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Abstract. Since the conventional direct approaches are hard to be applied for damage diagno
complex large-scale structures, a two-step approach for diagnosing the joint damage of framed struc
presented in this paper by using artificial neural networks. The first step is to judge the damaged are
structure, which is divided into several sub-areas, using probabilistic neural networks with n
Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents 
the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the da
sub-area input. The results of numerical simulation show that the proposed approach could diagnose 
damage of framed structures induced by earthquake action effectively and has reliable anti-jamming a

Key words: framed structures; joint damage; damage diagnosis; element end strain mode; ar
neural network.

1. Introduction

During the service life of most engineering structures, variant damages may occur due 
different environmental perturbations and/or excessive loads. These damaged structures m
meet their intended services and could possibly end in partial or total collapses (Li 2001a, 
2003). Therefore, it would be necessary to diagnose the damages inside a structure during its
life, especially after earthquakes or fires.

Framed structures are widely used in civil engineering. Research works on damage diagn
framed structures have been conducted during the last three decades (Cawley and Adam
Heam 1991, Yun et al. 2001, Zhou and Shen 1997, Lu 1997). However, most of these resea
are mainly concerned with element damages, partly because it is convenient to establish th
Element Model of a structure with element damages, and easy to validate the damage diagsis in
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experiments. However, the beam-to-column connections (joints) of framed structure are more
to suffer damages, as indicated in site investigations and experiments, especially for steel 
structures. The joint damages may take place in steel frames due to bolt hole crack, bolt 
weld joints failure and plastic deformation of connective components. The joints of RC frame
behave like plastic joints under strong seismic impact (Li et al. 1999, Wu and Li 2003), which may
result in joint damages. Therefore, it is necessary to develop an efficient approach for joint d
diagnosis for framed structures. 

Recently, the damage-diagnosing approaches based on inversed structural dynamic a
became the majority of the researches in the field of structural health monitoring (Rizos et al. 1990,
Liang et al. 1992, Li 2002a, 2001b, 2001c). Most of these approaches diagnose the stru
damages directly, and showed competent efficiency on simple structures (Rizos et al. 1990, Liang
et al. 1992, Qian et al. 1990, Ostachowicz and Krawczuk 1991). However, these approache
hard to be applied to complex large-scale structures. There are mainly two reasons for that: 

(1) No matter which approach is adopted, the total computing amount is enormous and
impracticable for current computers because the complex large-scale structures are co
of numerous elements and have too many Degrees of Freedom.

(2) In general, experimental measurements can provide reliable but limited information (i.e., modal
parameters of several modes). Therefore, the incompleteness of the measurements beco
main obstacle in the damage diagnosis. In other words, how to apply the damage-diag
approaches to complex large-scale structures is still under investigation.

Two-step approaches were presented recently for damage detection (Li et al. 1998b, Kim et al.
1993). Li et al. (1998b) had developed a two-step damage-diagnosing approach for frame
structures. The first step is to determine the stiffness matrix for lateral floor displacement
related mode shapes by identifying the eigenvalues of the matrix with a certain bandwidth
second step is to identify the damages of the beams and columns by using the linear progra
method based on the results of the first step. Kim et al. (1993) developed a two-step damage-
diagnosing method based on the incomplete measurements. The first step is to judge the d
area of a structure using the model updating technique. The second step is to diagnose the
locations and extents from the sensitivity analysis of structural damages.

A two-step approach for damage diagnosis of framed structures using artificial neural networks 
presented in this paper. The first step is to divide a structure into several sub-areas and to ju
damaged areas of the structure using probabilistic neural networks with the first several 
Frequencies Shift Ratio (FSR) inputs. The next step is to diagnose the exact damage locatio
extents using the RBF neural networks with the second Element End Strain Mode (EESM) of the
damaged sub-area input. The efficiency of the proposed approach is illustrated through a nu
simulation for a 10-story framed structure. The numerical results show that the proposed approach could
successfully diagnose the joint damages of the framed structure induced by earthquake action, e
limited measurement information. The method is proved to also have good anti-jamming abilities.

2. Two-step approach for damage diagnosis of framed structures

2.1 Damage diagnosis process

In general, the conventional direct damage-diagnosing methods are difficult to be appl
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complex large-scale structures due to the incompleteness of measurements. Therefore,
damaged sub-areas can be determined inchoately, and the damage is diagnosed just inside 
of the sub-area based on the achievement of the anterior step, the total amount of measu
required will be greatly reduced. The diagnosis results will be more reliable. Therefore
approach could be used for diagnosing not only damages of simple small-scale structures but also
damages of complex large-scale structures. 

