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Abstract. Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability
control mesh geometry independently from material geometry, the ALE methods are used to create
undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel 
problem. Fuel slosh is an important design consideration not only for the fuel tank, but also fo
structure supporting the fuel tank. “Fuel slosh” can be generated by many ways: abrupt chan
acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motio
also be involved if a “sloshing resonance” is generated. These sloshing events can in turn aff
overall performance of the parent structure. A finite element analysis method has been develo
analyze this complex event. A new ALE formulation for the fluid mesh has been developed to ke
fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities 
technical level. Following the explanation, the analysis capabilities are validated against theoretica
potential flow for calculating fuel slosh frequency.

Key words:  ALE; sloshing; multi-material formulation.

1. Introduction

The Arbitrary Lagrangian Eulerian (ALE) approach is based on the arbitrary movement 
reference domain which, additionally to the common material domain and spatial doma
introduced as a third domain, as detailed in (Hughes et al. 1981). In this reference domain, whic
will later on correspond to the finite element mesh, the problem is formulated. The arb
movement of the reference frame, accompanied of course by a good “mesh moving algo
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enables us to rather conveniently deal with moving boundaries, free surfaces, large deform
and interface contact problems. Sloshing tank is a typical example for free surface proble
industrial application and academia. In sloshing tank problems, when the tank is partially 
both gas and liquid coexist and the interface between these two phases is called a “free s
The “free surface” designation means that the interface is not constrained by the gas. In
words, the difference between the liquid and gas densities is such that the only influence of 
on the liquid surface is a relatively low pressure. Under these conditions, if the tank moves ab
a physical phenomenon occurs called ‘sloshing’.

The definition of fuel slosh is the following “Liquid fuels are violently turbulent in the fuel c
during hard acceleration, cornering, braking, and from rough terrain” (Summit Racing Equipm
The effect of this fluid sloshing concerns both tank designers and Classification Societie
summarize, there are three distinct areas of concern:

1.Sloshing loads on the tank itself. This is concerned with the tank fracturing during operatio
One example deals with the Coast Guard. The Code of Federal Regulations defines a r
slosh test for fuel tanks on all boats and associated equipment.

2.Sloshing loads on the parent structure. Slosh loads can have serious effects on the performa
of the parent structure. For example, the sloshing of a partially filled tank can jeopardiz
rollover stability of a tanker truck.

3.Sloshing and tank usefulness. The sloshing event may inhibit the effectiveness of pumps/gau
within the tank. For example, during a sloshing event, a fuel pump may not be able to pump

The traditional method for analyzing fuel slosh was with a simple hand calculation (Ble
1995). However, this method is limited to gentle sloshing - no slosh contacting the tank lid,
tank walls, rigid baffles without hole (Lee et al. 2002), etc. Thus, to predict accurately the sloshi
phenomenon, numerical techniques, which correctly model the free surface, were required.
numerical solution algorithms have been developed for both the Lagrangian formulation an
Eulerian formulation. In general, the choice of which representation to use depends o
characteristics of the specific problem. For example, when the free surface undergoes large
deformations, the Lagrangian formulation is not well suited and the Eulerian formulation is ch
Regardless of the formulation employed, this paper will briefly review the numerical approaches
that have been used to track the free surface. In particular, the ALE formulation, with an interface
tracking method, will be discussed.

The outline of this paper is arranged as follows. In section 2, a general description of the
Lagrangian phase and ALE formulation are described. Section 3 discusses the advection alg
used to solve conservation of mass, momentum and internal energy. Section 4 is devoted to i
tracking. Specifically, the interface tracking method developed by Young (1982), and adapted 
problem, is described. The last sections, 5 and 6, will both demonstrate the capabilities 
analysis code by comparing predicted sloshing frequencies with formula calculated slo
frequencies. 

