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Abstract.  Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to
control mesh geometry independently from material geometry, the ALE methods are used to create a new
undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh
problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the
structure supporting the fuel tank. “Fuel slosh” can be generated by many ways: abrupt changes in
acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can
also be involved if a “sloshing resonance” is generated. These sloshing events can in turn affect the
overall performance of the parent structure. A finite element analysis method has been developed to
analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the
fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a
technical level. Following the explanation, the analysis capabilities are validated against theoretical using
potential flow for calculating fuel slosh frequency.
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1. Introduction

The Arbitrary Lagrangian Eulerian (ALE) approach is based on the arbitrary movement of a
reference domain which, additionally to the common material domain and spatial domain, is
introduced as a third domain, as detailed in (Hugtesl. 1981). In this reference domain, which
will later on correspond to the finite element mesh, the problem is formulated. The arbitrary
movement of the reference frame, accompanied of course by a good “mesh moving algorithm”,
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enables us to rather conveniently deal with moving boundaries, free surfaces, large deformations,
and interface contact problems. Sloshing tank is a typical example for free surface problems in
industrial application and academia. In sloshing tank problems, when the tank is partially filled,
both gas and liquid coexist and the interface between these two phases is called a “free surface”
The “free surface” designation means that the interface is not constrained by the gas. In other
words, the difference between the liquid and gas densities is such that the only influence of the gas
on the liquid surface is a relatively low pressure. Under these conditions, if the tank moves abruptly,
a physical phenomenon occurs called ‘sloshing’.

The definition of fuel slosh is the following “Liquid fuels are violently turbulent in the fuel cell
during hard acceleration, cornering, braking, and from rough terrain” (Summit Racing Equipment).
The effect of this fluid sloshing concerns both tank designers and Classification Societies. To
summarize, there are three distinct areas of concern:

1.Sloshing loads on the tank itsefhis is concerned with the tank fracturing during operation.

One example deals with the Coast Guard. The Code of Federal Regulations defines a requirec
slosh test for fuel tanks on all boats and associated equipment.

2. Sloshing loads on the parent structugdosh loads can have serious effects on the performance

of the parent structure. For example, the sloshing of a partially filled tank can jeopardize the
rollover stability of a tanker truck.

3. Sloshing and tank usefulne§he sloshing event may inhibit the effectiveness of pumps/gauges

within the tank. For example, during a sloshing event, a fuel pump may not be able to pump fuel.

The traditional method for analyzing fuel slosh was with a simple hand calculation (Blevins
1995). However, this method is limited to gentle sloshing - no slosh contacting the tank lid, rigid
tank walls, rigid baffles without hole (Lest al. 2002), etc. Thus, to predict accurately the sloshing
phenomenon, numerical techniques, which correctly model the free surface, were required. These
numerical solution algorithms have been developed for both the Lagrangian formulation and the
Eulerian formulation. In general, the choice of which representation to use depends on the
charactestics of the specific problem. For example, when the freeacuriundergoes large
deformations, the Lagrangian formulation is not well suited and the Eulerian formulation is chosen.
Regardless of the formulation employed, this paper will briefly review tmeerical approaches
that have been used to track the free surface. In particular, the ALE formulatiorgrwinterface
tracking method, will be discussed.

The outline of this paper is arranged as follows. In section 2, aragedescription of the
Lagrangian phase and ALE formulation are described. Section 3 discusses the advection algorithms
used to solve conservation of mass, momentum and internal energy. Section 4 is devoted to interfac
tracking. Specifically, the interface tracking method developed by Young (1982), and adapted to our
problem, is described. The last sections, 5 and 6, will both demonstrate the capabilities of the
analysis code by comparing predicted sloshing frequencies with formula calculated sloshing
frequencies.

2. ALE and VOF formulation

Fluid problems, in which interfaces between different materials (fuel and air, or fugbia)dre
present, are more easily modelled by using a Lagrangian mesh. However, if an analysis for complex
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tank geometry is required, the distortion of the Lagrangian mesh makes such a method difficult to
use many re-meshing steps are necessary for the calculation to continue. Another method to use |
the Eulerian formulation. This change from a Lagrangian to an Eulerian formulation, however,
introduces two problems. The first problem is the interfemeking (Nakayama and Mori 1996) and

the second problem is the advection phase or advection of fluid material across element boundaries.

