Ac

Ab

-----�′
h′
-------+ 

 =

Fig. 9 Distribution of stresses transmitted by frame to infill
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and considering Eqs. (6) and (10), Eq. (13) can be written in the form

(16)

which, introducing Eq. (14), becomes

(17)

As was stressed previously, the determination of the contact region extension was derived 
by Stafford Smith (1966) by assuming an analogy with the foundation beam on the Winkler so
considering experimental tests that do not reproduce the actual lateral load conditions of an infilled
frame, because they concerned square infilled frames, made of members of equal sections, a
above all, diagonally loaded. In these conditions, obviously, the flexural rather than the 
stiffness of the frame members is involved; moreover, symmetric stress and strain states oc
unlike the actual state of an infilled frame under lateral loads. 

Actually, further tests realizing a more appropriate load condition were carried out by the 
author afterwards (see also Stafford Smith and Carter 1969), but they only led him to conclud
the dimensions of the beam cross-section do not influence the value of w/d as much as the length o
the beam-infill contact zone, which was assumed constant and equal to /2, independently 
elastic and geometrical features of the infill and of the beams.

Although this conclusion should have made the proposed analogy insufficiently realistic
reliable, it was assumed to be valid anyway, so that Eq. (2), derived from the subsequent 
mentioned, is obtained from Eq. (1), by characterising the flexural stiffness of the frame on
means of the inertia moment of the sections of the columns, in addition to considering the di
geometry of the infill by means of the angle θ. 

The comments above concerning the feeble criterion by which the extension of the frame
contact regions is determined suggest attempting to correlate this extension (ςh and  in Fig. 9) to
the axial stiffness of the columns rather than to their flexural stiffness, also considering th
former is involved at least as much as the latter in the deformed shape of the structural sch
Fig. 7(a). Therefore, it is reasonable to foresee that schemes characterised by the same paraλ*

are affected by the same value of , even if this value is unknown.
Under these hypotheses, Eq. (17) shows that, for assigned values of /h and ν, a curve

 can be searched for in a numerical way, by using the “exact” solving me
discussed before. The resolution of different schemes featuring the same value of the paramλ*

(Eq. (15)) will show the validity of the previous assumptions if values of w/d which are close
enough are found for these schemes. 

Finally, it must be observed that if the beam is assumed to be axially rigid, the expression 
parameter λ* is simplified by assuming . Nevertheless, by analysing Eq. (15), one 
observe that in any case the dimensions of the beam cross-section do not meaningfully influe
width of the equivalent strut, and this confirms what was stressed by the authors cited above.

w
d
---- 1

cos2θ
-------------

Dp

Edt
------- 1

1
Dp

Edt
-------λ*–

---------------------- 1

cos2θ
------------- 1

Edt

Dp

------- λ*
–

-------------------= =

w
d
---- 1

cos2θ
------------- 1

ψ 1– λ*
–

-------------------=

�

ς�

ψ f ς( h ς�),=
�

w d⁄ f λ*( )=

Ab ∞→



688 M. Papia, L. Cavaleri and M. Fossetti

rent
is

en

ness of
e
by the
d

ame as
992) in
ming for

ce is
 neither
s

 range
. 

0

tioned
rality of

of 
on

re
7. Validity of the role of λλλλ*

In order to confirm the validity of the approach based on the parameter λ* defined in the previous
section, several infilled frames have been analysed by the “exact” procedure, considering diffe
values of the terms that define the parameter λ*, but maintaining unvaried an assigned value of th
parameter. After very close values of w/d have been found using Eq. (13), a new value of λ* has
been assigned, again varying the quantities defining it according to Eq. (15), and so forth. 

The analysis has been carried out for square infills (aspect ratio /h = 1) and rectangular infills
with aspect ratio /h = 1.5, while four values of the Poisson ratio for the infill have be
considered: ν = 0, 0.15, 0.30, 0.45.

On the other hand, some data have been maintained constant for every numerical test: thick
the section of the beam and columns (250 mm); Poisson ratio for the material constituting the fram
(νf = 0.15); shear factor for the section of beam and columns (1.2) (this factor is requested 
Timoshenko theory on beam elements); friction coefficient µ defining the ratio between normal an
shear stresses in the contact regions, assumed to be equal to 0.45.

