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Abstract. The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying
any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM).
To this end, a techniqgue was presented to replace each “spring-damper-mass” system by a massless
equivalent “spring-damper” system with the specified effective spring constant and effective damping
coefficient. Then, the mode superposition approach was used to transform the partial differential equation
of motion into the matrix equation, and the eigenvalues of the complete system were determined from the
associated characteristic equation. To verify the reliability of the presented theory, all nhumerical results
obtained from the ANCM were compared with those obtained from the conventional finite element
method (FEM) and good agreement was achieved. Since the order of the property matrices for the
equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU
time required by the ANCM is much less than that by the FEM.

Key words: analytical-and-numerical-combined method (ANCM); eigenvalues; equivalent “spring-
damper” system; finite element method (FEM).

1. Introduction

Several papers have been written on the free-vibration analysis of a uniform plate carrying a
single “spring-mass” system (with the damping effect neglected). For example,dtaalr§1977)
determined the lowest two natural frequencies of a uniform beam and a uniform rectangular plate
carrying a single sprung mass using the polynomial expansion and the Galerkin’s method.
Goldfracht and Rosenhouse (1984) determined the eigenvalues and the associated mode shapes of a
uniform rectangular plate with beam-like stiffeners based on the Galerkin’s method combined with
the use of the special polynomial series. Then, Rosenhouse and Goldfracht (1984) used the last
eigenvalues and mode shapes to determine the natural frequencies and the forced vibration
responses of the stiffened plate carrying an elastically mounted vibrating machine by applying the
Lagrange equations and multipliers. By using the normal mode with sinusoidal eigenfunction
expansions, a closed-form solution for the natural frequencies of a simply-supported rectangular
plate carrying a single “spring-mass” system was proposed by Astlal (1993). Applying the
Rayleigh-Ritz method and the polynomial coordinate functions, Avalos, Laredo and Laura (1994)
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studied the lowest six natural frequencies of a circular plate with transverse translation restrained at
the edge. Bergmaet al (1993) presented the Levy series for the Green’s functions of a rectangular
plate with six kinds of supporting conditions and then determined the lowest ten natural frequencies
of the rectangular plate with an intermediate rigid support and a sprung mass, respectively. Weaver
applied the diagrammatic multiple-scattering theory to determine the mean responses (1997) and the
mean-square responses (1998) of an infinite plate attached to a large number of randomly
distributed undamped sprung masses. Because of complexity of the mathematical expressions, only
the cases of a uniform plate carrying a single “spring-mass” system were illustrated in the foregoing
literature except Weaver (1997, 1998). For this reason, Wu, Chou and Chen (2002) employed an
analytical-and-numerical-combined method (ANCM) to determine the natural frequencies and mode
shapes of a uniform rectangular plate carrying any number of elastically mounted masses.

For the vibration problem of a uniform plate carrying “spring-damper-mass” systems (with the
damping effects considered), Das and Nazarene (1963) proposed a method to determine the natural
frequencies of a rectangular plate carrying a single “spring-damper-mass” system. However, only the
special case for a rectangular plate carrying a single dashpot was illustrated. Goyal and Sinha (1977)
analyzed the vibration characteristics of a simply supported orthotropic square sandwich plate
attached by a single spring-damper-mass system. Nicholson and Bergman (1986) derived the closed-
form solutions for the eigenvalues and eigenfunctions of an undamped simply-supported rectangular
plate attached by an undamped oscillator and a closed-form solution for the forced vibration
responses of the foregoing constrained plate (or composite system) carrying a damper using the
mode superposition method. To the authors knowledge, the literature relating to the vibration
characteristics of a uniform rectangular plate carrying “any number of spring-damper-mass” systems
is not found yet. Therefore, this paper aims at solving the last problem.

Wu and Luo (1997a, 1997b, 1997c) have shown that the ANCM was available for the free
vibration analysis of a rectangular plate carrying any number of concentrated elements (such as
point mass, translational springs, etc.). Hence, this paper tries to apply the ANCM to determine the
eigenvalues of a rectangular plate carrying any number of spring-damper-mass systems. To this end,
a technique was presented to replace each “spring-damper-mass” system by an equivalent massless
“spring-damper " system. Since the degree of freedom for the lumped mass in each spring-damper-
mass system was eliminated by the last equivalent system, one may use the ANCM (Wu and Luo
1997a) to solve the characteristic problem regarding a uniform plate carrying any number of
“spring-damper-mass” systems.