To solve these problems, an explicit finite element method for the Lagrangian phase and a finite
volume method (flux method) for the advection phase are used. We can refer to several explicit
codes such as Pronto, Dyna3D and LS-DYNA; see (Hallquist 1998) for a full description of the
explicit finite element method.

The advection phase has been added to the LS-DYNA code extending the range of applications
that can be used with the ALE formulation (Souli and Zolesio 2001). Current applications include
sloshing involving a tfee surface’, and high velocity impact problems where the target is modeled
as a fluid material, thus providing a more realistic representation of the impact event by capturing
large deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formulations. The pure
Lagrangian description is the approach that: the mesh moves with the material, making it easy to
track interfaces and to apply boundary conditions. Using an Eulerian description, the mesh remains
fixed while the material passes through it. Interfaces and boundary conditions are difficult to track
using this approach; however, mesh distortion is not a problem because the mesh never changes. |
solid mechanics a pure Eulerian formulation it is not useful because it can handle only a single
material in an element, while an ALE formulation is assumed to be capable dihhandre than
one material in an element.

In the ALE description, an arbitrary referential coordinate is introduced in addition to the
Lagrangian and Eulerian coordinates. The material derivative with respect to the reference
coordinate can be described as (1). Thus substituting the relationship between the material time
derivative and the reference configuration time derivative derives the ALE equations,

KX t)  OF(x,t)  OF(x, 1)
- o Mok (1)

where X; is the Lagrangian coordinat®, the Eulerian coordinatey; is the relative velocity. Let
denote byv the velocity of the material and hythe velocity of the mesh. In order to simplify the
equations we introduce the relative veloaity= v - u. Thus the governing equations for the ALE
formulation are given by the following conservation equations:

(i) Mass equation.

oo _ _ M_ . 9P
ot - " Pax, " Viax (2)
(i) Momentum equation.
The strong form of the problem governing Newtonian fluid flow in a fixed domain consists of the
governing equations and suitable initial and boundary conditions. The equations governing the fluid
problem are the ALE desgption of the Navier-Stokes equations:

oV, ov;
P = i "‘Pbi—PWi& (3)
i
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The stress tensar; is described as follows:
O = —pY + p(Vi; + V).

The last equations are solved with the following boundary conditions and initial conditions:

0

vi = U’ on I, 4)
oin, =0 on T, (5)

where
r,or,=rn, rnr,=0 (6)

I" is the whole boundary of the calculation domain, Bp@ndl , are partial boundaries 6f. The
superscript means prescribed valgeis the outward unit normal vector on the boundary, gnis
Kronecker’s delta function. The velocity field is assumed as knowr & in the whole domaif.

vi(x;,0) = 0 (7)
(iii) Energy equation.

7It5 = OyVvi;t PbiVi—Png_)l(Ej (8)

Note that the Eulerian equations are derived by assuming that the velocity of the reference
configuration is zero and that the relative velocity between the material and the reference
configuration is therefore the material velocity. The term in the relative ielioc (3) and (4) is
usually referred to as the advective term, and accounts for the transport of the material past th
mesh. It is the additional term in the equations that makes solving the ALE equations much mor
difficult numerically than the Lagrangian equations, where the relative velocity is zero.

There are two ways to implement the ALE equations, and they correspond to the two approache
taken in implementing the Eulerian viewpoint in fluid mechanics. The first way solves the fully
coupled equations for computational fluid mechanics; this approach used by different authors cal
handle only a single material in an element. The alternative approach is referred to as an operat
split in the literature, where the calculation, for each time step is divided into two phases. First &
Lagrangian phase is performed, in which the mesh moves with the material, in this phase th
changes in velocity an internal energy due to the internal and external forces are calculated. Th
equilibrium equations are:

— = 0;,; + pb;, 9

E
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In the Lagrangian phase, mass is automatically conserved, since no material flows across the
element boundaries.