With reference to the latter parameter, it can be observed that the value adopted is the s
was proposed in Saneinejad and Hobbs (1995) and suggested by the ACI Code 530.1-92 (1
the case of masonry infill. Nevertheless, some numerical tests have been repeated, also assu
µ the values 0.30 and 0.60. As a result, it has been recognised that the coefficient µ, in the range of
the values considered, does not meaningfully influence the value of . This occurren
accounted for by the fact that a different ratio between normal and shear mutual stresses can
modify the resultant force transmitted from the frame (R in Fig. 9), nor substantially change it
direction. 

The ranges of variation fixed for the geometrical parameters that concur to the definition of λ* are
expressed in millimetres as follows: 

-
-
-
-

Hb and Hc being the height of the cross-sections of the beam and columns respectively. The
of variation fixed for the ratio between the Young modulus of the two materials is 

As a consequence of the previous assumptions, values of λ* comprised between 0.35 and 13.3
and between 0.20 and 10.10 have been obtained from Eq. (15) for /h = 1 and /h = 1.5,
respectively.

It must be observed that the values of lateral stiffness  obtained by varying the aforemen
structural parameters prove to be comprised between 90 and 500 kN/mm, denoting the gene
the results obtained.

Once the values of the stiffness  are known by means of the “exact” analysis, the values w/d
are obtained by means of Eq. (13), and for fixed ν and /h, the dependence of these values only 
the parameter λ* defined by Eq. (15) is also verified.

The results of the numerical analysis are shown in Fig. 10 for infilled frames with square infills,
and in Fig. 11 for rectangular infills ( /h = 1.5).

For clarity’s sake the results obtained for ν = 0.15 have not been included; however, they a
absolutely consistent with those shown in the figures, obtained for ν = 0, ν = 0.30 and ν = 0.45.

�

�

Di

300 Hb 600;≤ ≤
250 Hc 700;≤ ≤
2250 h 5500;≤ ≤
125 t 250;≤ ≤

1 Ef≤ Ed 10≤⁄

� �

Di

Di
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The values of w/d obtained by the numerical investigation can be fitted by the analyt
expression:

(18)

where

(19)

(20)

(21)

For practical applications, Eq. (18) allows the evaluation of the contribution of the infill to
lateral stiffness of the generic mesh of a framed structure without any computational effort.

8. Reliability of proposed model

Considering the different definition of the parameter λ* with respect to parameters having th
same role defined by other authors, a comparison has been made between the ratios w/d obtained by
the “exact” procedure described above, by Eq. (18) and by the curve provided by Stafford 
(1966). 

w
d
---- c

z
-- 1

λ*( )
β

------------=

C 0.249 0.0116ν– 0.567ν2+=

β 0.146 0.0073ν 0.126ν2+ +=

z
1 if � h⁄ 1=

1.125  if � h⁄ 1.5=



=

Fig. 10 Numerical values of w/d with variation in λ∗

and fitting curves for square infills 
Fig. 11 Numerical values of w/d with variation in λ∗

and fitting curves for rectangular infills 
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Since the substantial difference in the definition of the parameter λ* (the corresponding paramete
is λh' in Eq. (1) or in Eq. (2)) lies in the fact that the axial stiffness of the columns is 
considered more basic than their flexural stiffness, the comparison is made considering two 
frames differing in having columns with the same-cross section but oriented differently, in such a
way the axial stiffness does not change while the flexural stiffness changes significantly. 

With reference to the symbols defined in this paper, the following data are common to th
examples considered: dimensions of the upper beam cross-section (250x600 mm); Ef = 30000 MPa,
νf = 0.15;  h =  = 500 cm; t = 250 mm; Ed = 3500 Mpa, ν = 0. The cross-sections of the
columns are assumed to be 250x600 mm in the first case and 600x250 mm in the second one.

The results are summarised in Table 1. It must be observed that for both cases the valuew/d,
deduced from the “exact” procedure, are calculated by means of Eq. (13) by introducing the
of  derived from the scheme in Fig. 8 and the value of Df evaluated by means of Eq. (9). Sinc
this method is affected by the approximation expressed by Eq. (10) and represented in Fig.
reliability of the values of w/d has been tested by solving in both cases the braced frame in Fig
and by verifying that the values obtained for the lateral stiffness proved to be very close to
( ) inserted in Table 1.

The examples considered show the optimal level of precision obtainable with the model ad
and the reliability of the proposed parameter λ*. 

