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Abstract. Non-conforming membrane elements which have variable number of mid-side nodes with
drilling degrees of freedom and which is designated as KM&ave been presented in this paper. The
non-conforming elements with variable number of mid-side nodes can be efficiently used in the local
mesh refinement for the in-plane structures. To guarantee the developed elements always pass the patc
test, the direct modification method is incorporated into the element formulation. Detailed numerical tests
in this study show the validity of the variable node NC elements developed in this study and a wide
applicability of these elements to practical problems.

Key words: direct modification method; drilling degrees of freedom; membrane element; transition
element; variable node.

1. Introduction

The improved accuracy of a finite element can be obtained by the use of non-conforming (NC)
modes which relax the interelement compatibility regment. Following the pioneering works by
Wilson et al. (1973) and Choi and Schnobrich (1975) several approaches have been proposed for the
improvement of NC elements such as the modified Wilson NC element method @aglot976),
natural formulation method (Argyrist al. 1980), free formulation method (Fellipa and Bergan
1987), and refined NC element method (RNEM) (Cheung and Chen 1995, Chen and Cheung 1997).

In many engineering practices, the stress concentration phenomena occur at the locations wher
the abrupt geometrical changes exist, or at the points of concentrated loading. For such problems, :
finer mesh is required in the area of high stress gradients and a rather coarser mesh is used whe
the stress distribution is relatively uniform. To generate the local meskmei, the development
and use of the variable-node transition NC elements, which effectively connect the refined and
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unrefined meshes without generating hanging nodes, is attempted after the success in developin
regular NC elements (Kim and Choi 1992, Chabal. 2002c).

Choi and his co-workers have developed quadrilateral transigoneats which have an additional
node on the edge of a basic 4-node element (Choi and Park 1989, Choi and Lee 1995, Choi an
Lee 1996). The behavior of this element was much improved by the addition of NC modes in the
element formulations and was effectively used in the engineering problems, in particular in
association with an adaptive mesh refinement. The use of NC modes generally improve the elemen
behavior significantly, but at the same time it creates another problem that the resulting elements do
not always pass the patch test because of the change in the strain energy due to the additional N
modes (Park and Choi 1997). To circumvent this defect, ‘B-bar method’ (Wilson and Ibrahimbegovic
1990) has been used in the element formulations by introducing correction matrix evaluated at every
integration points, which requires additional computing efforts.

Recently, Chokt al. (2001) suggested the direct modification method (DMM) which corrects the
NC elements to pass the patch test by introducing correction constants for the derivatives of NC
modes. The fundamental concept of this method and applications to various element formulations
can be found in the published literatures (Chbial. 2001, Choi and Lee 2002a,b, Cheii al
2002c, Choi and Lee 2003). Moreover, Lee and Choi (2002) utilized the DMM in developing a 5-
node quadrilateral NC membrane element for modeling the transition zone between the refined and
unrefined meshes. Their element behaved well but the mesh refinement by 5-node elements is
limited to one-directional refinement pattern. In order to be more flexible andtilerfea the
element in generation of the transition zone, the extension of current 5-node element to include 6-
node cases is desired.

The aims of this work are 1) to develop a 6-node quadrilateral membrane element that shows
good performance and 2) to complete a series of variable node NC membrane elements which cai
be effectively used in the locally refined meches with an easy modification from coarse meshes.
Several numerical examples are analyzed to verify the performance of the proposed method.

2. Overview of non-conforming elements by direct modification method
2.1 Review of non-conforming elements

The total displacement field of an element which has additional NC displacement modes in
addition to the ordinary conforming displacement modes can be expressed as

u:ZMm+zﬁm (1)

in which N; and N; are the conforming shape functions and the additional non-conforming modes,
respectively, andi; and u; are the nodal displacements and additional unknowns corresponding to
the NC modes, respectively. Some NC shape functions used in this stushoarein Fig. 1. The
strain-displacement relation in the in-plane problem can be obtained in a usual manner, ie.,
derivation of displacement fields in Eq. (1) and written as

€= Bu+Bu 2)
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Fig. 1 Various NC modes

in which B and B are conforming and non-conforming part of strain-displacement matrix,
respectively.