Because of the existence of damping, the equation of motion derived from the ANCM is in
“complex form” composed of a real part and an imaginary part. From either part, a set of
simultaneous equations can be obtained. Since the simultaneous equations are in “real forms”, the
eigenvalues of the “constrained” plate were determined by the half-interval method (Faires and
Burden 1993). To confirm the reliability of the introduced technique, all the numerical results
obtained from the ANCM were compared with those obtained from the conventional finite element
method (FEM).

2. Equation of motion for a uniform plate with a single spring-damper-mass system

For convenience, a plate without carrying any concentrated elements is called the “unconstrained”
plate and the one with any concentrated elements attached is called the “constrained” plate in this
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Fig. 1 A uniform rectangular plate carrying a spring-damper-mass system

paper. If the effects of shear deformation and rotatory inertia are neglected, then the equation of
motion for a uniform plate carrying a single spring-damper-mass system is given by

DeO*w(x v, § + m‘ma%ﬂ = Fu(t) DB(x— %) &y — ¥e) @)

where Dz = Eh*/[12(1-V%)] is the flexural rigidity of the platg,is the Young's modulug) is
the thickness of the plate,is the Poisson’s ratian is the mass per unit area of the ﬁléte, is
the biharmonic differential operatog(x, y, t) is the transverse deflection of plate at positiany)
and timet, F(t) is the interaction force between the spring-damper-mass system and the plate at
timet, (X, Yeo) is the coordinate of the attaching point @n(@) is the Dirac delta function.

The equation of motion for the spring-damper-mass system is given by (see Fig. 1)

Fo(t) = —meZ,(t) = Ce[2,(t) —We(1)] + Ke[Z,(1) —We(1)] )
or
MeZ, (1) + CeZy(t) +Kezy (1) = CoWe(t) + Kewe(1) ®3)

wherek,, C, andm, are the spring constant, damping coefficient and lumped mass of the spring-
damper-mass system, respectivelg;(t), z,(t) ant) are the acceleration, velocity and
displacement of the lumped mass, respectively; whilew,(t) andwv,(t) are the transverse
velocity and displacement of the plate at the attaching paing).

According to the expansion theorem or the mode superposition method (Meirovitch 1967, Clough
and Penzien 1975), the transverse deflection of the uniform plate can be obtained from

Wix Y0 = 3 Wi(x a0 @
ji=1

where Wi(x, y) is thg-th normal mode shape of the “unconstrained” uniform plg(e, is the
associated-th generalized coordinate amd is the total number of modes considered. Hence, the
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transverse deflection of the unconstrained plate at the attachingxapin} (s given by

We(t) = Z W(Xe! ye)qj(t) (5)
i=1
From Egs. (3) and (5), one has the particular solution, (@) to be
Zu(t) = zuz qj(t) (6)
=1

where z,(t) is the amplitude o (t)
When the “constrained” plate performs harmonic free vibration, the generalized coocgtpate
can be expressed by

(g + T @)t

G = 3 Ge ™)
i<

where q; is the amplitude ofj(t), wr and w, are the real part and imaginary part of the
eigenvaluet is time andl = /-1 .
To substitute Eq. (7) into Eq. (5) gives

(g + Tt

We(t) = z \Wi(xea ye) Eﬁje (8)
=1
From Egs. (6) and (7), one obtains
M (@p+Tapt
Zu(t) = Zu qje (9)
2
The derivatives of Egs. (9) and (8) with respect to tirgive
. N (@eriTapt
z)(t) = Z,(wWr+ 1)y qgje
R j; j
= (Wr+ Tw)z,(t) (10)
2,(0) = 2(@e+ T@)’y g™
=1
= [(@r—- @) +1 o []2,(1) (11)
We(t) = @+ T@) T Wik Y Gie ™ ™" = (@r+ T@)We(t) (12)
j=1

From Eq. (12) one obtains

[ Owe(t) = Zke(t) - () (13)
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To substitute the values df (t), Z,(t), we(t)  amig(t) defined by Egs. (8)-(12) into Eq. (3), one
has

(Ce(‘_OR + ke) + i_Cea-)l
[Me(@3— @) + Coldg + kel + T [2@gt M, + Cot]

z,(t) = We(t) (14)

From Egs. (2), (11) and (14), one obtains the interactive force between the spring-damper-mass
system and the plate
— —2 = — — — = —
O-m[(wr—w)) + 1 [RWg® Cogrtk)+i C.w]O
Fe(t) - D e[( _RZ _|)2 — R |] |:[(_ e _R - e) _e |] D’Ve(t)
O [Me(@r—ay) + Cetor tke] +1[20rwM+ Cen] O

_ [Ei+i[F, _ | (EsGi+FiHy) +i(F:G;—EHy)
- SR, = Rl

Gy+1 [Hy Gi+Hj

}We(t) (15)
Substituting the value of CW,(t)  defined by Eq. (13) into Eq. (15) gives

