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Abstract. In this paper, multi-story buildings with shear-wall structures and with narrow rectangular
plane configuration are modeled as a multi-step flexural-shear plate with varying cross-section for
buckling analysis. The governing differential equation of such a plate is established. Using appropriate
transformations, the equation is reduced to analytically solvable equations by selecting suitable expressions
of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear plate
with variable stiffness are derived for several cases. A new exact approach that combines the transfel
matrix method and closed from solution of one-step flexural-shear plate with continuously varying
stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A numerical
example shows that the present methods are easy to implement and efficient.
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1. Introduction

Buckling is a primary consideration in the design of many structures, as it may reduce the load-
carrying capacity. Buckling of structures depends on many factors and parameters, including those
defining the structural deformation characteristics, the structural geometry, the material properties,
the support and restraint conditions and the external load action. Thus, the appropriate selection o
buckling analysis model should be made based on these factors and parameters mentioned abov
Experimental results obtained in the field measurements of buildings (e.g., Wang 1978, Li et al.
1994, Jeary 1997) have shown that for a multi-story frame building with narrow rectangular plane
configuration (narrow building), e.g., B/L < 1/4, where B and L are the width and length of the
rectangular plane, respectively, shear deformation is usually dominant in the total deformation in its
horizontal vibration. They reported that not only a relative motion among transverse frames is
parallel, but also a parallel relative motion among floors is observed. The whole transverse
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Fig. 1 A multi-step flexural-shear plate

deformation of a narrow frame building is similar to that of a cantilever shear plage @Li1998,

Li 2000a). Thus, when analyzing free vibration and buckling of a narrow fiauilding, it is
possible to regard such a structure as a cantilever shear plate. However, ahogdiog with
shear-wall structures may not be simplified as a shear plate for structural dynamic or buckling
analysis. This is due to the fact that it has been recognized that the flexural deformation of shear-
walls is dominant in the total lateral deformation of such a narrow building with shear-walls. It was
reported (e.g. Liet al. 1996, Li 2000b) that in general a relative motion among transverse shear-
walls is parallel, because the main deformation of each floor in-plane is shear deformation, and a
relative motion among floors is not parallel, but rotation. Thus, the whole transverse deformation of
a narrowbuilding with shear-walls is similar to that of a cantilever flexuralesiplate. Hence, it is
reasonable to treat a narrdwilding with shear-wall structures as a cantilever flexurahsiplate

for vibration and buckling analysis, that is, the shear deformation is dominant in the longitudinal
direction (thex-direction in Fig. 1) and the flexural deformation is dominant in the lateral direction.

In general, the distribution of flexural stiffness of shear-walls is stepwise variation along the height
of the building, thus, it is reasonable to treat a natvaiding with shear-wall structures as a multi-

step cantilever flexural-shear plate with variably distributed stiffness for buckling analysis.

The buckling of plates is a subject of considerablensiie and practical irdrest that has been
studied extensively (e.g., Timoshenko and Gere 1961, Reddy 1998). However, there are very few
equations for buckling of plates with variable cross-section where exact solutions can be obtained.
These exact buckling solutions for shear plates or flexural plates are available only for certain plate
shapes and boundary conditions. For example, Wittrick and Ellen (1962) studied the buckling of
rectangular plates with two opposite edges simply supported and the other two simply supported or
clamped. Linear and exponential thickness variations in one direction were considered in their study.
Chehil and Dua (1973) investigated the buckling of simply suppoetedngular plates with a linear
thickness variation in one direction. Kobayashi and Sonoda (1989) presented an exact method tc
solve the buckling problem of uniaxially compressexttangular plates with linearly tapered
thickness analytically. Liewet al (1996) derived analytical buckling solutions for Mindlin plates
involving free edgesRkecently, Xiang and Reddy (2001) presented exact solutions for free vibration
and buckling of rectangular plates with intermediate line-supports using the Levy method. It should
be mentioned that the concept and analytical model of the flexural-shear plates, which were recently
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proposed by Li (1999, 2000b, 2000c), are different from those of flexural plates or shear plates. The
buckling of multi-step flexural-shear plate with varying cross-section has not previously been
investigated and thus, the solution of this problem has not been proposed yet in the literature.