It is noted that the additional degrees of freedom in Eq. (2) are interpreted as the amplitudes of
the added displacement modes rather than physical displacements at nodes and these intern
degrees of freedom can be condensed out later. Since there are no loads corresponding to th
internal degrees of freedomm , by rearranging the terms associated waitidl U in the load-
deflection equations, the equations may be partitioned as

Kee KenlOuO OFD
2 Moo= 0,0 (3a)
Ki, K,,OuO 00
where
KCC=_|'VBTDBdV, Kcnzj'VBTDEdV, and Knnzj'VETDEdV (3b)

and the subscript denotes conforming whereasdenotes non-conforming. The null sub-vector in

the lower part of the load vector in Eq. (3a) indicates that no nodal loads can be applied in
association with the NC modes. The enlarged element stiffness matrix in Eqg. (3a) can be condense
back to the same size as the stiffness matrix of the ordinary conforming elégmént using the

static condensation procedures as

(Kee—KenKinKeu = f (4)

The elements formulated in the aforementioned manner, i.e., addition of NC modes, are
designated as NC elements and show much improved behavior over original conforming element
(Choi and Schnobrich 1975). This procedure can be applied to the in-plane elements. However, this
type of elements was known not to always pass the patch test (Park and Choi 1997).
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2.2 Application of direct modification method

To obtain the state of constant strain for an element to pass the patch test, the strain energ
associated with NC modes should vanish in an element dafmaithe fashion as shown in Eq. (5).

[,Bldv=0 (5)

Recently, Chokt al. (2001) suggested the direct modification method (DMM) which set the NC
modes free from patch test failure. The fundamental concept of this method and applications to 8-
node hexahedral elements and 2-dimensional membrane elements with drilling degrees of freedornr
can be found in the published literatures (Céioal. 2001, Choiet al. 2002c).

For the sake of better understanding, some important equations obtained by the DMM are
repeated here as follows.

() = [30-0 z zuzé(o 0)EL ' c,amg (62)
(N = [30-0 z zu;%,(o 0)EL ' c,amg (6b)
where the correction constartig are defined in Eq. (7) and can be calculated analytically as
1 ON;
= _= o
o = ~gfa [ g d¢dn (7)

in whiché, =& andé =n

It is noted that the Eq. (7) can also be derived under the framework of the refined NC element
method (RNEM) proposed by Cheung and his co-workers (Cheung and Chen 1995, Chen and
Cheung 1997).

3. Variable-node non-conforming elements

3.1 Variable-node transition elements

Egs. (8a) and (8b) are the shape functions for the elements with variable mid-side nodes as shown il
Fig. 2.
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Fig. 2 Configuration of transition elements with variable midside nodes
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, 1
Ny = Nj —5Ns

N; = N3 —=Ng
N, = N,

_1 2
Ns = 5(1-&)(1-n)

Ne = S(1+ §)(1-1) (82)
where

N = i(1+ EE(L+nn), for i=1,2,3,4 (8b)

In Egs. (8a) and (8b), the shape functions for mid-side nodesNd,&\s, have non-zero values
only when the corresponding mid-side nodes exist. Figs. 3(a) and 3(b) show the different types of
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variable node elements generated based on the location of the mid-side node(s) relative to the basi
corner nodes. The stiffness matrices of the Type-Il to Type-IV element in Figs. 3(a) and 3(b) can be
easily obtained by the proper transformation from that of the Type-I.

The 7-node element and some 6-node elements with particular mid-sideammadgements in
Fig. 3(c) can be formulated in a similar manner & not considered in this study as it is more
convenient and efficient to subdivide them into two or four elements in practical use. Thus, only the
formulations for Type-I elements in Fig. 3 are discussed in this paper.