ElGl FlHl FlGl_ElHl . _R
Filt) =~y ) - == ) - B ]

G +H} Gi+H; L
E,G,+F.H)  (F.G,—EH,) (@ F,G,—E;H
_ [_( TR ), (Fs —— 1) —REJWe(t)—( s 1)515{,‘,6(»[)
G1+H1 Gl+H1 wl Gl+ Hl IZH)l
= keffWe(t) + Ceffwe(t) (16)
where
E.G,+FH F.G,—E;H;rw . .
Ketr = [— At 4 22— lEE)—RE}: effective spring constant (17a)
G2+ H? G2+H? L
F.G -EHinlg : , -
Cois = [———-———————— J: effective damping coefficient 17b
eff Gi + Hi % |:| p g ( )

E; = m[(®5— @) ((Celg + ko) — 2C. 0 ]

Fi = M[20:0(Celg + ko) + Coldr (@2 — @1)]

Gy = [My(@r— @) + Colg + ko]
Hy = [2wgom, + C. )]
Eqg. (16) reveals that the effect of a “spring-damper-mass” system on the attached plate can be
replaced by the effect of a massless equivalent “spring-damper” system with effective spring

constantkes defined by Eq. (17a) and effective damping coefficiegt defined by Eq. (17b), as
shown in Fig. 2.
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Fig. 2 The “spring-damper-mass” system shown in Fig. 1 may be replaced by a massless equivalent “spring-
damper” system with effective spring constitand effective damping coefficieq

To substitute Egs. (4) and (16) into Eq. (1), to premultiply both sides of the resulting expression
by Wk(x, y) , and then to integrate the final equation over the area of the entireAplaite, has

n'

['S We(x y)DO'Wi(x, y)g()dA+ [ ”Z\Tvk(x, Y)MW(x, y)G(t)dA
| ]2

A]:l

:A[Fe(t)\l_vk(x, YdA,  k=1,2..,n (18)

The orthogonalitity of the normal mode shapes can be referred ietVall (1997a, 1997b) and
leads to

[ Wi y)DO*W(x, y)dA = 0, k#j (19a)
[ Wi(x, Y)mW(x, y)dA = 0, K#j (19b)

Hence, Eqg. (18) reduces to

MjdGi(t) + Kig(t) = Nj(t),  j=1,2..,n (20)
where
Mji = [, WimWdA (21a)
Kij = [,WiDeO"WidA (21b)
Nj = [(Kegr+ Wr ECep) + i Qo (o)l DZ V_Vk(xe: ye)V_Vk(Xe: Ye)q;(1) (21c)
k=1

Since M;; = 1.0, Eq. (20) can further be reduced to

(1) + «fai(t) = Ny (1), i=12..n (22)
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wherew, = /K;/M; = /K, is thg-th natural frequency of the “unconstrained” plate.
To place the values afj(t) and N;(t) defined by Egs. (7) and (21c) into Eq. (22) gives the
equation of motion for a uniform plate carrying a spring-damper-mass system
(Dr+ T@y) no_ (Wr+ T@))
+df' S Gj(te

=1

(@ )" Y Gi(De
=1

= [(Kegr+ @x Tag) + T (@, Tag)] Dk”;v‘vk(xe, YWk Y GOE™ ™ (23a)
or
(1) — (et + Br o) Dkn;\Tvk(xe, Yo Wh(Xe YT, (0)
7 0@ Ty Dk“;\Tvk(xe, Yo Wh(%er Vo) B (1)
= —(@Wr—-@)T(t) - T Rwgw (1), i=12..n (23b)

To separate the real parts and imaginary parts on both sides of the last equation, one has
6,0~ (o @ (Cor) D Wt YWk Y9,
= —(@é—@f)aj(t), j = 1,2 ...,n" (from real parts) (24a)
and

(@ o) O Wi Yo Wh(xe Y5 (1)
K=t

= 2wrwq;(t), j=12...,n" (from imaginary parts) (24b)

The eigenvalues of the “constrained” plate can be obtained either from Eq. (24a) or Eq. (24b). To
avoid confusing, continuous derivation of the equation of motion for the constrained plate from
Eq. (24b) is placed in Appendix A at the end of this paper.