The proposed approach is composed of two steps:

(1) Damaged sub-area ascertainment
The structure is divided into several sub-areas according to its characteristics. The relati

between the first several Frequency Shift Ratios (FSR), which is calculated from the damaged
structure and the intact structure, and the locations of the damaged sub-areas are transmitted
probabilistic neural networks (PNN) to establish a system for initial damage diagnosis. And base
on the established system, the locations of the damaged sub-area can be ascertained (Fig. 1). 

(2) Exact damage diagnosis in the sub-areas
The shift of the Element End Mode Strain (EESM) between the damaged structure an

intact structure in the damaged sub-areas identified by the first step is determined
relationship between the shift and the exact damage locations and extents are transmitted 
Radial Basis Functions (RBF) networks. Then, the system for the exact damaged diagn
established (Fig. 2). 

Fig. 1 Damaged sub-area ascertainment system Fig. 2 Exact joint damage diagnosis sy
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2.2 Damaged sub-area ascertainment system using PNN

2.2.1 Damaged sub-area ascertainment based on FSR
Experimental researches (Li et al. 1994, 1998a) showed that the measurement of natural frequ

is the most accurate among structural dynamic characteristics. If the damage locations co
estimated approximately using the first several natural frequencies, the damage diagnosis will just b
limited inside the known areas, and the direct conventional approaches could be applied to d
the exact damage locations and extents, which would greatly reduce the total amou
measurements required.

Cawley and Adams (1979) had reported that when damages took place in a structure, disc
two frequencies shift ratio ( ) was related with the damage locations rather tha
damage extents. Therefore the damage locations can be determined by natural frequencies
(1991) had developed an approach for identifying damage locations using the frequency shift 
ratio  of the damaged structure and the intact structure. However, this metho
would not be valid for symmetrical structures. The damages with the same extent i
symmetrical location would make the frequencies shift in the same trend, which mean
frequency-based damage diagnosis approaches would fail in this situation. If the structure is iitially
divided into several sub-areas according to its characteristics and each sub-area contains
elements, the problem would be simplified. For example, the symmetric structure could be d
into sub-areas, which contain elements in the symmetric locations. Then, the locations 
damaged sub-areas can be determined by FSR. The first several FSR can be calculated as fo

(1)

where ωd, i is the i-th natural frequency of the damaged structure, and ωs, i is the i-th natural
frequency of the intact structure. Then the PNN is introduced to determine the sub-area locati

2.2.2 Probabilistic neural networks 
How to determine structural damaged sub-areas is a problem of pattern classification/recogition.

It has been recognized that the PNN is an efficient pattern classification tool (Liang et al. 1992),
which can work with noise stained data. Specht (1990) first presented the PNN model in 199
model is based on probability statistics and Bayes classification criteria. As a pattern recog
tool, the Bayes criterion is an optimum decisive criterion with minimum “expected risk”. It can 
with classification problems with enormous patterns. The PNN presented by Specht (1990) 
modeled with 4 layers, as shown in Fig. 3. When the PNN is to be trained, the networks just 
store the training patterns with no modification, and only the slick factor of the Gauss funct
estimated empirically. When the networks are working, the tested pattern “X” is transmitted fro
the input layer to all the classification units in each pattern layer, where the dot product of p
“X” and pattern “W” is calculated. Then the dot product is processed in the unit nonlinearly a
transmitted into the summation layer. The units in the summation layer are just connected wit
relevant pattern units, and estimate probability of each classification. In the decision layer, the
pattern “X” is divided into the class with maximum posterior probability based on Ba
classification criterion according to its probability estimation.

δω i δω j , i j≠⁄

δωi
2 δω j

2, i j≠⁄( )

FSRi

ωd i, ωs i,–
ωd 1, ωs 1,–
------------------------- i( 1 2 3 … ), , ,= =
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Compared with the BP networks, the PNN has some obvious advantages:
(1) The process is simple; the networks always quickly converge to the Bayes optimum so

with good stability.
(2) Training of the PNN does not need too many patterns, and the trained PNN has good 

classification ability. 
(3) The PNN has good pattern appending ability and is tolerant with certain wrong patterns.