3.2 Variable-node elements for in-plane problems

The interpolations for the displacements and rotations can be expressed by the same shap
functions. However, the NC modeb!; are added to displacements only as the excellent
performance in the bending situation is expected (€hail. 2002c, Lee and Choi 2002). Thus, the
interpolated displacement and rotation fields for the variable node membrane elements are expresse
as

ug " no—
u=npnmg= NI i N uj (9&)
S T N

6=20-= z N; 6 (9b)

wheren is the number of nodes per element ant the number of NC modes used.
The infinitesimal strains and rotations can be expressed by using differential operators as

symniu = ZB,u,+ZB,uJ = Bu®+Bu° (20)

i=1
6—skewlu = ZN6+ ZGu +ZG,uJ = Gu*+N6& +GU° (11)
i=1

whereB and B are the strain-displacement matrices of conforming part and NC part, respectively.
G, G, N are vectors defined as

1 1 1 1 1 1
G = G_ENLY ENLX _ENZY ENZ,X _ENn’y ENn, NI (12a)
— 1- 1- 1- 1- 1- 1-
G = G—Eley ENLX —ENzyy ENZYX —ENm,y ENmXD (12b)
N=1IN;, N, .. NJO (12¢)

When B andG are used without any modification, the element cannot always be guaranteed to
pass the patch test due to the change of strain energy caused by addition of NC modes. To solv
this problem, DMM (Choket al. 2001) described briefly in Section 2.2 is adopted and the modified
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in Egs. (13b) and (13c) are obtained to reflace Gand

(11). Finally, the sub-matrices in Eq. (3) can be written as

Koo = Iv {B

DB

O

]

Olav + ay_[v

G'G G'N
N'G N'N

Koo = f,B DB dV+auf,G G dv

485
in Egs. (10) and
dv

(13a)

(13b)

(13c)

in which a is the problem dependent constant and 1 is used in this study. As seen in the above
equations, ifa equals zero, the independent rotation field vanishes so that there are no rotational
degrees of freedom considered.
Lee and Choi (2002) tested several integration schemes in developing NMD5-series elements to
find the best performance element. In this paper, basically the same integration schemes are applie
to NMD5-series elements (Lee and Choi 2002) are adopted to evaluate the stiffness matrices of
NMD6-series elements.
Table 1 shows a series of NMD6-I to -VI elements, systematically established according to the
NC modes added and the integration schemes used in the formulation. The development of the
series of NMD-6 elements can be regarded as diti@d to the family of NMD4 and NMD5
elements developed recently (Cladial. 2002c, Lee and Choi 2002) and may complete the entire
series of NMD elements. Here, the symbol NM@p is used to meanp:node Non-conforming
Membrane element witbDrilling degrees ofreedom - Type].

Table 1 Types of membrane elements

Non-conforming

Integration schemes

modes

Kee Ken Knn
Elements GG - - Remark
u, v BDB G'N =~ NG BDB GG
T, GG
NN
4-node  NMD4 Ny, Ny, Na, Nq 2x2 2x2 3x3 S5point 2x2 choietal
N2 N (2002c)
5-node  NMD5 N, Ni N; 8-point 8-point 3x3 8-point 3x 3-ee and Choi
(2002)
NMD6-1 Ny, Ng, No 3x3 3x3 3x3
NMD6-Il Ny, Ng, No 3x3  2x2 2x2 2x2
NMD6-Il N7, Ng, No 3x3  5-point 2x2 2x2 _
6-node D6V Ny, No No  3x3  5point Spoint 3x3 8-point 3x3 M Sudy
NMD6-V N7, Ng 3x3 b5-point 8-point 3x3 8-point 3x3
NMD6-VI N7, Ng 8-point 3x3 8-point 3x3 8-point 3x3
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4. Numerical analysis
4.1 Eigenvalue test

In order to check the presence of spurious zero energy modes eigenvalue analyses of a singl
unconstrained stiffness matrix have been performed. Among the series of NMD6 elements the
elements NMD6-1 and NMD6-VI do not have spurious zero energy modes (Table 2) while the
elements NMD6-II-NMD6-V have spurious zero energy modes. The elements with zero energy
modes may show unstable solutions for some problems and must not be recommended for &
practical use. However, for the purpose of comparison all the results of the presemedt®lare
listed in the following sections.