The matrix form of Eq. (24a) is given by

[Al{G;} = (@ -@R)B{a} (25)

where
[Aly s = [ ]y + (AT (26a)
[Blyxn = DRlyun = 1110 (26b)

[A'] nxn = _( keff + a)R l:Ceff) |:[\W/J (Xe! ye)] n'xn' (26C)



348 Der-Wei Chen

[Wi(Xe Vo)l xrr = { WilXer Vo)t L Wi(Xer Ye) b wt (26d)
{Wi(Xe Vo) oz = { Wa(Xes Ye) Wa(Xe, Ye) -+ Wor (Xer Ye) b1 (26€)
{G}nws = {@ulz o Tnd s (26f)

[y e =0k 05 -6, (269)

In the above equations, the symbols [J}and" | represent the column matrix, square matrix and
diagonal matrix, respectively.

Since kst and Cy¢ are function of the unknowmog  ang, as shown in Eqgs. (17a)-(17b), the
eigenvalueswyr + T, can not be obtained from Eg. (25) by means of the Jacobi method
(Meirovitch 1967). However, Eq. (25) can be rewritten as

([A] - (@ - @R)[B]{a} = 0 27)
The nontrivial solution of Eq. (27) requires that
[A] - (@ - @R)[B]| = 0 (28)

which is the frequency equation and its roots define the eigenvalues of the constrained plate,
Wr t 1@, . Therefore, the half-interval method (Faires and Burden 1993) may be used to solve
Eq. (28). From Egs. (28), (16) and (17a)-(17b), one sees that the frequency equation is a function of
two unknownwg andw, , hence two trial values tog and are required when cut and trial
procedures were performed. It is evident that simultaneous guessing two trial valugs for w, and

is very difficult. To overcome this difficulty, a relationship betweeg and is derived by

_ g :
Wr = ——‘—ij., j=12.. (29)

J1-8

Eqg. (29) was obtained from the free vibration curves and the relationship between the damped
natural frequency and the undamped one for a single-degree-of-freedom damped system (Librescu
and Na 1997).

In Eq. (29),¢ is the damping ratio associated with fi mode shape of the “unconstrained”
plate and is defined by

{ = C/(20M w) (30)
In Eq. (30),CJ-* andnj* are the generalized damping coefficient and generalized mass given by

G = [ W06 y)| S Coy CB(X- %)y~ ¥e) [Wh(x, Y)dA
v=1

=S Cay W (e 1 Vo) (31)

v=1
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m = [,MOW(X y) DV(x, y)dA = 1 (32)

and w is thej-th natural frequency of the “unconstrained” plate.

Therefore, one only requires to guess the value,of and then to calculate the associated value of
wr from Eq. (29). If this pair of values fabg ~ and, satisfy Eq. (28), then they represent one of
the eigenvalues of the constrained plate, otherwise, iteration with a new pair of valags for and
w, is required.

3. Equation of motion for a uniform plate carrying any number of spring-damper-
mass systems

For the uniform plate carrying spring-damper-mass systems as shown in Fig. 3, from Eq. (23)
one may infer the equation of motion for the constrained plate to be

afqi(t) a Z (keff' ot a)R ECeff, U) Z Wk(xe, v Ye, U)Wk(xe, v Ye, u)aj(t)
u=1 K=1

_i_ DUZI(E)I |:Ceff, u)kzlwk(xe, v Ye, U)Wk(xe, v Ye, u)aj (t)

= —(@r—©)Tj(t) - T R@RmTj(1), =12 .0 (33)
Equating the real parts on the both sides of the last equation yields

Oqij(t) - Z (keffx vt a)R IZCeff, U) Z Wk(xe, v Ve, u)wk(xe, o Ye, U)aj(t)
v=l K=1

= —(@h—@)TGi(t), i=1,2 .0 (34a)

. mE,I’ -
el Zu.u
771

............................................................................................... ¥

Fig. 3 A uniform rectangular plate carryingpring-damper-mass systems
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Similarly, considering the equality of the imaginary parts of Eq. (33), one obtains
2 (a)l |:Ceff, U) 2 Wk(xe, v Ye, U)Wk(xe, v Ye, u)aj(t)
v=1 k=1

= ZE)REJﬂJ(t), J = 1, 2, ceey n' (34b)

The continuous derivation based on Eq. (34b) is placed in Appendix B. To write Eq. (34a) in matrix
form gives

[Al{T)} = (@ -@R)[BI{T;} (35)
where
[Alwxn = D]y + [A o (36a)
[Blwxw = [y =1L 10 (36b)
(AT e = —Uil(keff, s @ o) TWH(Xe 11 Vo ) ]o e (360)
[Wi(Xe 0 Yo o)l = {WiKe 00 Ve o) Fora EEWEKe 00 Ve o) b (364)