2. ALE and VOF formulation

Fluid problems, in which interfaces between different materials (fuel and air, or fuel and void) are
present, are more easily modelled by using a Lagrangian mesh. However, if an analysis for c
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tank geometry is required, the distortion of the Lagrangian mesh makes such a method diffi
use many re-meshing steps are necessary for the calculation to continue. Another method t
the Eulerian formulation. This change from a Lagrangian to an Eulerian formulation, how
introduces two problems. The first problem is the interface tracking (Nakayama and Mori 1996) an
the second problem is the advection phase or advection of fluid material across element boun

To solve these problems, an explicit finite element method for the Lagrangian phase and a
volume method (flux method) for the advection phase are used. We can refer to several e
codes such as Pronto, Dyna3D and LS-DYNA; see (Hallquist 1998) for a full description o
explicit finite element method. 

The advection phase has been added to the LS-DYNA code extending the range of appli
that can be used with the ALE formulation (Souli and Zolesio 2001). Current applications in
sloshing involving a ‘free surface’, and high velocity impact problems where the target is mod
as a fluid material, thus providing a more realistic representation of the impact event by cap
large deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formulations. The 
Lagrangian description is the approach that: the mesh moves with the material, making it e
track interfaces and to apply boundary conditions. Using an Eulerian description, the mesh r
fixed while the material passes through it. Interfaces and boundary conditions are difficult to
using this approach; however, mesh distortion is not a problem because the mesh never cha
solid mechanics a pure Eulerian formulation it is not useful because it can handle only a 
material in an element, while an ALE formulation is assumed to be capable of handling more than
one material in an element.

In the ALE description, an arbitrary referential coordinate is introduced in addition to
Lagrangian and Eulerian coordinates. The material derivative with respect to the refe
coordinate can be described as (1). Thus substituting the relationship between the materi
derivative and the reference configuration time derivative derives the ALE equations,

(1)

where Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi is the relative velocity. Let
denote by v the velocity of the material and by u the velocity of the mesh. In order to simplify th
equations we introduce the relative velocity w = v − u. Thus the governing equations for the AL
formulation are given by the following conservation equations:

(i) Mass equation.

(2)

(ii) Momentum equation. 
The strong form of the problem governing Newtonian fluid flow in a fixed domain consists o

governing equations and suitable initial and boundary conditions. The equations governing th
problem are the ALE description of the Navier-Stokes equations:

(3)

∂f Xi t,( )
∂ t

-------------------
∂ f xi t,( )

∂t
------------------ wi

∂f xi t,( )
∂xi

------------------+=

∂ρ
∂ t
------ ρ

∂vi

∂xi

-------– wi
∂ρ
∂xi

-------–=

ρ
∂vi

∂t
------- σi j j, ρbi ρwi

∂vi

∂xj

-------–+=



426 N. Aquelet, M. Souli, J. Gabrys and L. Olovson

erence
rence

ast the
 more

oaches
fully
rs can
perator
irst a

se the
d. The
The stress tensor σij is described as follows:

The last equations are solved with the following boundary conditions and initial conditions:

on Γ1 (4)

on Γ2 (5)

where

(6)

Γ is the whole boundary of the calculation domain, and Γ1 and Γ2 are partial boundaries of Γ. The
superscript means prescribed value, ni is the outward unit normal vector on the boundary, and δij is
Kronecker’s delta function. The velocity field is assumed as known at t = 0 in the whole domain Ω.

(7)

(iii) Energy equation.

(8)

Note that the Eulerian equations are derived by assuming that the velocity of the ref
configuration is zero and that the relative velocity between the material and the refe
configuration is therefore the material velocity. The term in the relative velocity in (3) and (4) is
usually referred to as the advective term, and accounts for the transport of the material p
mesh. It is the additional term in the equations that makes solving the ALE equations much
difficult numerically than the Lagrangian equations, where the relative velocity is zero.