4.2 Patch test

The patch test suggested by MacNeal and Harder (1985) has been modified to accommodate th
mid-side nodes and carried out in order to check if the presented NMD6 series elements have the
capability of representing constant strain states. Four patch test models composed of different
combinations of 4-node, 5-node and 6-node elements are considered as shown in Fig. 4. The
properties and dimensions used in this test are; Young’s moBw#UsO x 16, Poisson’s ratiqu =
0.25, thicknesg = 0.001, side length = 0.24 andb = 0.12. Table 3 shows the locations of inner
nodes in the patch and the mid-side nodes are located at the centers of element edges. The probler
were solved with the prescribed displacement boundary and all the obtained results, including those
of element which have spurious zero energy modes, are identical to the theoratitahs¢bee
Table 4).

Table 2 Eigenvalue test

Elements Number of Number of spurious

Node ID zero energy mode zero energy mode Remark
4-node NMDA4 3 0 Choet al. (2002c)
NMD5 3 0 Lee and Choi (2002)
5-node CLM(Type-I) 3 0 .
Choi and Lee (1995
CLM(Type-Ii) 3 0 ! ee (1995)
NMD6-| 3 0
NMD6-II 5 2
NMD6-I1I 4 1 .
NMDG6-1V 5 5 This study
6-node NMD6-V 5 2
NMD6-VI 3 0
CLM(Type-I) 3 0 .
Choi and Lee (1995
CLM(Type-Ii) 3 0 ! (1995)
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Fig. 4 Patch test

Table 3 Location of inner nodes

Node X y
1 0.04 0.02
2 0.18 0.03
3 0.16 0.08
4 0.08 0.08

Table 4 Boundary conditions and theoretical results

Boundary conditions Theoretical solutions
u=10%x+yl2) &=¢g=y=10°
v =103y + X/2) oy = oy = 1333,1,y = 400

4.3 Cook’s problem

This problem was originally proposed by Cook as a test for the accuracy of quadrilateral elements
(Fig. 5) and has been frequently used to test new elements. Besides the shear dominant behavior,
also displays the effects of meststdrtion. The properties used in the tase; thickness =1.0,
Young's modulusE = 1.0, and Poisson’s ratjp= 1/3. The load® = 1.0 is distributed along the edge
side. The results for the tip deflection at point A obtained by using varieagests are compared
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Fig. 5 Cook’s membrane

with the reference value 23.91 obtained by numerical analysis for a refined model. Numerical tests
with the sequentially refined meshes were also carried out to check the convergence of the new
elements, and the test results are given in Table 5 along with those of other studies. All the types of
elements, i.e., 4-node, 5-node, and 6-node elements, produced satisfactory results. It is interesting t
note that the mixed model composed of 4-, 5-, 6-node elements can be used without generating an

problems.

4.4 L-type panel

To show the validity and applicability of the presenteshrants, L-type panel under an uniform
loads on the vertical side as shown in Fig. 6(a) is tested. The analyses were carried out using the
mesh composed of elements with various number of nodes as shown in Fig. 6(b). In this test,
NMD5 (Lee and Choi 2002) and NMD6-VI elements presented in this study are used together with

NMD4 elements (Choet al. 2002¢). The material properties used are: Young's modales1®
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Table 5 Tip displacements of Cook’s problem