{ \W/J(Xe, v Ye, U)} nx1 = { Wl(xe, v Ye, U)WZ(Xe, v Ye, U) """ Wﬂ'(xe, v Ye, u)} n'x1 (366)
{aj}n’X1 = {alaZ """ an’}n’X1 (36f)
[\wz\] nxn I'wi a)g e O)rsz (369)

The value ofk,; , andC.;, appearing in Eq. (36) is given by [c.f. Egs. (17a)-(17b)]

E;,Gi, + FiHyy | F1,Giy—EyHyy (0
keff,u — |:_ 1lu ;L} 12L) v, lu ;u lzu lU%REJ (373.)
Glu + Hlu G1u + Hlu I
F UG L)_E L}H vl
Ceftv = [— ete—te 2 D—E} (37b)
Glu + Hlu EE)'
where
By = me,u[(a)é_a)lz) |:(Ce,ua)R + ke,u)_zce,ua)Ra)Iz] (38&)
Flu = me,u[za)Ra)l(Ce,ua)R + ke,u) + Ce,ua)l (E)é_a)lz)] (38b)
Glu = [me u(w;_a)lz) +Ce,ua)R+ke, U] (380)

Hlu = [ZE)REJI me, v + Ce, L}a)l] (38d)
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After rewriting Eq. (35) to the form of Eq. (28), one may use the same technique as the one

employed to solve Eq. (28) to treat the problem.

4. Determining the eigenvalues of a constrained plate using FEM

In order to confirm the reliability of the presented theory, all the results obtained from the ANCM
are checked by the ones obtained from the conventional finite element method (FEM). Fig. 4 shows

the plate element carrying four spring-damper-mass systems at the nodes (A, B, C and D). The
are given by

element mass matriivi]©

[M]° =

u;

Ml,l

oo ook

Uy ...

My, 4

, damping matjig]

[cNeoNoNe]

Uz

M7,7

[cNoNoNe]

Uio

MlO, 10

[cNeoNoNe]

U
My 1

M 12,12

[cNeoNeoNe]

Uiz

0

oPooocoo

[

cNoNok]

Uig

oo
090000 ®

3

o O

and stiffness mp°

Uss

090000 ®

Ow

le
-

Use

090000

©Sooo

u;

Uy

(39a)

Fig. 4 A plate element attached by four spring-damper-mass systems at the four nodes A, B, C and D
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U ... U o W Uo ... Up Us Ug Us Ug
Ki1tKe1 Ky K1 O 0 Ol u
0 0 0 Q:
Ky atKeo 0 %k, O 0] u,
0 0 0 @
K77t Kes 0 0 ks Oy
0 0 0 @
[K]°= Kio 10t Ke s 0 0 0 —Kg4 Ugo
0 0 0 @
Kiz1 Kiziz O 0 0 0| uy
K. 0 0 0 0 ky O 0 0ugs
0 K., 0 0 0 0 ko, 0 0]uy
0 0 K. 0 0 0 0 ks O|ugs
0 0 0 K. 0 0 0 0 Keug
(39b)
U oo Ug oo Up o Ugg . Up Uiz Ua  Uis  Ugs
Co1 —C.; O 0 0| u
0 0 0 0 :
Ce2 0 <., O 0| U
O 0 0 0:
Ce3 0 0 €z 0|y
0 0 0 0 :
[C]°= Cos 0 0 0 —CoqUp (39¢c)
0 0 0 0 :
0 0 0 Quy,
<. 0 0 0 0cy O 0 Olug
0 =<, O 0O 0 0 c, O 0u,
0 0 =3 0 00 O 0 cs O] ug
0 0 0 .00 0 0 0 Colg

In Egs. (39a)-(39C), s, Co s andmy s (= 1, 2, 3, 4) are the spring constants, damping coefficients
and lumped masses of the four spring-damper-mass systems, respd¢tivaigd M; (i, j = 1-12)
are the coefficients of the stiffness matrix and mass matrix for an “unconstrained” plate element
(Przemieniecki 1968, Warburton 1976).

Assembling all the element property matricdsa], [C]® dmnq‘© ) and imposing the
prescribed boundary conditions at the four sides of the plate, one obtains the following equation of
motion for a plate carrying any number of spring-damper-mass systems

[M]{U} +[C]{U} +[K]{U} = O (40)
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where M], [C] and K] are the overall mass, damping and stiffness matrices, Wbile {U},

{U} are the overall node acceleration, velocity and displacement vectors, respectively.
To solve the problem, Eq. (40) is rewritten as (Tse, Morse and Hinkle 1978)

{[01 [M]} P +{—[M] [01} ug
[M] [C] 2n><2n|:U|:£nx1 [O] [K] 2n><2n|:U|:£n><1

or
{@-[KH{@} =0
wheren represents the total degrees of freedom for the constrained plate and
)0
(@ = 00
O
K] = {—[kn] _[klZ]:|,
[1] [0]
[Ku] = [M][C], [Ka2] = [M] K]