Apart from the several analytical methods for analyzing limited classes of plates, many
approximate methods have been developed. For example, Liew and Wang (1992) conducted &
buckling analysis of plates with straight/curved internal supports under uniform compression using
the pb-2 Rayleigh-Ritz method. Wareg al (1994) presented numerical buckling solutions for
isotropic inplane loaded Mindin plates of regular polygonal, elliptical, semicircular and annular
plates.

In this paper, multi-story buildings with shear-wall structures and wvatihow rectangular plane
configuration are modeled as a multi-step flexural-shear plate with varying cross-section for
buckling analysis. An attempt is made here to establish and solve the governing differential equation
for buckling of one-step and multi-step flexurakah plates with varying stiffness. Exponential
functions and power functions are adopted to describe the distribution of flskffredss and the
exact solutions of the governing differential equation are given by means of Bessel functions and
trigonometric functions. It is proved that a flexural-shear plate with free-free end conditions in the
longitudinal direction, where the shear deformation is dominant, can be simplified by a flexural bar
in buckling analysis. Numerical example shows that it is possible to simplify a multi-step flexural-
shear plate with step varying distributions of stiffness as a one-step flexeaal-plate with
continuously varying stiffness for buckling analysis.

The main purpose of this work is to present exact solutions and to propose an efficient analytical
method for the buckling analysis of multi-step flexuradahplates with variable stiffness. In the
absence of the exact solutions, this problem may be solved using approximated methods (e.g., the
Ritz method) or numerical methods (e.g., the finite element method). However, the present exact
solutions could provide adequate insight into the physics of the problem and can be easily
implemented. The availability of the exact solutions will help in examiningatiweiracy of the
approximate or numerical solutions. Therefore, it is always desirable to obtain the exact solutions to
such problems.

2. Theory

A multi-step flexural-shear plate is shown in Fig. 1. The axial force of-thestep plateN;, is
given by

N; = iakq 1)
k=i

wherea is directly acted on the top of tlkeh step plate.

In order to establish the governing differential equation for buckling ofi-thestep plate, an
infinitesimal element of the-th step plate is taken, as shown in Figs. 2 and 3. Fig. 2 shows the
element that is rotated through an angle df @0projection of the element shown in Fig. 2 on the
y-z plane is presented in Fig. 3. The size of the elemedkisdy. Considering the equilibrium
condition in thez-axis for all the forces acting on the element leads to
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whereQ, andQ,; are the shear forces acting on the element (see Fig. 2).
Using the equilibrium equation of moment of the forces acting on the element abadxise
gives

oM, oW,
SM. =0, Q= N 3)

where W is the displacement of the plate in thdirection at the pointx( y), My; is the bending
moment about the-axis.
As is well known, the bending-curvature relation is given by (see Fig. 3)

Myi = —Ky|_2 (4)
whereKy; is the transverse flexural stiffness in ghdirection.
As discussed previously, the deformation in tkdirection is shear deformation only, one yields

- k.M
Qxi - Kxi X (5)

whereK,; is the transverse shear stiffness inttdirection.
Substituting Egs. (3), (4) and (5) into Eq. (2) gives

oxO ox O E% dyD Io'?yz

It is assumed th&, is only a function ofy as follows

on, MWp &0 dZWD BN ©)

Kii = Kigi(y) (7)
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BecauseK, is mainly dependent on the size and material properties of building floors, and the
stiffness distribution of each floor is usually approximately uniform alongttiesection, thus, this
assumption is reasonable for most narrow buildings.