2.3 Exact damage diagnosis system using RBF networks

2.3.1 Damage diagnosis of framed structures based on EESM
Most researches on damaged diagnosis utilized the dynamic characteristics of structures such a

natural frequencies and mode shapes as damage indicators. However, such studies (Li 2002a
2001c) had proved that the natural frequencies are not sensitive to the damage extents, the 
occurred in different locations and with different extents can cause natural frequencies shift 
same way. Furthermore, the mode shapes are not sensitive to local damage too. The measurement of
mode shape is constantly stained by great errors and is often incomplete, which may influen
results of the diagnosis.

As one of structural dynamic characteristics, strain modes have a lot of advantages in th
compared with other dynamic characteristics. Some of these advantages include good meas
precision, low cost, excellent sensibility to local changes, etc. Therefore, strain mode is a 
damage indicator for engineering application. Mode shapes represent generalized orth
structural displacements, while structural strain is the derivative of structural displace
Therefore, a particular strain distribution can be deduced from one mode shape, and this dist
is called strain mode. When damages take place in some local areas of structures, there wo
phenomenon named “stress concentration”, which means that the stress near the damage z
shift (increase for positive stress or reduce for negative ones) rapidly. According to the Saint-V
principle, the strain shift in locations far from the damaged area will be much less than that in t
damaged area. Therefore, the local damages can be detected since the strain is sensitive to 
change in structure only. The static strain distribution is related to loads acting on the structur

Fig. 3 Layer structure of PNN
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it would change with the loads shifting. Therefore, the static strain distribution cannot be used
damage indicator. The strain mode is one of inherent dynamic characteristics of a structu
would not be influenced by loads. If the strain mode of a structure can be obtained before an
damage taking place, it is possible to diagnose the damage locations and extents. 

The efficiency of the strain mode as a damage indicator is shown in the following simulation
structure under consideration is a 2-story frame shown in Fig. 4 and the damage is expected to take
place at the joints. If the joint damage is concerned, the Element End Strain Mode (EESM) i
as a damage indicator. The EESM is defined as the particular strain distribution at the ends 
elements of the structure corresponding to each mode shape. Since the strain at each end is
almost impossible to measure, the strain at a certain point near the end is adopted. The d
between the end and the point is empirically determined; twice of the element height is used
example.

The shift of structural EESM can be calculated from 

(2)

where  is the j-th EESM of the damaged structure, and  is the j-th EESM of the intact
structure. 

It is assumed that joint damage takes place with different extents, such as 10%, 40%, 70
90% respectively, at the left end of the beam in the first story of the frame shown in Fig. 4
first EESM shift {ν1} of the frame is shown in Fig. 5. It is obvious that the EESM shift is closely
related to joint damage. The location of the damage is just the joint with the maximal EESM shift
when only one joint was damaged. When several joints are damaged at the same time, their
shifts will interlace with each other. Therefore, it is impossible to determine the damage loc
directly just by the EESM shift. The neural networks are introduced to deal with this problem.

vj{ } ψ{ }d j, ψ{ }s j,–=

ψ{ }d j, ψ{ }s j,

Fig. 4 2-story frame and sequence number of each element end
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2.3.2 RBF networks 
Since the EESM shift is closely related to joint damage, the joint damage can be diagnosed

the EESM shift of a structure if the relationship can be mapped. BP network is widely us
various areas for its mapping abilities. But there are still some unavoidable defects of BP netwo

(1) The convergence process is so slow that the computation will take a long time.
(2) The convergence will drop into local minimum, instead of global one.
(3) There is no unified principle for determining scale of the BP networks, which is conventio

achieved by experiences. 
A series of other ANN, such as RBF networks, have shown their superiority in damage det

researches. A radial basis function (RBF) neural network is usually trained to map a vector 
into a vector  where the pairs (xk, yk),  form the training set. If this mapping is
viewed as a function in the input space Rm, learning can be seen as a function approximat
problem. From this point of view, learning is equivalent to finding a surface in a multidimens
space that provides the best fit for the training data. Generalization is therefore synonymou
interpolation between the data points along the constrained surface generated by thetting
procedure as the optimum approximation to this mapping. The performance of a RBF 
network depends on the number and positions of the radial basis functions, their shapes, 
method used for learning the input-output mapping. The existing learning strategies for RBF 
networks can be classified as follows: 

(1) Strategy selects radial basis function centers randomly from the training data. 
(2) Strategy employs unsupervised procedures for selecting radial basis function centers.
(3) Strategy employs supervised procedures for selecting radial basis function centers. 
A hybrid learning process for training RBF neural networks with Gaussian radial basis func

is widely used in practice. The structure of a typical RBF network is shown in Fig. 6. 
Therefore, if the damaged sub-area can be determined in the prior step, the exact damage

diagnosed using the RBF networks with several first EESM shifts of the structure.