In EQ. (42Db), [] is a unit matrix of orden.
For harmonic free vibration, one has

{@ = {0}

From Egs. (41b) and (43) one obtains the eigen equation

(Y[I1-[KD{®} = 0

(41a)

(41Db)

(42a)

(42b)

(42c)

(43)

(44)

and

where [f] is a unit matrix of ordem2To solve Eq. (44), the EISPACK computer package of
MATLAB (Inman and Daniel 1994) is used. The eigenvalues of Eq. (44) are complex numbers, its
real parts denote the decaying parameters of vibrations and its imaginary parts denote the natural

frequencies of the constrained plate.

5. Numerical results and discussions

In this section, four support (boundary) conditions of the constrained plate are studied. For
convenience, a four-letter acronym is used to designate the type of support, starting at the left edge
and proceeding in a counterclockwise direction. Hence, if the clamped, free and simply supported
edges are denoted by C, F and S, respectively, then the boundary conditions of Figs. 5(a)-5(d) are

represented by SSSS, SSSC, SCSC and SFSF, respectively.

The dimensions and physical properties for the rectangular plate @re2.0m, b=3.0 m,
h=0.005m, v=0.3, p=7850.kg/m, pa=ph=39.25kg/M, E=2.051x16"N/m? Dg=Eh}
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t—a— b —
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Fig. 5 The four support conditions of the rectangular plate studied: (a) SSSS, (b) SSSC, (c) SCSC, (d) SFSF
Y 4
< a »
n =10 il y
-
rne.fi
b
.‘
: me’z
b,I me,l
‘ Y, X

Fig. 6 A uniform rectangular plate carrying three spring-damper-mass systems

[12(1- V%] = 2.3478 x 18 N-m, m, = phab= 235.5 kg andk,= De/a’ = 5.8695 x 16N/m, ¢, =m,/
a® - /Dg/ pa = 455.346 N-s/m Note thatm, is the total mass of plate ahg is the stiffness of
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plate. Sincem, k, andc, are the important parameters for mass, stiffness and damping of the plate,
respectively, they are used as the bases of the dimensionless paramgtgrs,m, ,/m) ,
Ke o(= ke v/ ky) andcg (= Cq,/C,) , Wherev = 1,2, ... , in the following discussions.

For the present problem, the accuracy of the lowest five eigenvalues obtained from the ANCM
with 30 modes (i.e.n’ = 30 ) is approximately equal to that obtained from the FEM with 64 plate
elements (i.e.,n, = 64 ). Therefore, the following comparisons are based' en30 for the
ANCM andn, = 64 for the FEM [the size of each elemenais<b’ = (a/8) x (b/8) , see Fig. 6].
This criterion is the same as that adopted by Wu and Luo (1997).

5.1 Reliability of the theory and the computer programs

In this subsection, the lowest five eigenvalues of a SSSS uniform rectangular plate carrying one
elastically mounted concentrated mass (i.e., a spring-damper-mass systefg, witld) studied by
Avalos et al. (1993) are calculated with ANCM and FEM, and then compared with the results given
by Avaloset al (1993), as shown in Table 1. It can be seen that the reliability of both the theory
and the computer programs of this paper is satisfactory. It is noted that the eigenvalues given by
Avalos et al (1993) are the frequency coefficielitgs However, the eigenvalues shown in Table 1
are the actual natural frequencw]s and the relationship between them is gigerF LR, /a)

JDe/pa(j =1, 2,.

Table 1 The lowest five eigenvalues of the SSSS plate with a spring-damper-mass system as shown in Fig. 1

I_focat_ion Eigenvaluesw, = wg+w, 00

of spring-

damper- + _kesd® « _Mey + _Coy Method
mass ' Dg Tm, Ce= ethoas
system

( Eela nel)

Cp W, W, W, , Ws

FEM +3.86459 +93.535b +157.6363 +260.2014 +325.2037
ANCM +3.86527F +95.434A4 +152.6880 +248.0860 +324.4220

0.5 0.25

A‘l’a'oset 3.86505 95.4347 152.6884 248.0864  324.4224

0.75) FEM +3.8626F +93.603b +157.7170 +260.2226 +325.9596
10 05 ANCM +3.86299 +95452D +152.7180 +248.0930 +324.4330

Aa‘l’_a"lcgsg‘gt 3.86306 95.4541 1527129  248.0940  324.4339

Note: 7 = ./~1, a=2.0m,b=1.0 m,h=0.005 m,u = 0.3, p= 7850 Kg/ni, m, = phab= 78.5 Kg,
E= 2.051x16"N/m? c,=mya®- ,/De/ pa, De = ENY[12(1- v)] = 2. 3478><16 N-m