Using the method of separation of variables gives

Wi(x,y) = Xi(x)Yi(y) (8)
Substituting Eq. (8) into Eq. (6) leads to
& Godvo | dY,
Ki—= B dy2D 4 dyZD "dy?
Xi Yioi(y)

The left hand side of the above equation is a functianasfd the right hand side is a function of
y. Thus, both sides should be equal to a constant. It is assumed that the constgf)t th€n, two
ordinary differential equations are obtained from Eq. (9) as follows

Kd—X+aX—0 (10)

dx?

(9)

20 0 2
du<dY Nd—Y+a,¢(y)Y—0 (11)

ayn " ayd ay

In general, Eq. (10) should be solved first. It is easy to find the general solution of Eq. (10) as
follows

Xi(x) = Cysingjx+ C,cosax (12)
where
az
2 _ 4
a; K| (13)

A narrow building treated as a flexural-shear plate has free-free end conditionsxidiretion,
i.e. the shear forces are zero at the free-free end conditions

dX
dx

whereL is length in the longitudinal direction of the plate.
Using Egs. (12) and (14) gives the eigenvalue equation as

singL = 0 (15)

=0 at x=0 and x=L (14)

or

a; = (=1 (16)

in which &; represent the value af corresponding to theth mode of buckling.
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The minimuma; is equal to zero whejn= 1, the corresponding mode of buckling is
Xy(X) = constant (17)

This constant can be taken as any value, usually taken as 1.

It is evident that a flexural-shear plate with free-free end itiond in the x-direction can be
simplified as a flexural bar in thgdirection for buckling analysis. In this case,= 0, Eq. (11)
becomes

20 d YD d?y,
d y2D<y. +N— =0 (18)

dy2D dy’

This equation can be rewritten in terms of Eq. (4) as follows

d*M,; N,
d_yzw + K_;iMyi =0 (29)

The general solution of this equation can be expressed as

My = Dy Sii(y) + D2iSi(y) (20)

where S;i(y) and S;(y) are linearly independent solutions of Eq. (19) &nd D, are constants of
integration. It is obvious tha;(y) and S;(y) are dependent on the expressiorKpf Several cases
are considered and discussed dovs:

Case 1K = Ky = constant (21)

If the flexural stiffness of theth step plate is constant, then

S0 = sin [Rby, 5,0 = cos 1Ly 22

Y
Case 2K, = ae (23)

wherea; and 3 are parameters that can be determined by the values of the flexural stiffness at the
critical sections of theé-th step plateH is the height of the plate.
Substituting Eg. (22) into Eq. (19) and setting
By
n=e" (24)
one obtains a Bessel equation, the two linearly independent solutions are as

& v _ANH?
Su(y) = ™S Su(y) = Yo 25 A= f

The exact solutions for other six types of distribution&pfare also derived and are presented in
the Appendix of this paper.

(25)
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After S;(y) andS;(y) are found, differentiating Eqg. (20) obtains

Myi(y) = Dy; Sii (Y) + D Sy (Y) B
f i Dy 0 (26)
8,i(y) = D1181T(iy) + DZiSZTfy)"‘ WIE

Egs. (20) and (26) can be expressed as a matrix equation as follows

6,i(y) Dy
My(y)| = [Wi()]1|D, (27)
M;/i(Y) Doi
in which
Si(y) Sa(y) 1
Wy = | oo NN (28)
' Suy)  Sa(y)
Si(y)  Su(y)

The relationship between the parameters introdubesleaat the two ends of theh step can be
expressed as

68,i(Yi1) 6,i(Yio)
Myi(yid) | = [Ti] Myi(Vio) (29)
Myi(Yi1) Myi (Yio)
in which
[T] = [Wi(Yi)[Wilyio)] ™ (30)

[Ti] is called the transfer matrix because it transfers the parameters at the tenithose at the end
yi1 of thei-th step.