There are two ways to implement the ALE equations, and they correspond to the two appr
taken in implementing the Eulerian viewpoint in fluid mechanics. The first way solves the 
coupled equations for computational fluid mechanics; this approach used by different autho
handle only a single material in an element. The alternative approach is referred to as an o
split in the literature, where the calculation, for each time step is divided into two phases. F
Lagrangian phase is performed, in which the mesh moves with the material, in this pha
changes in velocity an internal energy due to the internal and external forces are calculate
equilibrium equations are:

 (9)

(10)

σ i j pδi j– µ vi j, vj i,+( ).+=

vi Ui
0=

σ i j nj 0=

Γ1 Γ2∪ Γ Γ1 Γ2∩ 0=,=

vi xi 0,( ) 0=

ρ∂E
∂ t
------ σi j vi j, ρbivi ρwj

∂E
∂xj

-------–+=

ρ
∂vi

∂ t
------- σ i j j, ρbi ,+=

ρ∂E
∂ t
------ σi j vi j, ρbivi .+=
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In the Lagrangian phase, mass is automatically conserved, since no material flows acro
element boundaries. 

In the second phase, the advection phase, transport of mass, internal energy and momentu
cell boundaries are computed; this may be thought of as remapping the displaced mesh
Lagrangian phase back to its original or arbitrary position.

From a discretization point of view of (9) and (10), one point integration is used for effici
and to eliminate locking, Benson (1997). The zero energy modes are controlled with an hou
viscosity (Flanagan and Belytschko 1981). A shock viscosity, with linear and quadratic term
used to resolve the shock wave (Richtmyer and Morton 1967); a pressure term is added
pressure in the energy Eq. (10). The resolution is advanced in time with the central diffe
method, which provides a second order accuracy in time using an explicit method in time.

For each node, the velocity and displacement are updated as follows:

(11)

Where Fint is the internal vector force and Fext the external vector force associated with body forc
and boundary conditions, M is the mass matrix diagonalized. For each element of the mesh
internal force is computed as follows:

B is the gradient matrix and Nelem is the number of elements.
The time step size, ∆t, is limited by the Courant stability condition (Hallquist 1998), which m

be expressed as: 

(12)

     

Where l is the characteristic length of the element, Q is a term derived from the shock viscosity, C1

and C2 are the coefficients for the linear and quadratic terms of the shock viscosity. The Q term
introduced in the equation is positive for compression and zero for tension, when c is the speed of
sound through the material in the element. For a solid material, the speed of sound is:

(13)

(14)

u
n 1+ 2⁄ u

n 1– 2⁄ t M 1– Fexl Fint+( )⋅ ⋅∆+=

xn 1+ xn 1– tun 1+ 2⁄∆+=

Fint Bt σ dv⋅ ⋅
k
∫

k 1=

Nelem

∑=

t∆ l

Q Q2 c2+( )1 2⁄
+

---------------------------------------≤

Q C1 c⋅ C2 div u( ) for div u( ) 0<+=

Q 0= div u( ) 0≥

c2

4
3
---G k+

ρ0

-----------------=

k ρ0
∂P
∂ρ
------ P

ρ
---∂P

∂e
------+=
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where ρ is the material density, G is the shear modulus, and P(ρ, e) is the equation of state. In (14)
the second term on the right hand side accounts for the stiffening effect due to the incre
internal energy as the material is compressed. For a fluid material, k = ρ0c

2 in which ρ0 is the mass
density and c is the sound velocity. For fluid material the viscosity is ignored in the calculatio
the speed of sound. For sloshing tank problems the pressure is much greater than the de
components stress due the fluid viscosity, and the deviatoric stress is sometimes ignored.

The VOF (Volume of Fluid) method is attractive for solving a broad range of non-linear problem
in fluid and solid mechanics, because it allows arbitrary large deformations and enables fre
surfaces to evolve. The Lagrangian phase of the VOF method is easily implemented in an e
ALE finite element method. Before advection, special treatment for the partially voided elem
needed. For an element that is partially filled, the volume fraction satisfies

(15)

The total stress by σ is weighed by volume fraction.

