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Abstract. Since the conventional direct approaches are hard to be applied for damage diagnosis of
complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures i
presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of ¢
structure, which is divided into several sub-areas, using probabilistic neural networks with natural

Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by usir
the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged
sub-area input. The results of numerical simulation show that the proposed approach could diagnose the join
damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Key words: framed structures; joint damage; damage diagnosis; element end strain mode; artificial
neural network.

1. Introduction

During the service life of most engineering structures, variant damages may occur due to the
different environmental perturbations and/or excessive loads. These damaged structures may no
meet their intended services and could possibly end in partial or total collapses (Li 2001a, 2002b,
2003). Therefore, it would be necessary to diagnose the damages inside a structure during its servic
life, especially after earthquakes or fires.

Framed structures are widely used in civil engineering. Research works on damage diagnosis of
framed structures have been conducted during the last three decades (Cawley and Adams 197
Heam 1991, Yuret al 2001, Zhou and Shen 1997, Lu 1997). However, most of these researches
are mainly concerned with element damages, partly because it is convenient to establish the Finite
Element Model of a structure with element damages, and easy to validate the damagssdiagno
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experiments. However, the beam-to-column connections (joints) of framed structure are more likely
to suffer damages, as indicated in site investigations and experiments, especially for steel framec
structures. The joint damages may take place in steel frames due to bolt hole crack, bolt failure,
weld joints failure and plastic deformation of connective components. The joints of RC frames will
behave like plastic joints under strong seismic impace{lal 1999, Wu and Li 2003), which may

result in joint damages. Therefore, it is necessary to develop an efficient approach for joint damage
diagnosis for framed structures.

Recently, the damage-diagnosing approaches based on inversed structural dynamic analysi
became the majority of the researches in the field of structural health monitoring éRe0$990,

Liang et al 1992, Li 2002a, 2001b, 2001c). Most of these approaches diagnose the structural
damages directly, and showed competent efficiency on simple structures ¢Redo4990, Liang
et al 1992, Qianet al 1990, Ostachowicz and Krawczuk 1991). However, these approaches are
hard to be applied to complex large-scale structures. There are mainly two reasons for that:

(1) No matter which approach is adopted, the total computing amount is enormous and even
impracticable for current computers because the complex large-scale structures are composec
of numerous elements and have too many Degrees of Freedom.

(2) In general, experimental measurements cawigee reliable but limited infanation (i.e., modal
parameters of several modes). Therefore, the incompleteness of the measurements becomes it
main obstacle in the damage diagnosis. In other words, how to apply the damage-diagnosing
approaches to complex large-scale structures is still under investigation.

Two-step approaches were presented recently for damage detectienall.il998b, Kimet al.

1993). Li et al (1998b) had developed a two-stemnthge-diagnosing approach for framed
structures. The first step is to determine the stiffness matrix for lateral floor displacements and
related mode shapes by identifying the eigenvalues of the matrix with a certain bandwidth. The
second step is to identify the damages of the beams and columns by using the linear programming
method based on the results of the first step. Kimal (1993) developed a two-stefardage-
diagnosing method based on the incomplete measurements. The first step is to judge the damage
area of a structure using the model updating technique. The second step is to diagnose the damac
locations and extents from the sensitivity analysis of structural damages.

A two-step approach for damage diagnosidraimed structures using artificial neural networks is
presented in this paper. The first step is to divide a structure into several sub-areas and to judge th
damaged areas of the structure using probabilistic neural networks with the first several natural
Frequencies Shift Ratio (FSR) inputs. The next step is to diagnose the exact damage locations an
extents using the RBF neural networks with the secoedthé&it End Strain Mode (EESM) of the
damaged sub-area input. The efficiency of the proposed approach is illustrated through a numerica
simulation for a 10-story framed structure. The numerical results show thabjlesent approach could
successfully diagnose the joint damages of the framed structure induced by earthquake action, even wit
limited measurement information. The method is proved to also have good anti-jamming abilities.