The relationships of the parameters between ittie step and thei ¢ 1) step plate at the
connection section are as

8,i(Yio) = Oyi-1y(Yi-n1)

OOoO;

Myi(Yio) = Myi-n(Yi-1)1) o (31)
Myi(Yio) = Myi_qy + (Ni=Ni_1) 6 1y(Yi-1y1) [
Applying Eqg. (31) to the end of the€ 1)-th step and that of theh step leads to
0yi(Yi1) Oyi-1(Yi-11)
Myi(Yid) | = [Tin] Myi-1)(Yi-1)1) (32)

Myi (Yi1) Myi—1y (Yi-11)
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in which
1 0
[Tin] = 0 1 [Tl (33)
Ni—-N;_; 0 1

The relationship between the parameters of kth step and those of the first step can be
established by using Eqgs. (32) and (29) repeatedly as follows

Byn(Yn1) 0y1(Y10)
Myn(Yn1) | = [T] My (Y10) (34)
My (Yni) My1 (Y10)
where
[T] = [Tand[Tnognd - [Ton] [T4] (35)
and [T] has the form as
Tll T12 T13
[T] =T T2 Ta (36)
T31 T32 T33

The elementd; (i, ] = 1, 2, 3) can be found from Eq. (35)
The boundary conditions in thedirection are as follows

6,1(Y10) = 0. Mys(¥10) =0, My,(Yny) =0 (37)

Substituting Egs. (37) into Eq. (34) gives

eyn(ynl) 0
0 = [T1My1(y10) (38)
Myn(Yn1) 0
From the above equation, one yields
T25Mya(y0) = O (39)

BecauseM,;(Y;0) #0 , we have,
T,=0 (40)

This is the eigenvalue equation of a multi-step cantilever flexural-shear plate with free-free end
conditions in thex-direction, settingh = 1 gives that of a one-step plate. Obviously, the eigenvalue
equation is a transcendental one. The minimum eigenvalue root of buckling can be found by using a
trial method.
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3. Numerical example
A residence building with narrow rectangular plane configuration located in Beijing has 24 stories.

Fig. 4 shows a sketch of this building. There are six shear-walls in each storey (Fig. 4b). Although
this building looks like a one-step plate, the distribution of stiffness of which is stepwise variation

ya q

66m

(a) Perspective drawing
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[Note: The dotted line and the values in parentheses are the evaluated results by using Eq. (44)]
Fig. 4 A narrow building
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(Fig. 4c) due to the shear-walls with varying thickness along the building height. The procedure for
determining the critical buckling force of the narrow building is as follows:

3.1 Calculation model

From the distribution of the stiffness (Fig. 4c), it is assumed that this building caeabedtas a
four-step cantilever flexural-shear plate with free-free end conditions ir-divection for buckling
analysis and four constant linear distributed axiakcds are acted on the top of each step,
respectively.N; is the equivalent axial force of thdh step plate, an®l, = g, N3 = Ny +q, N, =
N3 +0, Nt =Nz +q.

In order to apply the method proposed in this paper to the buckling analysis of this building, the
step varying distribution of flexural stiffness is approximated by a continuously varying one (see
Fig. 4c).

3.2 Determination of the flexural stiffness K,

The total flexural stiffness of the six shear-walt$,, of the first step (from the first storey to the
sixth storey) is found as
El, = 4.64x 10° N-n’
The total flexural stiffness of the second step (from the seventh storey to the twelfth storey) is
found as
El, = 3.84x 10° N-n’
The total flexural stiffness of the third step (from the thirteenth storey to the eighteenth storey)
and the fourth step (from the nineteenth to twenty-fourth storey) are found as
3.07x 10% N-n?
2.32x 10° N-n?

El,
El,

The stiffness of the first, second, third and fourth skgp,Ki», Ki3, Ki4 are the values dly, El,,
Els, El, divided by the length of the plate (i.e., the length of this building) as follows
El

Tl = 7.73x 10°N'-m, Ky, = 6.4x 10° N-m,

Kis = 5.12x 10°N-m, K,,=3.87x 10°N-m

Ky =

3.3 Determination of the shear stiffness, K,;, in the x-direction

The shear stiffness in thedirection of thei-th step,Ky, is the value of the shear stiffness of the
i-th floor, GF, divided by the storey height.