In the second phase, the advection phase, transport of mass, internal energy and momentum acro
cell boundaries are computed; this may be thought of as remapping the displaced mesh at the
Lagrangian phase back to its original or arbitraryitmrs

From a discretization point of view of (9) and (10), one point integration is used for efficiency
and to eliminate locking, Benson (1997). The zero energy modes are controlled with an hourglass
viscosity (Flanagan and Belytschko 1981). A shock viscosity, with linear and quadratic terms, is
used to resolve the shock wave (Richtmyer and Morton 1967); a pressure term is added to the
pressure in the energy Eq. (10). The resolution is advanced in time with the central difference
method, which provides a second order accuracy in time using an explicit method in time.

For each node, the velocity and displacement are updated as follows:

un+1/2 — Un_l/2+At DVI_lE(FexI"' Fint)
Xn+1 - Xn_l+AtUn+l/2 (11)

WhereF; is the internal vector force arkd,, the external vector force associated with body forces
and boundary conditionsyl is the mass matrix diagonalized. For each element of the mesh, the
internal force is computed as follows:

Nelem

_ t
Fioi = k;{B (o Ctlv

B is the gradient matrix andelemis the number of elements.
The time step sizélt, is limited by the Courant stability condition (Hallquist 1998), which may
be expressed as:

At< |

< 12
Q+(Q+c?) (2

1/2

Q = C,[t+Cyldiv(u)| for div(u)<0
Q=0 div(u) =0

Wherel is the charactestic length of the @ment,Q is a term derived from the shock viscosiy,
and C, are the coefficients for the linear and quadratic terms of the shock viscosity) Téren
introduced in the equation is positive for compression and zero for tension,cwhehe speed of
sound through the material in the element. For a solid material, the speed of sound is:

gG+k

2

c” = 13
Po (13)

oP , POP

0—p + 0 Je (14)

k= po
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wherep is the material density is the shear modulus, aR{p, €) is the equation of state. In (14),
the second term on the right hand side accounts for the stiffening effect due to the increase of
internal energy as the material is compressed. For a fluid matergb,c? in which p, is the mass
density andc is the sound velocity. For fluid material the viscosity is ignored in the calculation of
the speed of sound. For sloshing tank problems the pressure is much greater than the deviatori
components stress due the fluid viscosity, and the deviatoric stress is sometimes ignored.

The VOF (Volume of Fluid) method is edttive for solving a broad range of non-linear problems
in fluid and solid mechanics, because it allowbiteary large deformations and enables free
surfaces to evolve. The Lagrangian phase of the VOF method is easily implemented in an explicit
ALE finite element method. Before advection, special treatment for the partially voided element is
needed. For an element that is partially filled, the volume fraction satisfies

Vi< (15)
The total stress by is weighed by volume fraction.
o = oV (16)

For voided e#ments, the stress is zero. In the computational process, the elements loop goes only
through elements that are natided. For free surface problems, theneénts that are partially filled
(Vi< 1) define the free surface. In order to compute accurately the free surface in a sloshing
problem, interface-tracking algorithm is performed before the remesh process and advection phase.

3. Moving mesh algorithm

The remeshing process is needed for some sloshing problems. However, for arbovarg m
tanks, the fluid mesh moves as a rigid mesh following the tank. This new ALE feature allows the
mesh to stay regular, and the time step, which can be affected by mesh distortion, to be stable. Ir
other words, there is only mesh motion and no mesh distortion due to the ALE formulation. This
method is very useful for moving or rotating tanks (see Fig. 1), where the fluid mesh will move and
rotate with the tank without undergoing any mesh deformation.

Y 1
Looritact |

rigid

wall i
\ WATER :
.‘\‘ | | I ree
- L surface
L:': e
b= 0ima

Fig. 1 Free drop test on an inclined rigid plate
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Fig. 1 describes a drop test of a partially filled rigid structure tank on an inclined rigid plate. The
new ALE algorithm allows the fluid mesh to follow the movement of the structure. The integrity
of mesh structure is maintained. As the structure impacts the rigid plate and then moves and
rotates, the fluid mesh moves as a rigid mesh in the coordinate system attached to the structure
This ALE algorithm can be applied to several problems in moving structure that are rigid or
undergo small deformations. The following Fig. 2 describes the location of the tank attithens,

t =19 mst =38 ms and = 58 ms as well as the free surface separating the fluid material and the