2. Two-step approach for damage diagnosis of framed structures
2.1 Damage diagnosis process

In general, the conventional direct damage-diagnosing methods are difficult to be applied to
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complex large-scale structures due to the incompleteness of measurements. Therefore, if the
damaged sub-areas can be determined inchoately, and the damage is diagnosed just inside the ran
of the sub-area based on the achievement of the anterior step, the total amount of measuremeni
required will be greatly reduced. The diagnosis results will be more reliable. Therefore, this
approach could be used for diagnosing not only damages of simple small-scale sthuttales
damages of complex large-scale structures.

The proposed approach is composed of two steps:

(1) Damaged sub-area ascertainment

The structure is divided into several sub-areas according to its characteristics. The relationship
between the first several Frequency Shifttié&a (FSR), which is calculated from theirdaged
structure and the intact structure, and the locations of the damaged sub-areas are transmitted into tk
probabilistic neural networks (PNN) to establish a system for inifiatadje diagnosis. And based
on the established system, the locations of #reagjed sub-area can be ascertained (Fig. 1).

(2) Exact damage diagnosis in the sub-areas

The shift of the Element End Mode Strain (EESM) between the damaged structure and the
intact structure in the damaged sub-areas identified by the first step is determined. The
relationship between the shift and the exact damage locations and extents are transmitted into the
Radial Basis Functions (RBF) networks. Then, the system for the exact damaged diagnosis is
established (Fig. 2).

Measured Measured EESM
frequencies of the in the damaged
structure sub-erea
P Frequencies of the . EESM of the
intact structure intact structure
4 \
FSR Shift of EESM
Y A
PNN RBF network
] ‘
Exact joint damage
Initial structure information
damage (damage location
and extent)

Fig. 1 Damaged sub-area ascertainment system Fig. 2 Exact joint damage diagnosis system
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2.2 Damaged sub-area ascertainment system using PNN

2.2.1 Damaged sub-area ascertainment based on FSR

Experimental researches (&t al 1994, 1998a) showed that the measurement of natural frequency
is the most accurate among structural dynamic characteristics. If the damage locations could be
estimated approximately using the first several nafueguencies, the damage diagnosis will just be
limited inside the known areas, and the direct conventional approaches could be applied to diagnose
the exact damage locations and extents, which would greatly reduce the total amount of
measurements required.

Cawley and Adams (1979) had reported that when damages took place in a structure, discretiona
two frequencies shift ratiodw / dw;, i #] ) was related with the damage locations rather than the
damage extents. Therefore the damage locations can be determined by natural frequencies. Heal
(1991) had developed an approach for identifying damage locations using the frequency shift square
ratio (5(42/ S, i #]) of the damaged structure and theact structure. However, this method
would not be valid for symmetrical structures. The damages with the same extent in the
symmetrical location would make the frequencies shift in the same trend, which means the
frequency-based damage diagnosis approaches would fail in this situation. If the strucitiadlyis in
divided into several sub-areas according to its characteristics and each sub-area contains sever:
elements, the problem would be simplified. For example, the symmetric structure could be divided
into sub-areas, which contain elements in the symmetric locations. Then, the locations of the
damaged sub-areas can be determined by FSR. The first several FSR can be calculated as follows:

(i=123..) 1)

where ay; is thei-th natural frequency of the damaged structure, agnd is the i-th natural
frequency of the intact structure. Then the PNN is introduced to determine the sub-area locations.

2.2.2 Probabilistic neural networks

How to determine structural damaged sub-areas is a problem of pattern classificatiotisacogn
It has been recognized that the PNN is an efficient pattern classificatiofLient et al. 1992),
which can work with noise stained data. Specht (1990) first presented the PNN model in 1990. The
model is based on probability statistics and Bayes classification criteria. As a pattern recognition
tool, the Bayes criterion is an optimum decisive criterion with minimum “expected risk”. It can deal
with classification problems with enormous patterns. The PNN presented by Specht (1990) can be
modeled with 4 layers, as shown in Fig. 3. When the PNN is to be trained, the networks just simply
store the training patterns with no modification, and only the slick factor of the Gauss function is
estimated empirically. When the networke working, the tested pattern “X” is transmitted from
the input layer to all the classification units in each pattern layer, where the dot product of pattern
“X” and pattern “W” is calculated. Then the dot product is processed in the unit nonlinearly and is
transmitted into the somation layer. The uts in the smmation layer are just connected with
relevant pattern units, and estimate probability of each classification. In the decision layer, the tested
pattern “X” is divided into the class with maximum posterior probability based on Bayes
classification criterion according to its proldap estimation.
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Fig. 3 Layer structure of PNN