Because the stiffnes§F, for each floor of this building is a constant, i@.(y) in Eq. (7) is
equal to 1GF is found as 7.8 x FON, we have
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K, = K, = M = 2.8x 10 N/m

In fact, it is not necessary to determiKg, because this building is treated as a four-step
cantilever flexural-shear plate with free-free end awmas in the x-direction, as discussed
previously, such a kind of plate can be replaced by a four-step cantilever baryhditaetion for
buckling analysis.

3.4 Determination of the transfer matrix

The transfer matrix for this example is found as
[T] = [Tan][Tan][Ton][ T4l (41)

where
[Tn] is given by Eq. (33), i.e.,
1 0 0
[Tl = | 0 1 0[W(y)lIWiyi)l™ (42)
N-N_, 0 1

Y11 = Y20 =163 Yo =Y30=33, VY31 =VYs0=493 Y, =66

Y10 = 0,
BecauseK, = Ky (i = 1, 2, 3, 4), the special solutions are given by Eq. (22), and the matrix
[Wi()] is as
1

(43)

1 cos & — 1 sin & -
KaN oKy KNS Wik, N
_ . N N
[Wi(y)] = N N
st}Zy cosJ;y
&COS & — &COS &
L AN Ky Kliy Kii Kliy ]

3.5 Determination of the eigenvalue equation
Using Egs. (41), (42) and (43) obtaing,[the eigenvalue equation is Eq. (40). It is evident that

o

the unknown variable is only.
Solving the eigenvalue equation obtains the critical distributed axial force
Jer = 1.93x 10 N-m

Becausey is a constant linear distributed axial force, the critical buckling force is

Qe [L = 1.158x 16 N
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If the step varying distribution of flexural stiffness is approximated by a continuously varying one
described by

K, = a(l+ By)° (44)

and it is assumed that all distributed axiatés are acted on the top of thigilding.
Then,a, B, b can be determined Wy, andK,,4 as follows
3 1 2
a = Ky = 7.73x 10° N-m, p=3 b=3 v=%
The eigenvalue equation is also Eq. (40), et 1 in which.T,, for this case can be determined
from Eqg. (20) and Eg. (A-5) in the appendix as well as the boundary conditionsyditteetion as
follows

3 3
(Ao, 4N, a0 _ 4 40,70, (8o
J_émg DJ_§D3 tg= J§D3 [# D‘J%DQ,D (45)
where
n= -4
af

Solving Eq. (45) obtains
n = 3.6366
The critical value ofy, which is only acted on the top of the building (Fig. 4a), is found as
0., = 3.63x 10 N/m
The critical buckling force is
g, L = 2.178x 10 N

If N; = N, = N; = N,, i.e.,, only a linear distributed axial forcg, is acted on the top of the
building (Fig. 4a), then, using the calculation model of the four-step flexural-shear plate gives

gy = 3.62x 10 N/m
It can be seen from the above results that the valug, of closed to that of;. This implies
that a multi-step flexural-shear plate with step varying stiffness can be treated as a one-step flexural-
shear plate with continuously varying stiffness for buckling analysis.

4. Conclusions

In this paper, narrow buildings with utli-step shear-wallsare treated as a multi-step flexural-



Stability of multi-step flexural-shear plates with varying cross-section 609

shear plate for buckling analysis. The governing differential equation of such a kind of plate is
established and is reduced to a Bessel's equation or an ordirfargrdifl equation with constant
coefficients by selecting suitable expressions of the distribution of stiffness. The exact buckling
solutions for a one-step flexural-shear plate with variable stiffarsslerived for several important
cases. A new exact approach that combines the transfer matrix method and the derived closed fron
solutions of one-step flexuralshr plate with continuously varying stiffness is presented. It is
shown that a flexural-shear plate with free-free end ibond in the longitudinal direction, where

the shear deformation is dominant, can be simplified as a flexural bar for buckling analysis, the
boundary conditions of the bar are the same as those of the plate. The numerical example show
that: (1) the present methods are easy to implementetilcient for analyzing the buckling of
multi-step flexural-shear plates, (2) it is possible to regard a multi-step flexural-shear plate with step
varying cross-section as a one-step flexural-shear plate with continuously varying cross-section for
buckling analysis.
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Appendix: The exact solutions of Eq. (19) for six cases