Rigid (a}t =4 ms (b1t =2 ms
wall
(cit=40ms (d)y 1= &l ms

Fig. 2 Free drop test, and free surface location

Different ALE formulations can be used if the tank is not rigid, and may undergo large
deformations. For these applications, a fluid structure coupling needs to be performed to take into
account the structure deformations as well as these effects on the fluid. The goal of this paper is tc
focus on the sloshing problem for rigid tanks. Fluid structure coupling for compliant structure
requires more sophisticated ALE algorithms that we will present in a following paper.
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4. Stress equilibrium and interface tracking

After the Lagrangian phase is performed, either the stress tensor, pressure and deviatoric stres
should be equilibrated, but most mixture theories equilibrate only pressure, Benson (1997), the
pressure equilibrium is a non-linear problem, which is complex and expensive to solve. Skipping the
stress equilibrium phase is assuming an equal strain rate for both materials, which is incorrect. For
most problems, the lineainstiibution based on volumeaiction of the volumetric strain during the
Lagrangian phase also leads to incorrect results. The volume distribution should be scaled by the
bulk compression of the two materials in the element. For example, in an element containing air and
water, the air, which is highly compressible, will absorb most of the volumetric strain. By assuming
an equal strain rate or volumetric strain scaled on the volume fraction of the element, the water is
forced to accept the same amount of strain as the air, and will undergo artificial high stresses.

There are several methods to treat the free surface in a fluid problem; the common one is the
MAC method, which involves Eulerian flow calculation and Lagrangian particle movement. The
velocity of the markers is found first by locating the fluid cell containing the particle and taking the
average velocities of the cell nodes (the average is based on the finite element particles in the fluid
cell). The particle cells have small inertia and tend to follow the fluid flow. However, the MAC
method becomes complicated if the interfaces become highly distorted or if the geometry is
complex.

Another possible way of tracking interfaces is the use of the volume fractions of the elements, or
the Young method (Young 1982). The Young method is developed to track an interface in elements
containing two materials for two-dimensional problems. This method is adapted in this paper for the
two dimensional problems. In this method, the material layout is described solely by the volume
fraction of the fluid material in the element. Specifically, a straight line using the SLIC technique
(Simple Linear Interface Calculation) of Woodward and Collela (1982) approximates the interface in
the cell. Interfaces are initially drawn parallel to the element faces. Then nodal volume fraction is
computed to each node based on the fraction volumes of elements that share the same node. Th
volume fraction determines the slope of the material interface inside the element. The position of
the interface (see Fig. 3) is then adjusted so that it divides the elememvaenimlumes, which
correctly matches the element volume fraction.

The interface position is used to calculate the volume of the fluid flowing across cell sides. The
normal vector to the interface inside the element is defined by:

fluid void

R Intertace

Fig. 3 Interface between two materials, air and water, is oriented by the mormal  in a Eulerian cell
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where f is the nodal volume fraction. As the X-advection, Y-advection and Z-advection are
calculated in separate steps, it is sufficient to consider the flow across one side only. The interface
calculation prevents advection of very small fluxes between partially filled and empty elements.
Instead fluid flow is transported from ‘filled’ element to ‘empty’ element and this change in volume
will be monitored and used to ‘ill-up’ the element or increase its volume fraction.

5. Advection phase

In the second phase, the transport of mass, momentum and internal energy across the elemel
boundaries is computed. This phase may be considered as a ‘re-mapping’ phase. The displace
mesh from the Lagrangian phase is remapped into the initial mesh for an Eulerian formulation, or
an arbitrary distorted mesh for an ALE formulation.

In this advection phase, we solve a hyperbolic problem, or a transport problem, where the
variables are density, momentum per unit volume and internal energy per unit volume. Details of the
numerical method used to solve the equations are described in detail in (Young 1982, Benson 1992)
where the Donor Cell algorithm, a first order advection method and the Van Leer algorithm, a
second order advection method (Van Leer 1977) are used. As an example, the equation for mas
conservation is:

%€+ Opu) =0 a7

It is not the goal of this paper to describe the different algorithms used to solve the Eq. (17); these
algorithms have atady been described in detail by Benson (1992) and 8bali (2000). In this
section, we will focus on the ‘staggered’ mesh used for the momentum advection, Benson (1992).