(16)

For voided elements, the stress is zero. In the computational process, the elements loop go
through elements that are not voided. For free surface problems, the elements that are partially filled
( ) define the free surface. In order to compute accurately the free surface in a slo
problem, interface-tracking algorithm is performed before the remesh process and advection p

3. Moving mesh algorithm

The remeshing process is needed for some sloshing problems. However, for arbitrary moving
tanks, the fluid mesh moves as a rigid mesh following the tank. This new ALE feature allow
mesh to stay regular, and the time step, which can be affected by mesh distortion, to be st
other words, there is only mesh motion and no mesh distortion due to the ALE formulation
method is very useful for moving or rotating tanks (see Fig. 1), where the fluid mesh will mov
rotate with the tank without undergoing any mesh deformation.

Vf 1≤

σf σ Vf⋅=

Vf 1<

Fig. 1 Free drop test on an inclined rigid plate
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Fig. 1 describes a drop test of a partially filled rigid structure tank on an inclined rigid plate
new ALE algorithm allows the fluid mesh to follow the movement of the structure. The inte
of mesh structure is maintained. As the structure impacts the rigid plate and then move
rotates, the fluid mesh moves as a rigid mesh in the coordinate system attached to the st
This ALE algorithm can be applied to several problems in moving structure that are rig
undergo small deformations. The following Fig. 2 describes the location of the tank at time t = 0 ms,
t = 19 ms, t = 38 ms and t = 58 ms as well as the free surface separating the fluid material an
void.

Different ALE formulations can be used if the tank is not rigid, and may undergo l
deformations. For these applications, a fluid structure coupling needs to be performed to ta
account the structure deformations as well as these effects on the fluid. The goal of this pap
focus on the sloshing problem for rigid tanks. Fluid structure coupling for compliant stru
requires more sophisticated ALE algorithms that we will present in a following paper.

Fig. 2 Free drop test, and free surface location
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4. Stress equilibrium and interface tracking

After the Lagrangian phase is performed, either the stress tensor, pressure and deviatori
should be equilibrated, but most mixture theories equilibrate only pressure, Benson (1997
pressure equilibrium is a non-linear problem, which is complex and expensive to solve. Skippi
stress equilibrium phase is assuming an equal strain rate for both materials, which is incorre
most problems, the linear distribution based on volume fraction of the volumetric strain during the
Lagrangian phase also leads to incorrect results. The volume distribution should be scaled
bulk compression of the two materials in the element. For example, in an element containing 
water, the air, which is highly compressible, will absorb most of the volumetric strain. By assu
an equal strain rate or volumetric strain scaled on the volume fraction of the element, the w
forced to accept the same amount of strain as the air, and will undergo artificial high stresses.

There are several methods to treat the free surface in a fluid problem; the common one
MAC method, which involves Eulerian flow calculation and Lagrangian particle movement. 
velocity of the markers is found first by locating the fluid cell containing the particle and taking
average velocities of the cell nodes (the average is based on the finite element particles in th
cell). The particle cells have small inertia and tend to follow the fluid flow. However, the M
method becomes complicated if the interfaces become highly distorted or if the geome
complex.

Another possible way of tracking interfaces is the use of the volume fractions of the eleme
the Young method (Young 1982). The Young method is developed to track an interface in ele
containing two materials for two-dimensional problems. This method is adapted in this paper f
two dimensional problems. In this method, the material layout is described solely by the vo
fraction of the fluid material in the element. Specifically, a straight line using the SLIC techn
(Simple Linear Interface Calculation) of Woodward and Collela (1982) approximates the interfa
the cell. Interfaces are initially drawn parallel to the element faces. Then nodal volume fract
computed to each node based on the fraction volumes of elements that share the same no
volume fraction determines the slope of the material interface inside the element. The posi
the interface (see Fig. 3) is then adjusted so that it divides the element into two volumes, which
correctly matches the element volume fraction.