9. Lateral stiffness of infills with openings

Openings in infill panels can produce a meaningful loss of lateral stiffness, but studies o
specific aspect of the problem are very limited. Some results and references are shown in (Hendry
1998) but definitive conclusions are not available. Results of numerical investigations are prese
here, showing that the loss of stiffness due to the opening can be correlated with the ratio b
the dimensions of the opening itself and the ones of the infill. Specifically, a reduction factor o
section of the equivalent strut, denoted as r in the following, is obtained for the correction of Eq. (18)

The investigation has been limited to the case of openings having the same aspect ratio of the
panel ( /h) and centred with respect to the frame. Under these hypotheses a single parame
be used for the characterisation of the opening; it has been assumed to be the ratio betwee
the dimensions of the opening and the corresponding dimension of the panel.

The modelling of the system for the “exact” evaluation of the stiffness , in agreement with the
procedure described in the previous sections, is not modified for the frame and the boundary
panel; but now the number of unknowns is 17m + 2n, n being the number of the nodal points alon
the boundary of the opening. The new 2n unknowns, which do not change at each step of 

�

Di

Di

�

Di

Table 1 w/d ratios from different approaches

Case
“Exact solution” Proposed model Stafford Smith (1966)

 
(kN/mm)

w/d λ*

[Eq. 14]
w/d

[Eq. 18]
λh'

[Eq. 1]
w/d 

1 112 0.242 1.20 0.242 4.00 0.268
2 93 0.238 1.30 0.239 6.20 0.217

Di
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procedure, are the components of the displacements of the new nodes along the vertic
horizontal directions; on the other hand 2n further integral equations are available at the intern
boundary of the panel.

With reference to this new boundary, it must be observed that only one node is required fo
corner since only unknown displacements have to be calculated, unlike the external boundary
stress components can be unknown; therefore, the typical mesh adopted for this analysis
shown in Fig. 12.

The updating of the first 17m unknowns, referring to the external boundary of the panel, has t
performed as explained in Section 4. From the numerical point of view it is worth noting that th
greater deformability of the panel with openings allows a higher extension of the contact zones
makes the computational effort to calculate the “exact” stiffness of the system bigger, due
higher number of iterative steps. 

The investigation has been carried out again for infill having geometrical ratios /h = 1 and
/h = 1.5, considering the previous four different values of the Poisson ratio for the infill. 

�

�

Fig. 12 Micromodel approach: discretization of frame with opened infill

Fig. 13 Reduction in lateral stiffness of infilled
frames with centered square openings 

Fig. 14 Reduction in lateral stiffness of infilled
frames with centered rectangular open
ings
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The results show that the reduction factor r only depends on the parameter ξ (i.e. r = f(ξ))
defining the size of the opening: ξ = hv/h = / , hv and  being the dimensions of th
opening itself. This conclusion is clearly shown in Fig. 13 and Fig. 14, which refer to the cas
square infills and rectangular infills, respectively. It is possible to note that the reduction facr
does not substantially depend on the value of n and on the value of λ*.

Further, the comparison between the results in Figs. 13 and 14 highlights the fact th
geometry of the infill panel (defined by the /h ratio) does not influence the lateral stiffness lo
either, so a single law r = f (ξ) can be defined, as shown in Fig. 15.

For practical applications ξ usually proves to be in the range 0.2-0.7; it can easily be verified 
in this field the polynomial expression of r, marked in Fig. 15, can be replaced by the straight line

(22)

10. Conclusions

The stiffening effect of infill panels on a generic mesh of a framed structure has been disc
Then an analytical procedure for the identification of a pin-jointed strut equivalent to the infil
been proposed, and some functions for the practical evaluation of the characteristics of th
have been provided, summarising the numerical results.

In the paper it is shown that the cross-section size of the strut can be derived as a functi
single parameter depending on the characteristics of the mesh and the infill.

Since this function approximates results of an “exact” solution scheme, it can be used fo
kind of infilled mesh, overcoming the limit of many analogous curves given in the litera
obtained by means of empirical approaches and applicable only to specific cases. 

The procedure has also been extended to the case of infills with centred openings, showi
the reduction in the lateral stiffness can be related exclusively to the size of the opening its
least for the /h ratios of the panels considered.

Finally, it is worth remarking that the modelling performed here reveals that the calibration o

�v � �v

�

r 1.24 1.7ξ–=

�

Fig. 15 Comparison of results shown in Fig. 13 and Fig. 14 
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equivalent strut can be related to the axial stiffness of the columns, unlike what is usually sta
the literature, where only a dependence on their flexural stiffness is underlined.
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