Mesh

Elements Remark
1x1 2x%x2 4 x4
NMD4 16.72 22.97 23.67 Chait al. (2002c)
NMS-4Mb - 20.33 22.88 Choit al. (1999)
4-node SQ4A - 17.31 21.66 Choi and Paik (1994)
M2 - 20.09 22.90 lura and Atluri (1992)
MITC4 - 11.84 18.29 Bathe and Dvorkin (1986)
NMD5 20.47 21.07 23.18 Lee and Choi (2002)
5-node  CLM(Type-I) 18.71 19.67 22.86 .
CLM(Type-1I) 19.63 19.88 22.95 Choi and Lee (1995)
NMD6-I 20.36 22.28 23.08
NMD6-I| 20.78 21.42 23.29
NMD6-11I 20.78 21.42 23.29 This stud
NMD6-IV 19.20 20.73 22.98 y
6-node NMD6-V 18.58 20.10 2253
NMDB6-VI 20.51 22.88 23.22
CLM(Type-I) 18.88 20.83 23.13 Choi and Lee (1995)
CLM(Type-Il) 20.05 21.12 23.21
NMD4
Mixed NMD5 - 21.23 22.95 This study
NMD6-VI
Reference value 23.91

psi, and Poisson’s ratip = 0. The uniform load applied ¢gg= 1.0 Ib/in. Table 6 shows the stress

at point A (Fig. 6(a)) obtained by different meshes and the reference value was obtained by the
numerical analysis for a refined mesh using commercial software MSC/NASTRAN. Fig. 7(a) shows

the deformed shapes of Mesh-I to -1l with a scale of 500. The nodal stresses which prdatadra

from each Gauss points of the elements are averaged at each node and plotted in Fig. 7(b). To sho
the stress concentration near the point A more clearly, the contour is zoomed and illustrated togethel
with the original contour. The number of elements (NEL) and total number of degrees of freedom
(TDOF) used in the analyses are also listed in Table 6 for comparison. Even though a much smallet
number of TDOF was used for Mesh-Ill the result from the Mesh-Ill (Fig. 7(b)) are almost the
same as those from MSC/NASTRAN. The validity and effectiveness of the presented elements in

local mesh refinement is well demonstrated by this numerical example.

5. Conclusions

A series of 6-node NC membrane elements withirdyi degees of freedom has been presented.
Among the elements in the NMD6 series, the best performance was obtained by the element
NMD6-VI as shown in the results obtained by tests conducted in this study (Tables 2,5, and 6).
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Fig. 6 L-type panel
Table 6 Results of L-type panel
Stressoy at point A (psi) NEL TDOF Remark
Mesh-I 25 16 72
Mesh-II 3.5 72 612 This study
Mesh-lIl 10.5 664 2265
Reference value 10.6 4096 8448 MSC/NASTRAN

NEL :Number ofELements
TDOF : Total number oDegreesOf Freedom

Thus, the element NMD6-VI can be considered as the representative element of the entire element:
in the NMD6-series and designated simply as NMD6 in the practical applications with the
previously developed elements NMD4 and NMD5. The development of 6-node element presented in
this study has made the family of NMPx-nodeNon-conformingM embrane element witBrilling

degrees of freedom) complete and create a new category of elements termed “Variable Node
Membrane Element”. This type of elements are highly versatile in generating locally refined mesh
and the generation of transition mesh which connect a finer zone and coarser zone. The validity anc
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Fig. 7 Test results of L-type panel

applicability of these NMR-series elements in local mesh refinement is well demonstrated by the

practical examples such as ‘L-type panel’ for the in-plane problems.

Acknowlegements
The authors would like to thank the Korea Science and Engineering Foundation (KOSEF) for their
partial support of this work through Smart Infra-Structure TeldgyoCenter(SISTeC) at Korea

Advanced Institute of Science and Technology (KAIST).

References
Argyris, J.H., Hease, M. and Mlejnek, H.P. (1980), “On an unconventional but natural formulation of a stiffness



492 Chang-Koon Choi and Tae-Yeol Lee

matrix”, Comp. Meth. Appl. Mech. Eng@2, 1-22.

Bathe, K.J. and Dvorkin, E.N. (1986), “A formulation of general shell elements - the use of mixed interpolation
of tensorial componentsiht. J. Num. Meth. Eng22, 697-722.

Chen, W. and Cheung, Y.K. (1997), “Refined non-conforming quadrilateral thin plate bending eldénhedt”,
Num. Meth. Eng40, 3919-3935.