5.2 Eigenvalues for a rectangular plate with one spring-damper-mass system

Fig. 1 shows a uniform rectangular plate carrying one spring-damper-mass system located at
(&1, Ne1) = (0.75 0.79, where (&, Nei) = (Xei/ & Yei/b) . The lowest five eingenvalues
(j=1~5) and the dimensions and physical properties are shown in Table 2. From Table 2 one sees
that the results obtained from the ANCM are very close to those from the conventional FEM.
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Table 2 The lowest five eigenvalues of a rectangular plate with a spring-damper-mass kystem.Q ,
me 1 = 0.5, ¢, 1 = 0.5) as shown in Fig. 1

Location of Eigenvalueso, = wyr + @, 0 CPU

spring-damper—BoundaryMe,[ho ds time

mass systemconditions o, @, s W, s (sec)
(Eela nel)

-0.48405 -0.96648 -0.96732 —-0.48594 -1.94557
+25.73792 +53.50331 +85.01285 +97.50865 +112.9208 146.64

-0.48664 —-0.97119 -0.97186 -0.48809 -1.93020
+27.6139 +53.06409 +84.84805 +95.4291% +110.3193 30.52

-0.26793 -0.88967 -0.67580 —0.95553 -1.90408
+28.60939 +60.92763 +86.55126 +109.7843 +118.1543 153.45

-0.26776 -0.89451 -0.68693 -0.97715 -1.86806
+30.12523 +60.08168 +86.16808 +107.1034 +114.9671 31.03

-0.38592 -1.01113 -0.84660 —0.19543 -2.74523
+32.47550 +69.58031 +88.48084 +123.3243 +124.1396 134.92

-0.38717 -1.01642 —-0.84948 -0.18099 -2.89282
+33.59601 +68.34100 +87.84042 +119.9873 +120.0001 27.79

-0.47289 -0.40447 -0.01584 -0.88698 -0.65858
+15.23623 +23.82540 +45.22968 +75.0660d +80.50251 246.64

-0.46868 —0.39061 —-0.02067 -0.95822 -0.57918
+18.76158 +25.10635 +44.38113 +75.61264 +78.03154 29.33

Note: i = ,/~1, a=2.0m, b=3.0m, h=0.005m, u=0.3, p=7850 Kg/ni, m,=phab=235.5Kg, E=
2.051x16"N/m?, k, = Defa? = 5.8695x18N/m, Dg = ER/[12(1- v)] = 2.3478x16N-m, c,=mya?- /De/ pa
=455.34611 Ns/m

FEM
SSSS

ANCM

FEM
SSSC

ANCM

(0.75,0.75)
FEM
scsc

ANCM

FEM

SFSF
ANCM

5.3 Eigenvalues for a rectangular plate carrying multiple spring-damper-mass systems

Fig. 6 shows a uniform plate carrying three spring-damper-mass systems with locations,
magnitudes, and physical properties of the three spring-damper-mass systems shown in Table 3. The
lowest five eigenvalueso; = wr+w, 0 j(= 1-5), obtained from the conventional FEM and
those from the ANCM, are listed in Table 4. From Table 4 one sees that the lowest five eigenvalues
obtained from the two methods are also in good agreement.

Table 3 The locations and magnitudes of the three spring-damper-mass systems shown in Fig. 6

Locations of . Magnitudes of Magnitudes of
spring-damper-mass system M%?ﬂ?'t#qiizeog spring damping
(&eir Nei) = (Xei/ @, Yei/' D) P constants coefficients

*

(Eews Ner) (e Ne2)  (&eai Nes) m:e,l m;,z m;,a k;l Ke 2 k;,B C:e,l C;,Z C;,S
(0.25, 0.125) (0.75,0.25) (0.875,0.75) 0.2 0.2 0.2 3.0 3.0 3.0 0.5 0.5 0.5

Note: a=2.0m,b=3.0m, h=0.005 m,v = 0.3, p= 7850 Kg/mi, m,= phab= 235.5 Kg, E = 2.051x18" N/m?,
k,=De/a” = 5.8695x16N/m, Dg = ER*/[12(1 - v)] = 2.3478x18N-m, = mplaz - J/De/ pa =455.34611 Ns/m
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Table 4 The lowest five eigenvalues of a rectangular plate with three spring-damper-mass systems shown in Table 3