The interface position is used to calculate the volume of the fluid flowing across cell sides
normal vector to the interface inside the element is defined by:

 n
grad f

grad f
-------------------=

Fig. 3 Interface between two materials, air and water, is oriented by the normal  in a Eulerian cen
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where f is the nodal volume fraction. As the X-advection, Y-advection and Z-advection 
calculated in separate steps, it is sufficient to consider the flow across one side only. The in
calculation prevents advection of very small fluxes between partially filled and empty elem
Instead fluid flow is transported from ‘filled’ element to ‘empty’ element and this change in vol
will be monitored and used to ‘fill-up’ the element or increase its volume fraction. 

5. Advection phase

In the second phase, the transport of mass, momentum and internal energy across the 
boundaries is computed. This phase may be considered as a ‘re-mapping’ phase. The d
mesh from the Lagrangian phase is remapped into the initial mesh for an Eulerian formulati
an arbitrary distorted mesh for an ALE formulation.

In this advection phase, we solve a hyperbolic problem, or a transport problem, wher
variables are density, momentum per unit volume and internal energy per unit volume. Details
numerical method used to solve the equations are described in detail in (Young 1982, Benson
where the Donor Cell algorithm, a first order advection method and the Van Leer algorith
second order advection method (Van Leer 1977) are used. As an example, the equation fo
conservation is:

(17)

It is not the goal of this paper to describe the different algorithms used to solve the Eq. (17)
algorithms have already been described in detail by Benson (1992) and Souli et al. (2000). In this
section, we will focus on the ‘staggered’ mesh used for the momentum advection, Benson (19

The advected momentum is used for the computation of the new nodal velocities. To p
distribution of momentum from nodes to elements during the advection and from elements to no
during nodal velocity calculations, the momentum advection is done only through the nodes
procedure requires a staggered mesh. A mesh is staggered with respect to the original mesh
the original mesh centroids become the new nodes. Yaqui (Amsden and Hirt 1973) develop
first code to construct a staggered mesh (see Fig. 4) for the momentum advection, and th
idea is still in common use. 

∂ρ
∂ t
------ ∇ ρu( )⋅+ 0=

Fig. 4 Staggered mesh and original mesh
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A cell centred advection algorithm is applied to the staggered mesh for the momentum adv
The data necessary for the advection algorithm are the cell volume before and after the Lag
phase, nodal velocities, nodal masses and fluxes between cells. All the data are ready 
staggered mesh except for the fluxes. The new flux values on the staggered mesh are define
a regular distribution of the fluxes from the original mesh element faces to the new element face
Once the new flux on the staggered mesh is computed, the momentum advection is per
according to the following algorithm:

(18)

where the superscripts ‘−’ and ‘+’ refer to the solution values before and after the transport. Va
that are subscripted by j refer to the boundaries of the elements, through which the material f
and the Vj

− are the fluxes transported through the adjacent elements, these fluxes are com
using the staggered mesh. The flux is positive if the element received material and negative
element is loosing material. Details of the advection algorithm are described in (Benson 1998)

6. Analytical model

The fluid motions of a partially filled tank are studied using a bidimensional mathematical m
The liquid in an open tank (see Fig. 5) can flow back and forth across the basin in standing w
discrete natural frequencies. The purpose of this section is to find the natural frequency and
shape of a two-dimensional partially filled tank by using Fourier Series expansion. The liqu
assumed homogeneous, inviscid, irrotational and incompressible. The boundaries are rig
fluctuations in pressure on the walls due to sloshing exclude flexing of the tank wall that can 
significant influence on the natural frequencies and mode shapes of sloshing in extreme cas
linear effects are neglected: the wave amplitudes are very small in comparison with the wave
and depths. Po represents the pressure of the surrounding atmosphere and the surface t
negligible.