Compared with the BP networks, the PNN has somaous advantages:

(1) The process is simple; the networks always quickly converge to the Bayes optimum solution
with good stability.

(2) Training of the PNN does not need too many patterns, and the trained PNN has good pattern
classification ability.

(3) The PNN has good pattern appending ability and is tolerant with certain wrong patterns.

2.3 Exact damage diagnosis system using RBF networks

2.3.1 Damage diagnosis of framed structures based on EESM

Most researches on damaged diagnotilzed the dynamic chacteristics of structures such as
natural frequencies and mode shapes as damage indicators. However, such studies (Li 2002a, 2001
2001c) had proved that the natural frequencies are not sensitive to the damage extents, the damag;
occurred in different locations and with different extents can cause natural frequencies shift in the
same way. Furthermore, the mode shapes are nsitigeno local damage too. The measuent of
mode shape is constantly stained by great errors and is often incomplete, which may influence the
results of the diagnosis.

As one of structural dynamic characteristics, strain modes have a lot of advantages in this case
compared with other dynamic characteristics. Some of these advantages include good measuremel
precision, low cost, excellent sensibility to local changes, etc. Therefore, strain mode is a proper
damage indicator for engineering application. Mode shapes represent generalized orthogonal
structural displacements, while structural strain is the derivative of structural displacement.
Therefore, a particular strain distribution can be deduced from one mode shape, and this distribution
is called strain mode. When damages take place in some local areas of structures, there would be
phenomenon named “stress concentration”, which means that the stress near the damage zone w
shift (increase for positive stress or reduce for negative ones) rapidly. According to the Saint-Venant
principle, the strain shift in locations far from thanthged area will be much less than that in the
damaged area. Therefore, the local damages can be detected since the strain is sensitive to the loc
change in structure only. The static strain distribution is related to loads acting on the structure, and
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it would change with the loads shifting. Therefore, the static strain distribution cannot be used as the
damage indicator. The strain mode is one of inherent dynamic characteristics of a structure and
would not be influenced by loads. If the strain mode of a structure can be obtained before and after
damage taking place, it is possible to diagnose the damage locations and extents.

The efficiency of the strain mode as a damage indicator is shown in the following simulation. The
structure under consideration is a 2-story freshewn in Fig. 4 and theadhage is expected to take
place at the joints. If the joint damage is concerned, the Element End Strain Mode (EESM) is used
as a damage indicator. The EESM is defined as the particular strain distribution at the ends of eact
elements of the structure corresponding to each mode shape. Since the strain at each end is arduot
almost impossible to measure, the strain at a certain point near the end is adopted. The distanc
between the end and the point is empirically determined; twice of the element height is used in the
example.

The shift of structural EESM can be calculated from

{vi} ={d}a;—{d}s; (2)

where{ } 4 ; is thg-th EESM of the damaged structure, gngl} s ; isjitte EESM of the intact
structure.

It is assumed that joint damage takes place with different extents, such as 10%, 40%, 70% anc
90% respectively, at the left end of the beam in the first story of the frame shown in Fig. 4. The
first EESM shift {v,} of the frame is shown in Fig. 5. It idwious that the EESM shift is closely
related to joint damage. The location of the damage is just the jamtive maximal EESM shift
when only one joint was damaged. When several joints are damaged at the same time, their EESM
shifts will interlace with each other. Therefore, it is impossible to determine the damage locations
directly just by the EESM shift. The neural networks are introduced to deal with this problem.
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Fig. 5 Shift of the first element end strain mode

2.3.2 RBF networks

Since the EESM shift is closely related to joint damage, the joint damage can be diagnosed using
the EESM shift of a structure if the relationship can be mapped. BP network is widely used in
various areas foits mapping abilities. But there are still some unavoidable defects of BP network:

(1) The convergence process is so slow that the computation will take a long time.