Obviously, the closed form solutions of Eq. (19) are dependent on the distributions of flexural stiffness. For
the following six types of distributions d{,;, the exact solutions are found as

B -
Case 3K, = Hre "+ b (A-1)

Using the same approach adopted in Case 2, one obtains

By 2 20
— 0 2 4aiNiH 2 4!—b|’N|H 0
Su(y) = dyme'y al = , V=
By
Si(y) = J_\,I%iemg Vv, = a non-integer % (A-2)
or 0
By O
() = Y,Be®d v = an integer 0
&(y) .% 0 g 0
ase 4.K, = ai(1+ By) " _
Case 4.K, 1 ° (A-3)

in which a;, 3, b, are parameters that can be determined by the values of the flexural stiffpes®,&i/2 and
H, H is the total height of the plate.
Substituting Eq. (A-3) into Eqg. (19) and letting

n=(1+pBy), My, =n"*z (A-4)

one obtains a Bessel equation, the solutions are

S0) = @B RO Ay | k= B ws g e g

Si(y) = (1+ Biy)%J_v,{Ei(M Biy)k}, Vv = a non-integer
or

Si(y) =(1+ ,Biy)%Yv,|:%i(1 + ,Biy)k}, v, = an integer

(A-5)

OOoOoOoOoooOoOooo

whereJ, (-) is the Bessel function of the first kind, of oraerY,(-) is the Bessel function of the second kind,
of orderv.
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If b= -2, then

or

1 O
Si(y) = (1+ ﬁiy)zlcos[A/A_li'n(l"‘ ﬂy)]g for ni2>
Su(y) = (1+ By)’sin] /Azin(1+ By)] O
or
Su(y) = (1+ Biy)f
Su(y) = (L+ By)’In(1+ By)

iR

O
O
g for n;
O
O

Case 5.K,; = (& + By) "

This is an alteration of Case 4. The solutions are
1 1
~ 2v;
Su(y) = (a+ by)®Jy[di(a + biy)]

Si(y) = (& + by) 3, [&(a + by)]™
or

Si(Y) = (a+ by)?Y,[&(a + by)]

[

OOooOoOoOooog

N

v

where

If ¢, = -2, then

Su(y) = (a+ biyf
Su(y) = (a+biy)®

2_ 1 N
Bi—z—azl

OOoOoOoOooo
—h
=]
Sz
N

or
Siu(y) = (ai+ by)sin[BiIn(a + by)] U ; N;
Su(y) = (a+by)cogBin(a + byl g " b2
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(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)
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or
Su(y) = (a+by) E N;
Si(y) = (a+by)In(ai+biy) O b;

Case 6.K,; = a(y’+b)°, a>0, b >0

The solutions for this case are given by

|
Su(y) = (¥ +b) smfD

Sa(y) = (¥ +b) cosED

where

ENT%Farctan)l//—z

Case 7.K, = a(y’=b)’, a>0, b >0

The solutions for this case are as

O
Su(y) = (%f ~b). smED
Sa(y) = (v b) COSED
where
_ 1N —ab; bi1/2+y |y| <b,1/2

= n ,
¢ 20 ab; b/?-y

2 2C -2,-1

Case 8.K, = (ayl '—bfy* "%

The solutions for this case are as

1/2 172
_ [a. Y2 1 2N’ co

|:2b Nl/2 1/2 1 L . 2b N1/2 CD
) =0 ¢ y%DDZbC 2- *l2-3c ¢ Yo

in which d(x, x; X) represents thé-function

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)
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