The fluid of Fig. 5 represents the domain called D(t) and the free surface, which separates t

V+M + V–M– Vj
–M j

–Nbedges

j 1=∑+=

Fig. 5 Partially filled tank
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fluid material from the atmosphere, is the boundary called S(t). 
A particle M(x, z) is represented by its location in the (x, z) plane,  in the

plan . The fluid particle velocity is defined by:

where d/dt is the particle derivative.
A very small perturbation of the free surface is assumed. Therefore, in the general asym

expansion of any physical variable (see Eq. (19)), in which epsilon ε is considered as a smal
parameter, the approximation is carried out to the first order. Higher order terms than ε are
neglected in the following asymptotic expansion:

(19)

Since the fluid is assumed incompressible, non-rotational and inviscid, the Eqs. (20) and (2
the liquid velocity field enable us to introduce the potential function of the flow:

(20)

(21)

Indeed, if  is a non-null velocity field, the Eq. (21) is verified if and only if 

(22) 

with φ (x, z, t) the velocities potential of the fluid.
 
The velocity field is derived from the velocity potential φ (x, t) that verifies Laplace’s Eq. (23)

given by the previous relations (20) and (22).

∆φ = 0 in D(t) (23)

The general asymptotic expansion (19) of the velocity potential φ is introduced in the Eq. (23):
the following development, φ (x, z, t) = φ (0) + ε · φ (1) + O(ε), gives the Eq. (24), which is Laplace’
equation at the first order.

∆φ(1) = 0 in D(t) (24) 

The free surface equation is F(x, z, t) = 0 for . Since free surface is a materi
boundary, the particle derivative can be applied to the previous equation to yield the follo
relation:

(25)

If  is the velocity field of fluid boundaries, the kinematic condition, 

where  is the normal at the boundary, leads to the Eq. (26):

OM x i⋅ z k⋅+=
O i k, ,( )

V x z t, ,( ) dOM x z t, ,( )
dt

------------------------------=

λ λ o( ) ε λ 1( )⋅ O ε( )+ +=

div V( ) 0 in D t( )=

rot V( ) 0 in D t( )=

V

V x z t, ,( ) gradφ x z t, ,( ) ∂φ
∂x
------ t( )  

∂φ
∂z
------ t( ), 

  in D t( )= =

x 0 b,[ ]∈

dF x z t, ,( )
dt

------------------------ ∂F
∂t
------ ∂F

∂x
------dx

dt
------ ∂F

∂z
------dz

dt
-----+ + 0= =

U dx dt⁄  dz dt⁄,( ) U V–( ) n⋅ 0=

n grad F grad F⁄=
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If n(x, t) represents the free surface elevation, 

F(x, z, t) = n(x, t) − z = 0 on  SL(t) (27)

This latter equation instead of F(x, z, t) in (26) gives the Eq. (28) that is expanded with t
asymptotic development of free surface z-displacement (see Eq. (29)) to obtain the equation 
order (30). To be more precise, the kinematic Eq. (26) becomes the following relation:

(28)

As the free surface motion is assumed to be very small, the general form (19) of n(x, t) leads to
the Eq. (29) in which the higher term is of the first order:

(29) 

The Eq. (29) included in (28) gives the following relation: 

 (30)

The asymptotic expansion of the free surface dynamic condition must be led to solve the problem
In order to obtain this condition, Bernoulli’s equation that establishes a relation betwee
velocities potential and the pressure of fluid P is given by the Eq. (31).

(31)

where ρ is the mass density, g the gravity and C(t) is any function of time.
On the free surface, the fluid pressure is assumed to be equal to the atmospheric pressPo.

Using the form (19) for the physical variables of the Eq. (31) leads to the form of first ord
Bernoulli’s equation:

 
(32)

The function C(t) can be chosen equal to Po/ρ. The previous equation becomes of the first order:

(33) 

Then n(1) can be cancelled between the Eq. (33) and the Eq. (30) to yield the resultant conditio
is an equation with the velocities potential only:

(34)

dF x z t, ,( )
dt

------------------------ ∂F
∂t
------ ∂F

∂x
------∂φ

∂x
------ ∂F

∂z
------∂φ

∂z
------+ + 0 on SL t( )= =

∂F
∂ t
------ ∂ n x t,( ) z–( )