(2) The convergence will drop into local minimum, instead of global one.

(3) There is no unified principle for determining scale of the BP networks, which is conventionally

achieved by experiences.

A series of other ANN, such as RBF networks, have shown their superiority in damage detection
researches. A radial basis functi@®BF) neural network is usually trained to map a vesgidnl R"
into a vectory, O R" where the pairs,(yJ), 1<k<M form the training set. If this mapping is
viewed as a function in the input spaR8, learning can be seen as a function approximation
problem. From this point of view, learning is equivalent to finding a surface in a multidimensional
space that provides the best fit for the training data. Generalization is therefore synonymous with
interpolation between the data points along the constrained surface generated byinthe fi
procedure as the optimum approximation to this mapping. The performance of a RBF neural
network depends on the number and positions of the radial basis functions, their shapes, and the
method used for learning the input-output mapping. The existing learning strategies for RBF neural
networks can be classified as follows:

(1) Strategy selects radial basis function centers randomly from the training data.

(2) Strategy employs unsupervised procedures for selecting radial basis function centers.

(3) Strategy employs supervised procedures for selecting radial basis function centers.

A hybrid learning process for training RBF neural networks with Gaussian radial basis functions
is widely used in practice. The structure of a typical RBF network is shown in Fig. 6.

Therefore, if the damaged sub-area can be determined in the prior step, the exact damage can t
diagnosed using the RBF networkghnseeral first EESM shifts of the structure.



588 W. L. Qu, W. Chen and Y. Q. Xiao

Input Nonlinear Transform  Output

Fig. 6 Structure of RBF network

3. Key techniques in the two-step damage diagnosis system
3.1 Finite element model of a structure with joint damage

The conventional procedures for structural analysis usually assume that joints are pinned or
completely rigid. However, most joints of structures in reality are semi-rigid. The joint behavior
makes an important contribution to the behavior of the whole structure, and the performance of the
joints is one of the critical factors in structural collapses (Li and Chen 2003). Among the various
possible deformation modes for the semi-rigid connections, the most important mode is the
rotational deformation caused by a bending moment. The basic description of the flexural behavior
is its moment-rotation relationship, which may be represented as the joint flexural rigidity. The joint
damage may be quantified by the reduction of the connection rigidity. If the rotational stiffness of
the joint can be evaluated before and after the damage, the damage severity can be determine
based on the shift of stiffness. In this study, a frame element with incorporating joint flexural
rigidity is modeled. Then the jointachage severities are identified based on the changes in the
modal properties using the neural networks. The semi-rigid connection is modeled as zero-length
rotational springs at the ends of a beam, as shown in Fig. 7. The rotational stiffness is infinite for
the spring of the rigid joints and zero for that of pinned joints. &ual (2001) has presented a
particular joint fixity factor. The joint fixity factor can be defined using the rotational stiffness
(kr1, kr2) of the spring as follows

Fig. 7 Model of semi-connected elements
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where EI/L is the stiffness of the beam. Then the joint fixity factor can be used to describe the
beam-column connections. As proved in the previous study €¥ah 2001), for the pinned joints,
0<y<0.143, for the rigid joints,0.891<y<1 , and for the semi-connected joifit§43< y<0.891

The stiffness matrix of a beam element with semi-rigid connections at ends is

_E_A }
L
12E1 .0 .
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o GElfn 4Bl
L2 Ef?D L |:f?D
[K] = EA EA (4)
T 0 T
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wheref, = yi+ yot VYo, £,=V4(2+ ), f3= 3y1, 14= 3y, f5= 3yi1s, 6= 1a(2+ 1), 7= 4—n1ys.

Wheny, = y, = 1, Eq. (4) is the stiffness matrix of beam elements in a framed structure. The
Finite Element Model of framed structures can be established by using the stiffness matrix of semi-
connected beam elements. Thus the dynamic characteristics of damaged structures with differen
damage locations and severities can be calculated.