The advected momentum is used for the computation of the new nodal velocities. To prevent
distribution of momentum from nodes teerlents during the advection and from elements to nodes
during nodal velocity calculations, the momentum advection is done only through the nodes. This
procedure requires a staggered mesh. A mesh is staggered with respect to the original mesh so th
the original mesh centroids become the new nodes. Yaqui (Amsden and Hirt 1973) developed the
first code to construct a staggered mesh (see Fig. 4) for the momentum advection, and the basi
idea is still in common use.

original mesh

Fig. 4 Staggered mesh and original mesh
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A cell centred advection algorithm is applied to the staggered mesh for the momentum advection.
The data necessary for the advection algorithm are the cell volume before and after the Lagrangiar
phase, nodal velocities, nodal masses and fluxes between cells. All the data are ready on the
staggered mesh except for the fluxes. The new flux values on the staggered mesh are defined usin
a regular distribution of the fluxes from the original mesdmednt faces to the new element faces.
Once the new flux on the staggered mesh is computed, the momentum advection is performed
according to the following algorithm:

Nbedges . _

VIMT=VIMT+ S T VM, (18)

where the superscripts’*and ‘+’ refer to the solution values before and after the transport. Values
that are subscripted hyrefer to the boundaries of the elements, through which the material flow,
and theV, are the fluxes transported through the adjacent elements, these fluxes are computed
using the staggered mesh. The flux is positive if the element received material and negative if the
element is loosing material. Details of the advection algorithm are described in (Benson 1998).

6. Analytical model

The fluid motions of a partially filled tank are studied using a bidimensional mathematical model.
The liquid in an open tank (see Fig. 5) can flow back and forth across the basin in standing waves a
discrete natural frequencies. The purpose of this section is to find the natural frequency and mode
shape of a two-dimensional partially filled tank by using Fourier Series expansion. The liquid is
assumed homogeneous, inviscid, irrotational and incompressible. The boundaries are rigid: the
fluctuations in pressure on the walls due to sloshing exclude flexing of the tank wall that can have a
significant influence on the natural frequencies and mode shapes of sloshing in extreme case. Non
linear effects are neglected: the wave amplitudes are very small in comparison with the wavelengths
and depths. Po represents the pressure of the surrounding atmosphere and the surface tension
negligible.

The fluid of Fig. 5 represents the domain called) and the free surface, which separates the

S(L)

=]

L)

Fig. 5 Partially filled tank
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fluid material from the atmosghe, is the boundary callegft). . R 5
A partigleﬁM(x, 2) is represented by its location in the § plane, OM = x[i +z[k in the
plan (O, i, k) . The fluid particle velocity is defined by:

—

v dOM
V(xz= ﬁ?—”

whered/dt is the particle derivative.

A very small perturbation of the free surface is assumed. Therefore, in the general asymptotic
expansion of any physical variable (see Eq. (19)), in which epsilan considered as a small
parameter, the approximation is carried out to the first order. Higher order termss then
neglected in the following asymptotic expansion:

A=22+em®+0(e) (19)

Since the fluid is assumed incompressible, non-rotational and inviscid, the Egs. (20) and (21) for
the liquid velocity field enable us to introduce the potential function of the flow:

div(V) =0  in D(t) (20)
rot(V) = 0 in D(t) 21)

Indeed, if\7 is a non-null velocity field, the Eq. (21) is verified if and only if

V(xz 9 = gradax 2 9 = 220, ZXof  in b 22)

with @(x, z t) the velocities potential of the fluid.

The velocity field is derived from the velocity potentia(x, t) that verifies Laplace’s Eq. (23)
given by the previous relations (20) and (22).
Ap=0 inD(t) (23)

The general asymptotic expansion (19) of the velocity potegtialintroduced in the Eq. (23):
the following developmentp(x, z, t) = ¢@ + £- ¢ + O(¢), gives the Eq. (24), which is Laplace’s
equation at the first order.