∂x
--------------------------------∂φ

∂x
------ ∂ n x t,( ) z–( )

∂z
--------------------------------∂φ

∂z
------+ + 0 on SL t( )=

n x t,( ) ε n 1( )⋅ O ε( )+=

∂n 1( )

∂t
----------- ∂φ 1( )

∂z
-----------– 0 on SL t( )=

∂φ
∂t
------ 1

2
--- grad φ( )

2 P
ρ
--- g z⋅+ + + C t( ) in D t( )=

Po
ρ

------- ε ∂φ 1( )

∂ t
----------- g n 1( )⋅+ 

 ⋅ O ε( ) C t( ) on SL t( )=+ +

∂φ 1( )

∂ t
----------- g n 1( )⋅ 0 on SL t( )=+

∂2φ 1( )

∂ t2
------------- g

∂φ 1( )

∂z
-----------⋅+ 0 on SL t( )=
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Three kinematic boundary conditions at the tank frontiers make up the problem. S
conditions are imposed on the lateral walls and on the ground. Therefore, the normal veloci
these frontiers are vanished: 

(35a)

The introduction of the asymptotic expansion of the velocity potential, φ (x, z, t) = φ (0) + ε ·
φ (1) + O(ε), in the previous equations leads to boundary conditions that take the following for
the first order: 

(35b)

The sloshing problem in a bidimensional tank carried out to the first order sums up the line
eq uations governing the fluid motion:

 

 (36)

(37)

(38)

(39) 

   (40)

Since the natural frequencies of this problem are the aim of this paragraph, the solution is
assumed to be harmonic with a pulsation ω : φ (1) = ϕ (x, z) ·e−iωt. This mathematical definition of
the velocity potential is introduced in the previous equations. The Eqs. (36) to (40) of the pr
become:

v x 0=( ) ∂φ
∂x
------ x 0=( ) 0= =

v x b=( ) ∂φ
∂x
------ x b=( ) 0 on SL t( )= =

w z h–=( ) ∂φ
∂z
------ z h–=( ) 0= =

∂φ 1( )

∂x
----------- x 0=( ) 0=

∂φ 1( )

∂x
----------- x b=( ) 0 on SL t( )=

∂φ 1( )

∂z
----------- z h–=( ) 0=

∂2φ 1( )

∂t2
------------- g

∂φ 1( )

∂z
-----------⋅+ 0    in D t( )=

φ 1( )∆ 0    in D t( )=

∂φ 1( )

∂x
----------- x 0=( ) 0    on SL t( )=

∂φ 1( )

∂x
----------- x b=( ) 0    on SL t( )=

∂φ 1( )

∂z
----------- z h–=( ) 0    on SL t( )=
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   (41)

(42)

(43)

(44) 

   (45)

In order to solve the equations, the separation of variables x and z for function ϕ is assumed:

(46)

Substituting this expression in Laplace’s Eq. (42) results in two distinct equations, in which the
parameter k, a constant value, is the wave number:

(47)

(48)

The expressions (49) and (50) give the well-known solutions of Eqs. (47) and (48), whic
substituted in the boundary conditions through the velocity potential.

(49)

(50)

where A, B and C are constant values.

The function q(z) is defined in order to satisfy the boundary condition (45).
By using the definition (46) of the function ϕ (x, z), the Eqs. (49) and (50) are then inserted in t

Eqs. (43) and (44). After simplifications, we obtain respectively:

(51)

(52)

This last equation involves the following relation, in which n is an integer number:

 (53)

Similarly, the dynamic free surface condition (41) becomes the well-known dispersion re
between the pulsation ω and the wave number k, (Wiegel):

(54)