Cheung, Y.K. and Chen, W. (1995), “Refined nine-parameter triangular thin plate bending element by using
refined direct stiffness methoddfit. J. Num. Meth. Eng38, 283-298.

Choi, C.K. and Park, Y.M. (1989), “Nonconforming transition plate bending elements with variable midside
nodes”,Comput. Struct 32, 295-304.

Choi, C.K., Chung, K.Y. and Lee, T.Y. (2001), “A direct modification method for strains due to non-conforming
modes”,Struct. Eng. Mech11(3), 325-340.

Choi, C.K. and Lee, T.Y. (2002a), “Non-conforming modes for improvement of finite element performance”,
Struct. Eng. Mech14(5), 595-610.

Choi, C.K. and Lee, T.Y. (2002b), “Directly modified non-conforming modes for Mindlin plate-bending
elements’J. Eng. MechASCE, submitted.

Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002c), “Direct maodification for non-conforming elements with drilling
DOF”, Int. J. Num. Meth. Eng55, 1463-1476.

Choi, C.K. and Lee, T.Y. (2003), “Efficient remedy for membrane locking of 4-node flat shell elements by non-
conforming modes"Comp. Meth. Appl. Mech. End.92 1961-1971.

Choi, C.K. and Lee, W.H. (1995), “Transition membrane elements with drilling freedom for local mesh
refinements” Struct. Eng. Mech3(1), 75-89.

Choi, C.K. and Lee, W.H. (1996), “Versatile variable-node flat shell elem&nEZng. MechASCE, 122, 432-
441.

Choi, C.K. and Paik, J.G. (1994), “An efficient four node degenerated shell element based on the assumed
covariant strain”Struct. Eng. Mech2(1), 17-34.

Choi, C.K. and Schnobrich, W.C. (1975), “Nonconforming finite element analysis of skelisfig. Mech. Div.
ASCE, 101, 447-464.

Fellipa, C.A. and Bergan, P.G.. (1987), “A triangular bending element based on energy-orthogonal free
formulation”, Comp. Meth. Appl. Mech. En@], 129-160.

lura, M. and Atluri, S.N. (1992), “Formulation of a membrane finite element with drilling degrees of freedom”,
Comput. Mech9, 417-428.

Kim, S.H. and Choi, C.K. (1992), “Improvement of quadratic finite-element for Mindlin plate bendingJ,
Num. Meth. Eng34(1), 197-208.

Lee, T.Y. and Choi, C.K. (2002), “A new quadrilateral 5-node non-conforming membrane element with drilling
DOF", Struct. Eng. Mech14(6), 699-712.

MacNeal, R.H. and Harder, R.L. (1985), “A proposed standard set of problems to test finite element accuracy”,
Finite Elem. Anal. Des], 3-20.

Park, Y.M. and Choi, C.K. (1997), “The patch tests and convergence for nonconforming Mindlin plate bending
elements” Struct. Eng. Mech5(4), 471-490.

Taylor, R.L., Beresford, P.L. and Wilson, E.L. (1976), “A non-conforming element for stress andhsig’,
Num. Meth. Eng10, 1211-1219.

Wilson, E.L. and Ibrahimbegovic, A. (1990), “Use of incompatible displacement modes for the calculation of
element stiffnesses or stressdshite Elem. Anal. Des31, 229-241.

Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J. (1973), “Incompatible displacement models”, in
Numerical and Computer Models in Structural Mechgnids. S.J. Fenves, N. Perrone, A.R. Robinson, and
W.C. Schnobrich, Academic Press, New York, 43-57.



	Variable-node non-conforming membrane elements
	Chang-Koon Choi†
	Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Techno...