3.2 Noise injection training of ANN

Measurements from a structure, such as acceleration and dynamic strain are possibly affected b
noise. To reduce the noise effects and promote the precision of the diagnosis results, the ANN car
be trained with noise injection methods, which means that the input patterns can be processec
considering the noise effects as

o= a(l+B) ()

whereq and @, are the (calculated) exact and the noise-injected patterns respectiv@yjsatie

zero mean Gaussian random noise with constrainfBgf< 1 . For different patterns, the noise
effects are regarded as being independent each other and thus dfasetaken into account. The
root-mean-square ¢ is relatively small for the natural frequency patterns, since the measurement
is relatively reliable. The root-mean-square @&f may be larger for the strain mode patterns
considering the error of measurements.
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3.3 Evaluation of the diagnosis results

To evaluate the diagnosis results, the Mean Extent Error (MEE) and the Mean Location Error
(MLE) are adopted in this study. The MEE is the average of the absetinteton error of all the
joint damage extent (joint fixity factor):

MEE = =5 Iys - e 6
- NEZ yd,l_ye,l ( )

=1

where NE is the number of the joints of the whole structyreis the joint fixity factor estimated
by ANN, andy,; is the exact joint fixity factor.
The MLE is used to evaluate the locations of the damaged sub-area, defined as

MLE = N_Szél; 0<MLE<1 (7)

=1

where NS is total number of the sub-areas into which the structure is di§idedhe location error
for thei-th sub-areaé =0 for the case of the damage occurs in this sub-ared; arfd otherwise.

4. Experimental measurement of EESM

The experiment measurement of EESM can be obtained (Zhou and Shen 1997) using resonanc
excitation method. The strain response ofaanfd structure is

C LY O} (F}

2 .
rek, —w'm, + jawc,

{e} = (8)

where () is the-th strain modeg, is ther-th mode shape of displacemekt,m, ¢, are the modal
stiffness, modal mass and modal damping, respectivély; i§ amplitude vector of harmonic
excitations applied at the stories of thanfie.

The strain transfer function at tiéh element end caused by the unit harmonic excitation at the
j-th story is

r=1kr_0‘)2mr+jwcr rzll_[2}2+2—15rw
wl‘ wl‘
o . .
where é, = > - - andw, = % are theth modal damping ratio and tineéh natural frequency
m;K, r

of the structure, respectively.
When the frequency of the excitation applied atjttie story equals to a natural frequency of the
structure, for example the natural frequency ofgfle mode, Eq. (9) can be rewritten as
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€ — wES¢S + il L)Uﬁ' ¢Jr/kl‘ 10
1T 218k, & . [QT’“ 2j & w (10)
r£s - wr

Since the modes of a framed structure are usually not closely spacexththeode contributes
mainly in Hﬁ , While contributions of other modes#s ) can be ignored. Thus, Eq. (10) can be
rewritten approximately as

£ _ L:UES¢
W= Jek, -
Thus, we have
£ _ 2] Esks

whereg(wy) is the strain amplitude at thi¢h story.
When the frame is excited at tih story with thesth frequencyws, F;(w) is invariable, the
modal parameter&;, ks and ¢;s are all constants too. Then a factois defined accordingly as

2j éKs
Q= ———— 13
BroF (@) (13)
wherea is constant. Then
Wi = ag(ws) (14)

Based on the formulas presented above, it is found tha-ttheEESM { ¢/°}s can be obtained
when the framed structure is subjected to the loads withstheresonance frequency and the
amplitude vectors of strain response at certain points near the ends of the elements are measured.