∂ϕ
∂z
------ ω2

g
------– ϕ⋅ 0    in D t( )=

ϕ∆ 0    in D t( )=

∂ϕ
∂x
------ x 0=( ) 0    on SL t( )=

∂ϕ
∂x
------ x b=( ) 0    on SL t( )=

∂ϕ
∂z
------ z h–=( ) 0    on SL t( )=

ϕ x z,( ) p x( ) q z( )⋅=

∂2p

∂x2
-------- k p⋅+ 0=

∂2q

∂z2
-------- k q⋅– 0=

p x( ) A cos k x⋅( )⋅ B sin k x⋅( )⋅+=

q z( ) C ch k z h+( )⋅[ ]⋅=

B 0=

A sin k b⋅( )⋅ 0=

k b⋅ n π⋅=

ω2 g k th k h⋅( )⋅ ⋅=
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As the pulsation is defined by: ω = 2 ·π · f, the Eqs. (53) and (54) give the slosh frequencyf,
(Blevins 1995):

with n, an integer number (55)

Two extreme cases can be studied in order to understand the physical meaning of the f
(55): the basin depth is smaller than the breadth or, conversely, the depth of the tank is bigg
the breadth. In the shallow liquid case, h is smaller than b. Therefore, the fundamental natura
frequency is estimated by the following equation:

(56)

The resonance frequency of surface waves in a harmonic rolling tank with large lateral dimension
appears as the wavelength λ equals twice the breadth b and the celerity equals the gravity wav
velocity: λ0 = 2b and . For a lake whose the breadth is of order of kilometers, 
natural period is of the order of minutes or even hours.

In the deep liquid case, h is higher than b. The fundamental frequency is approximated by t
following expression:

(57)

The resonance frequency of surface waves in a harmonic rolling tank with large lateral dimension
appears as the wavelength λ equals twice the breadth b and the celerity equals a particular gravit

wave velocity: λ0 = 2b and . In both particular cases, the fundamental natural freque

of a basin decreases with increasing tank breadth.

7. Numerical results

To validate the numerical model, Eq. (55) is used to predict sloshing frequencies for a simpl
with various fuel amounts. The tank chosen was approximately 100 inches (254 cm) by 50 
(127 cm). Three different fuel heights were analyzed: 25%, 50% and 75%. 

Next, this specific tank was modeled by a mesh composed of 17988 solid elements and a s
event was introduced. Initially assigning velocities to both the tank and the fluid, then stoppin
tank motion at 0.00001 seconds created the sloshing event. Rigid material was used to re
tank walls. The finite element model and the induced sloshing event are shown in Fig. 6.

Comparing the predicted sloshing frequencies against calculated values for three differe
levels reveals a maximum error below 3%, see Fig. 7. This analysis demonstrates that LS-
can accurately predict sloshing frequencies.

Now that the analysis method has been validated, the effects of baffles on sloshing frequenc
investigated. Three different baffle configurations were investigated, see Fig. 8. 

f
1
2
--- g n⋅

bπ
---------- th

nπh
b

---------- 
 =

f0
gh

2b
---------- if   

h
b
--- 1

10
------<=

c0 g h⋅=

f0
1
2
--- g

πb
------

gb
π
------

2b
---------- if

h
b
--- 1>= =

c0
g b⋅

π
----------=
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Comparing the predicted sloshing frequencies reveals some interesting results, see Fig. 9. Notice
that case 1, baffles without holes, behaves like an under damped system. Case 2, baffles wi
holes, behaves like a damped system, and case 3, baffles with large holes, behaves like a 
damped system. 

This behaviour is directly related to the flow through the baffles. Specifically, vortices are created
as flow travels between the adjacent bays, see Fig. 10. These vortices consume energ
reducing the overall energy in the problem. Fig. 10 shows the flow through the baffles, w
damps out the fluid forces applied on the structure.

Fig. 7 Plot comparing calculated and predicted sloshing frequencies for a sample tank without baffl

Fig. 6 Finite element model and analysis depicting a sloshing event
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Fig. 10 Time history ‘snap-shots’ showing fluid flow

Fig. 8 Half filled tank in three different baffle configurations

Fig. 9 Displacement of the center of gravity of the fluid versus time for three cases: no holes, small holes,
large holes
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