	Tae-Yeol Lee‡
	Department of Civil and Environmental Engineering, University of California, Los Angeles, CA90095...
	(Received January 24, 2003, Accepted July 15, 2003)
	Fig. 1 Various NC modes
	Fig. 2 Configuration of transition elements with variable midside nodes
	Fig. 3 Different type of transition elements
	Elements
	Non-conforming modes
	Integration schemes
	Remark
	Kcc
	Kcn
	Knn
	u, v
	BTDB
	GTG
	GTN
	NTN
	4-node
	NMD4
	2�°�2
	2�°�2
	3�°�3
	5-point
	2�°�2
	Choi et al. (2002c)
	5-node
	NMD5
	8-point
	3�°�3
	8-point
	3�°�3
	8-point
	3�°�3
	Lee and Choi (2002)
	6-node
	NMD6-I
	3�°�3
	3�°�3
	3�°�3
	This study
	NMD6-II
	3�°�3
	2�°�2
	2�°�2
	2�°�2
	NMD6-III
	3�°�3
	5-point
	2�°�2
	2�°�2
	NMD6-IV
	3�°�3
	5-point
	8-point
	3�°�3
	8-point
	3�°�3
	NMD6-V
	3�°�3
	5-point
	8-point
	3�°�3
	8-point
	3�°�3
	NMD6-VI
	8-point
	3x3
	8-point
	3�°�3
	8-point
	3�°�3
	Fig. 4 Patch test

	Elements
	Number of
	zero energy mode
	Number of spurious
	zero energy mode
	Remark
	Node
	ID
	4-node
	NMD4
	3
	0
	Choi et al. (2002c)
	5-node
	NMD5
	3
	0
	Lee and Choi (2002)
	CLM(Type-I)
	3
	0
	Choi and Lee (1995)
	CLM(Type-II)
	3
	0
	6-node
	NMD6-I
	3
	0
	This study
	NMD6-II
	5
	2
	NMD6-III
	4
	1
	NMD6-IV
	5
	2
	NMD6-V
	5
	2
	NMD6-VI
	3
	0
	CLM(Type-I)
	3
	0
	Choi and Lee (1995)
	CLM(Type-II)
	3
	0
	Node
	x
	y
	1
	0.04
	0.02
	2
	0.18
	0.03
	3
	0.16
	0.08
	4
	0.08
	0.08
	Boundary conditions
	Theoretical solutions
	u = 10-3(x�+�y/2)
	v = 10-3(y�+�x/2)
	ex = ey = g = 10-3
	sx = sy = 1333, txy = 400
	Fig. 5 Cook’s membrane

	Elements
	Mesh
	Remark
	1�°�1
	2�°�2
	4�°�4
	4-node
	NMD4
	16.72
	22.97
	23.67
	Choi et al. (2002c)
	NMS-4Mb
	-
	20.33
	22.88
	Choi et al. (1999)
	SQ4A
	-
	17.31
	21.66
	Choi and Paik (1994)
	M2
	-
	20.09
	22.90
	Iura and Atluri (1992)
	MITC4
	-
	11.84
	18.29
	Bathe and Dvorkin (1986)
	5-node
	NMD5
	20.47
	21.07
	23.18
	Lee and Choi (2002)
	CLM(Type-I)
	18.71
	19.67
	22.86
	Choi and Lee (1995)
	CLM(Type-II)
	19.63
	19.88
	22.95
	6-node
	NMD6-I
	20.36
	22.28
	23.08
	This study
	NMD6-II
	20.78
	21.42
	23.29
	NMD6-III
	20.78
	21.42
	23.29
	NMD6-IV
	19.20
	20.73
	22.98
	NMD6-V
	18.58
	20.10
	22.53
	NMD6-VI
	20.51
	22.88
	23.22
	CLM(Type-I)
	18.88
	20.83
	23.13
	Choi and Lee (1995)
	CLM(Type-II)
	20.05
	21.12
	23.21
	Mixed
	NMD4
	NMD5
	NMD6-VI
	-
	21.23
	22.95
	This study
	Reference value
	23.91
	Fig. 6 L-type panel

	Stress sy at point A (psi)
	NEL
	TDOF
	Remark
	Mesh-I
	2.5
	16
	72
	This study
	Mesh-II
	3.5
	72
	612
	Mesh-III
	10.5
	664
	2265
	Reference value
	10.6
	4096
	8448
	MSC/NASTRAN
	Fig. 7 Test results of L-type panel