5. Numerical simulation
5.1 Example structure

To investigate the effectiveness the proposed two-step approach for joint damage diagnosis of
framed structures using ANN, a 10-story frame structure shown in Fig. 8 is considered for joint
damage diagnosis by numerical simulation. The length of each span L of the frame is 4.0 m, height
of each story is 3.0 m, and other parameters of the frame are shown in Table 1. The frame is
divided into 5 sub-areas, and all the sub-areas are marked in Fig. 8. Tivdirsiode shapes of
the structure are shown in Fig. 9. To simplify the simulation, the joints damages are assumed to take
place just at the end of the beams.
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Fig. 8 10-Story frame and sub-area marks

Table 1 Parameters of the frame

Element type b(m) h(m) A(m?) I(m®) E(pa) p(kg/m®)
Column 0.4 0.4 16x10  2.13x10° .
Beam 0.25 0.3 7.5x1D 5.62x10% 2.05x10 2500

5.2 Training of the ANN

There are two cases considered in the training of ANN for the purpose of simplification. The first
case assumes that damage appears in one sub-area and the second case considers that damz
occur in two sulareas. In the second case it is assumed only one joint damage will take place in
each sub-area. The severity of joint damage is described(by1-y, 0=0.1,0.2...,0.9) . For
the example structure, 15570 training patterns for the ANN are acquired according to different
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Fig. 9 The first two mode shapes of the frame

damage severities and locations. The training patterns consist of neural FSR patterns and EESN
shift patterns. To measure the respective effects of different inputs on the diagnosis results of the
ANN, the following two inputs of EESM shift f{dRBF néworks are taken into account:

(1) The first EESM shift;

(2) The second EESM shift;

10610 patterns are used to train the ANN, and 4960 are used as test patterns for the ANN. The
PNN system for identifying the damaged sub-area is acquired after the FSR patterns are input to
train the networks. And the RBF taerks system for exactathage diagnosis is acquired with
EESM shift patterns input. Noise injection training technique is applied to enhance the anti-
interference capdlity of the networks.

5.3 Results of damage diagnosis

4960 test patterns, with different levels of noise added or not, are input into the established
systems to evaluate the damage diagnosis dasbof the proposed approach. Theatainment
results of damaged sub-areas using the PNN systems, which are trained with the noise injectior
training technique, are listed in Table 2. The results show that the noise injection training technique
can greatly enhance the anti-interference capability of the system and reduce the diagnosis errors
Even when the noise level is as low as 10%, the PNN system trained with the noise injection
training technique can still detect the damaged sub-areas successfully.

The results of the exact damage diagnosis in the detected sub-areas using the RBF network
system with the first order EESM shift and the second order EESM shift input are shown in Table 3. It
can be concluded from the results that using the second EESM shift as the input is superior to the
first EESM shift since the former contains more bending information of the structure and can
represent the connecting characteristics of the structure more accurately.



594 W. L. Qu, W. Chen and Y. Q. Xiao

Table 2 Results of damaged sub-area ascertainment using PNN (MLE)
Noise Level (%)

ANN
1 5 10
PNN trained without
noise inject technique 0.02 0.06 0.13
PNN trained with 0.004 0.007 0.013

noise inject technique
MLE: Mean Location Error, the smaller of the value indicating the better performance

Table 3 Results of exact damage diagnosis using RBF networks (MEE)

Noise Level
Input of ANN
5 10 15
First EESM shift 0.00040 0.00070 0.00110
Second EESM shift 0.00012 0.00025 0.00046

MEE: Mean Extent Error, the smaller of the value indicating the better performance.

6. Conclusions

In this papera two-step approach using artificial neural networks for joint damage diagnosis of
framed structures is proposed. With the theoretical analysis and numerical simulation some
conclusions are summarized as follows

(1) The presented approach is a useful tool in joint damage diagnosis of framed structures. It can
reduce the amount of measurements greatly, and has not only good anti-interference capaubility,
but also satisfactorgccuracy.

(2) The EESM shift is a good damage indicator jiint damage diagnosis of framed structures.
When combined with the RBF networks, the second EESM shift is superior to the first one
and can diagnosis the joint damage successfully.

(3) The noise injection technique can enhance the anti-interference capability of the neural
networks system greatly, and should be adopted in the implementation of the proposed
approach.
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	b(m)
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	ANN
	Noise Level (%)
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	PNN trained without
	noise inject technique
	0.02
	0.06
	0.13
	PNN trained with
	noise inject technique
	0.004
	0.007
	0.013
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