APV =0  inD(t) (24)

The free surface equation K(x, z t) = 0 for xO[0,b] . Since free surface is a material
boundary, the particle derivative can be applied to the previous equation to yield the following
relation:

dt ot  oxdt ozdt

If U(dwdt dz df is the velocity field of fluid boundaries, the kinematic conditidd—V) =0 |

N —_— e .
wheren = grad F/‘grad# is the normal at the boundary, leads to the Eq. (26):
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dF(x 20 _ OF , OFdp, OFdp _
at = ot T axoxt ozoz -9 onsSuy (26)

If n(x, t) represents the free surface elevation,
Fx,zt)=n(x,t)-z=0 on SL(t) (27)
This latter equation instead &f(x, z t) in (26) gives the Eq. (28) that is expanded with the

asymptotic development of free surface z-displacement (see Eq. (29)) to obtain the equation of first
order (30). To be more precise, the kinematic Eqg. (26) becomes the following relation:

oF  dn(x Y-2)d¢ dn(x9-2)09 _ o . SL(Y (28)
ot 17)4 17)4 0z 0z

As the free surface motion is assumed to be very small, the general form (X2) tpfleads to
the Eqg. (29) in which the higher term is of the first order:

n(x t) = e ™ +0(¢) (29)

The Eqg. (29) included in (28) gives the following relation:

on®  gg? _

o e 0 on SL(9 (30)
The asymptotic expansion of the free surface dynamicittmmenust be led to solve the problem.

In order to obtain this condition, Bernoulli’'s equation that establishes a relation between the

velocities potential and the pressure of fleids given by the Eqg. (31).

9 1| 2 P _ -
m+2‘grad(cp)‘ +p+gDz- C(t) in D(t) (32)

where p is the mass densitg, the gravity andC(t) is any function of time.

On the free surface, the fluid pressure is assumed to be equal to the atmospheric Boessure
Using the form (19) for the physical variables of the Eq. (31) leads to the form of first order of
Bernoulli’s equation:

Po [E]Q(‘ﬁ w0 _
5 +& 0 +glh ot O(e) = C(1) on SL(Y (32)
The functionC(t) can be chosen equal Ro/p. The previous equation becomes of the first order:
(1)
Q{% +gmm®=0  on SL(Y (33)

Thenn® can be cancelled between the Eq. (33) and the Eq. (30) to yield the resultant condition that
is an equation with the velocities potential only:

1 (1)
i‘?w[ﬁ%:o on SL(1) (34)

02
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Three kinematic boundary conditions at the tank frontiers make up the problem. Sliding
conditions are imposed on the lateral walls and on the ground. Therefore, the normal velocities on
these frontiers are vanished:

[v(x=0) = %f(x: 0) = 0

v(x=b) = %f(x: b) = 0 on SL(§) (35a)

_W(z= -h = %(Zp(z= -h)y=0

The introduction of the asymptotic expansion of the velocity potenfig@t, z, t)=¢© +¢-
@™ + O(g), in the previous equations leads to boundary conditions that take the following form of

the first order:
_0 1)
%(x: 0) = 0

1)
%(x: b) = 0 on SL(Y (35b)

1)

The sloshing problem in a bidimensional tank carried out to the first order sums up the linearized
eq uations governing the fluid motion:

1) 1)
0;2 +g - 0 in D(t) (36)
AgY =0 in D(t) (37)

ag"
SC(x=0)=0  onsLYy (38)

ag"
SC(x=Db) =0 onsLYy (39)

ag"
o (z=-h =0 onsLy (40)

Since the natural frequencies of this problem are the aim of this paragraph,luten ss
assumed to be harmonic with a pulsaton @ = ¢ (x, 2) -€'“. This mathematical definition of
the velocity potential is introduced in the previous equations. The Egs. (36) to (40) of the problem
become:
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%f_%zup =0 inD(t) (41)

Ap =0 in D(t) (42)
2ix=0)=0 onsLy (43)
%‘f(x: b) =0  onSLY (44)
%‘g(zz _h)=0 onSLY (45)

In order to solve the equations, the separation of variaidesl z for function ¢ is assumed:
¢(x, 2) = p(x) [a(2) (46)

Substituting this expression in Laplace’s Eqg. (42)ltesin two distinct equations, in which the
parametek, a constant value, is the wave number:

§(€+k[p=0 (47)
%_kquo (48)
Z

The expressions (49) and (50) give the well-known solutions of Egs. (47) and (48), which are
substituted in the boundary conditions through the velocity potential.

p(x) = A[togk [X) + B [kin(k [X) (49)
g(2 = Cch kO z+ ] (50)
whereA, B andC are constant values.