xk Rm∈
yk Rn∈ 1 k M≤ ≤

Fig. 5 Shift of the first element end strain mode
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3. Key techniques in the two-step damage diagnosis system

3.1 Finite element model of a structure with joint damage

The conventional procedures for structural analysis usually assume that joints are pinn
completely rigid. However, most joints of structures in reality are semi-rigid. The joint beha
makes an important contribution to the behavior of the whole structure, and the performance
joints is one of the critical factors in structural collapses (Li and Chen 2003). Among the va
possible deformation modes for the semi-rigid connections, the most important mode 
rotational deformation caused by a bending moment. The basic description of the flexural be
is its moment-rotation relationship, which may be represented as the joint flexural rigidity. The
damage may be quantified by the reduction of the connection rigidity. If the rotational stiffne
the joint can be evaluated before and after the damage, the damage severity can be det
based on the shift of stiffness. In this study, a frame element with incorporating joint fle
rigidity is modeled. Then the joint damage severities are identified based on the changes in
modal properties using the neural networks. The semi-rigid connection is modeled as zero
rotational springs at the ends of a beam, as shown in Fig. 7. The rotational stiffness is infin
the spring of the rigid joints and zero for that of pinned joints. Yun et al. (2001) has presented a
particular joint fixity factor. The joint fixity factor can be defined using the rotational stiffn
(kr1, kr2) of the spring as follows

Fig. 6 Structure of RBF network

Fig. 7 Model of semi-connected elements
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where EI/L is the stiffness of the beam. Then the joint fixity factor can be used to describ
beam-column connections. As proved in the previous study (Yun et al. 2001), for the pinned joints,

, for the rigid joints, , and for the semi-connected joints, 
The stiffness matrix of a beam element with semi-rigid connections at ends is

(4)

where . 
When , Eq. (4) is the stiffness matrix of beam elements in a framed structure

Finite Element Model of framed structures can be established by using the stiffness matrix of
connected beam elements. Thus the dynamic characteristics of damaged structures with d
damage locations and severities can be calculated.

3.2 Noise injection training of ANN 

Measurements from a structure, such as acceleration and dynamic strain are possibly affe
noise. To reduce the noise effects and promote the precision of the diagnosis results, the AN
be trained with noise injection methods, which means that the input patterns can be pro
considering the noise effects as 

 (5)

where φk and  are the (calculated) exact and the noise-injected patterns respectively, and βk is the
zero mean Gaussian random noise with constraint of . For different patterns, the 
effects are regarded as being independent each other and thus different βk is taken into account. The
root-mean-square of βk is relatively small for the natural frequency patterns, since the measure
is relatively reliable. The root-mean-square of βk may be larger for the strain mode pattern
considering the error of measurements. 
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3.3 Evaluation of the diagnosis results 

To evaluate the diagnosis results, the Mean Extent Error (MEE) and the Mean Location
(MLE) are adopted in this study. The MEE is the average of the absolute estimation error of all the
joint damage extent (joint fixity factor):

 (6)

where NE is the number of the joints of the whole structure, γd, i is the joint fixity factor estimated
by ANN, and γe, i is the exact joint fixity factor.

The MLE is used to evaluate the locations of the damaged sub-area, defined as
 

(7)

where NS is total number of the sub-areas into which the structure is divided, ξi is the location error
for the i-th sub-area. ξi = 0 for the case of the damage occurs in this sub-area and ξi = 1 otherwise.

4. Experimental measurement of EESM  

The experiment measurement of EESM can be obtained (Zhou and Shen 1997) using res
excitation method. The strain response of a framed structure is

(8)

where  is the r-th strain mode, ϕr is the r-th mode shape of displacement, kr, mr, cr are the modal
stiffness, modal mass and modal damping, respectively; {F} is amplitude vector of harmonic
excitations applied at the stories of the frame. 