The functionq(z) is defined in order to satisfy the boundary condition (45).
By using the definition (46) of the functigh(x, 2), the Egs. (49) and (50) are then inserted in the
Egs. (43) and (44). After simplifications, we obtain respectively:

B=0 (51)
Asin(k[b) = 0 (52)
This last equation involves the following relation, in whitks an integer number:
k(b =nlOrt (53)
Similarly, the dynamic free surface condition (41) becomes the well-known dispersion relation
between the pulsatiow and the wave numbér (Wiegel):

« = g kOth( kO (54)
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As the pulsation is defined byo = 2 -11-f, the Eqgs. (53) and (54) give the slosh frequehcy
(Blevins 1995)

f = 1 @thmhﬂ
2y bt Op O
Two extreme cases can be studied in order to understand the physical meaning of the formula
(55): the basin depth is smaller than the breadth or, conversely, the depth of the tank is bigger thar
the breadth. In the shallow liquid cade,s smaller thanb. Therefore, the fundamental natural
frequency is estimated by the following equation:

f—“/_h' t]<i
7 2b b 10

The resonance frequency of surface waves in a harmdhigrank with large lagral dimension
appears as the wavelengthequals twice the breadth and the celerity equals the gravity wave
velocity: Ay = 20 and ¢, = /gCh . For a lake whose the breadth is of order of kilometers, the
natural period is of the order of minutes or even hours.

In the deep liquid casdy is higher tharb. The fundamental frequency is approximated by the
following expression:

with n, an integer number (55)

(56)

i, .

The resonance frequency of surface waves in a harmdhigrank with large lagral dimension
appears as the wavelengtrequals twice the breadthand the celerity equals a particular gravity

wave velocity:A, = 2b andc, = gb . In both particular cases, the fundamental natural frequenc
- q Yy

of a basin decreases with increasing tank breadth.

7. Numerical results

To validate the numerical model, Eq. (55) is used to predict sloshing frequencies for a simple tank
with various fuel amounts. The tank chosen was approximately 100 inches (254 cm) by 50 inches
(127 cm). Three different fuel heights were analyzed: 25%, 50% and 75%.

Next, this specific tank was modeled by a mesh composed of 17988 solid elements and a sloshing
event was introduced. Initially assigning velocities to both the tank and the fluid, then stopping the
tank motion at 0.00001 seconds created the sloshing event. Rigid material was used to represer
tank walls. The finite element model and the induced sloshing event are shown in Fig. 6.

Comparing the predicted sloshing frequencies against calculated values for three different fuel
levels reveals a maximum error below 3%, see Fig. 7. This analysis demonstrates that LS-DYNA
can accurately predict sloshing frequencies.

Now that the analysis method has been validated, the effects of baffles on sloshing frequency were
investigated. Three different baffle configurations were investigated, see Fig. 8.
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50% full tank

> Fueld Sloshing

Rigid Tank Walls

Fig. 6 Finite element model and analysis depicting a sloshing event
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Fig. 7 Plot comparing calculated and predicted sloshing frequencies for a sample tank without baffles

Comparing the predicted sloshing frequencies reveals some interestiltg, =1 Fig. 9. Notice
that case 1, baffles without holes, behaves like an under damped system. Case 2, baffles with sma
holes, behaves like a damped system, and case 3, baffles with large holes, behaves like a criticall
damped system.

This behaviour is directly related to the flow through the baffles. Specifically, vorticeseated
as flow travels between the adjacent bays, see Fig. 10. These vortices consume energy, thu
reducing the overall energy in the problem. Fig. 10 shows the flow through the baffles, which
damps out the fluid forces applied on the structure.
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Fig. 8 Half filled tank in three different baffle configurations
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Fig. 9 Displacement of the center of gravity of the fluid versus time for three cases: no holes, small holes,
large holes

i i ) Wiedooiby

4y [INnchesised)
Filmge Lewels
G+
. AD0e 0w I
4. Hble s00 _
A 2l v _
1.500e + W1
31.080e +81 _
2. duE + 000
1. e+ 01
1.700e v 001
E.NiDfe v00

01, (e + 0 _|

t= 0.2 58

I=0.3%ex

Fig. 10 Time history ‘snap-shots’ showing fluid flow
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