The strain transfer function at the i-th element end caused by the unit harmonic excitation at 
j-th story is 

(9)

where  and  are the r-th modal damping ratio and the r-th natural frequency

of the structure, respectively. 
When the frequency of the excitation applied at the j-th story equals to a natural frequency of th

structure, for example the natural frequency of the s-th mode, Eq. (9) can be rewritten as

MEE
1
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-------- γd i, γe i,–

i 1=
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1
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------- ξ1; 0 MLE 1≤ ≤
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Since the modes of a framed structure are usually not closely spaced, the s-th mode contributes
mainly in , while contributions of other modes ( ) can be ignored. Thus, Eq. (10) ca
rewritten approximately as 

(11)

Thus, we have

(12)

where εj(ωs) is the strain amplitude at the j-th story.
When the frame is excited at the j-th story with the s-th frequency ωs, Fj (ωs) is invariable, the

modal parameters ξs, ks and ϕjs are all constants too. Then a factor α is defined accordingly as 

(13)

where α is constant. Then 

(14)

Based on the formulas presented above, it is found that the s-th EESM  can be obtained
when the framed structure is subjected to the loads with the s-th resonance frequency and th
amplitude vectors of strain response at certain points near the ends of the elements are meas

5. Numerical simulation 

5.1 Example structure

To investigate the effectiveness the proposed two-step approach for joint damage diagn
framed structures using ANN, a 10-story frame structure shown in Fig. 8 is considered for
damage diagnosis by numerical simulation. The length of each span L of the frame is 4.0 m,
of each story is 3.0 m, and other parameters of the frame are shown in Table 1. The fr
divided into 5 sub-areas, and all the sub-areas are marked in Fig. 8. The first two mode shapes of
the structure are shown in Fig. 9. To simplify the simulation, the joints damages are assumed 
place just at the end of the beams.

Hij
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5.2 Training of the ANN

There are two cases considered in the training of ANN for the purpose of simplification. The
case assumes that damage appears in one sub-area and the second case considers tha
occur in two sub-areas. In the second case it is assumed only one joint damage will take pla
each sub-area. The severity of joint damage is described by .
the example structure, 15570 training patterns for the ANN are acquired according to dif

α α 1 γ–=  α 0.1 0.2… 0.9, , ,=,( )

Fig. 8 10-Story frame and sub-area marks

Table 1 Parameters of the frame

Element type b(m) h(m) A(m2) I(m4) E(pa) ρ(kg/m3)

Column 0.4 0.4 1.6×10−1 2.13×10−3

2.05×1010 2500
Beam 0.25 0.3 7.5×10−2 5.62×10−4
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damage severities and locations. The training patterns consist of neural FSR patterns and
shift patterns. To measure the respective effects of different inputs on the diagnosis results
ANN, the following two inputs of EESM shift for RBF networks are taken into account:

(1) The first EESM shift;
(2) The second EESM shift;
10610 patterns are used to train the ANN, and 4960 are used as test patterns for the AN

PNN system for identifying the damaged sub-area is acquired after the FSR patterns are i
train the networks. And the RBF networks system for exact damage diagnosis is acquired wit
EESM shift patterns input. Noise injection training technique is applied to enhance the 
interference capability of the networks. 

5.3 Results of damage diagnosis

4960 test patterns, with different levels of noise added or not, are input into the estab
systems to evaluate the damage diagnosis capabilities of the proposed approach. The ascertainment
results of damaged sub-areas using the PNN systems, which are trained with the noise in
training technique, are listed in Table 2. The results show that the noise injection training tec
can greatly enhance the anti-interference capability of the system and reduce the diagnosis
Even when the noise level is as low as 10%, the PNN system trained with the noise inj
training technique can still detect the damaged sub-areas successfully. 

The results of the exact damage diagnosis in the detected sub-areas using the RBF n
system with the first order EESM shift and the second order EESM shift input are shown in Tab
can be concluded from the results that using the second EESM shift as the input is superio
first EESM shift since the former contains more bending information of the structure and
represent the connecting characteristics of the structure more accurately. 

Fig. 9 The first two mode shapes of the frame
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6. Conclusions

In this paper, a two-step approach using artificial neural networks for joint damage diagnos
framed structures is proposed. With the theoretical analysis and numerical simulation 
conclusions are summarized as follows

(1) The presented approach is a useful tool in joint damage diagnosis of framed structures
reduce the amount of measurements greatly, and has not only good anti-interference cap
but also satisfactory accuracy. 

(2) The EESM shift is a good damage indicator for joint damage diagnosis of framed structure
When combined with the RBF networks, the second EESM shift is superior to the firs
and can diagnosis the joint damage successfully.

(3) The noise injection technique can enhance the anti-interference capability of the 
networks system greatly, and should be adopted in the implementation of the pro
approach. 
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