Boundary Eigenvaluesy, = @ + @, 0 CPU time
o Methods — — — — —
conditions o, @, @, @, s (sec)
FEM -0.82241 -1.77021 -1.74180 -1.46803 -3.90973
sSSS +25.80911 +53.56939 +85.11314 +97.53119 +113.1909 176.75
ANCM -0.81442 -1.76858 -1.74523 -1.45339 -3.89574
+27.63009 +53.07409 +84.85454 +95.4477§5 +110.2917 32.75
FEM -0.97373 -1.85080 -1.86181 -1.49127 -4.13114
ssSC +28.72900 +60.96206 +86.69183 +109.68709 +118.4227 169.11
ANCM -0.96943 -1.84549 -1.85843 -1.47606  —4.110165
+30.19194 +60.13853 +86.2079% +107.1321 +115.0027 32.29
FEM -0.57071 -1.55265 -1.40180 -1.66957 -3.66433
scsc +32.51269 +69.61637 +88.57064 +122.9936 +124.67933 144.28
ANCM -0.56719 -1.55154 -1.40795 -1.63303 -3.64451
+33.63184 +68.38661 +87.87315 +120.0114 +120.0279 31.08
FEM -1.33312 -1.47714 -0.36612 -2.31420 -0.53978
SESF +15.50366 +23.86676 +45.27458 +75.39184  +80.6846 264.58
ANCM -1.24375 -1.45495 -0.35793 —-2.46981 -0.76917
+18.87423 +25.21089 +44.40181 +75.66413 +78.05496 32.95

Table 5 The locations and magnitudes of the five spring-damper-mass systems

Locations of spring-damper-mass system

Magnitudes of poMagnitudes of

Magnitudes of

(&eir Nei) = (Xei/ A, Yei/ D) Masses spring constantsdamping coefficients
(Ees Ner) (e Nez) (EearNes) (earMea) (EesiMes) M Mo Mz My ms Ky ky ks Ky ks €1 ¢ c; ¢y Cs
(0.25, (0.25, (0.5, (0.75, (0.875,
0.125) 0625) 0.5) 0.25)  0.75) 0.2 02020202303.03.03.03.00505 050505

Note: a=2.0m, b=3.0m, h=0.005 m,v=0.3, p= 7850 Kg/ni, m, = phab= 235.5 Kg, E = 2.051x16" N/n"’,
k, = De/a? = 5.8695x1ON/m, D = EF/[12(1- v)] = 2.3478x16N-m, ¢, =mya? - ./Dc/pa = 455.34611 Ns/m

If all situations are kept unchanged except that two additional spring-damper-mass systems are
placed on the uniform plate with locations, magnitudes, and physical properties shown in Table 5,
then the lowest five eigenvalues of the constrained plate are shown in Table 6. From Tables 4 and 6
one sees that the damped natural frequencies of the uniform plate carrying “five” spring-damped-
mass systems are larger than those carrying “three” systems, while the damping effect of the former
is larger than that of the latter. These are the reasonable results; because the physical properties of
each spring-damped-mass system are the identical each other, the total stiffness and the total
damping of the uniform plate with “five” spring-damped-mass systems will be larger than those of
the uniform plate with “three” systems, and the natural frequencies of a uniform plate are directly
proportional to the square root of the stiffness, while the damping effect of a vibrating system is
directly proportional to the magnitude of the damping.

From the final columns of Tables 2, 4 and 6 one sees that the CPU time required by the ANCM is
only about one-fifths of that required by the FEM.
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Table 6 The lowest five eigenvalues of uniform plate with five spring-damper-mass systems shown in Table 5

Der-Wei Chen

Eigenvaluego, = wx + @, O i
Boundary Methods _ _ g (s "= _ CPU time
conditions , @, s @, s (sec)
FEM -3.80220 -2.25030 -3.42360 -3.56308 -4.85767
SSSS +26.04139 +53.65154 +85.158871 +97.56985 +113.2567 186.64
ANCM -3.76838 -2.25177 -3.42396 -3.54296 -4.85760
+27.72069 +53.08273 +84.86156 +95.45700 +110.2786 37.69
FEM -3.89560 —2.92752 -3.40290 -3.26219 -5.63104
ssSC +28.9147% +61.11834 +86.61764 +109.79577 +118.5161 172.25
ANCM -3.87280 -2.92844 -3.40099 -3.23649 -5.61473
+30.28070 +60.14888 +86.21340 +107.14104 +114.9776 38.06
FEM -3.99153 —2.24154 -3.22557 -3.71697 -4.93844
scsc +32.74383 +69.74141 +88.52757 +123.06192 +124.7931 159.30
ANCM -3.98362 —2.24432 -3.22063 -3.68585 -4.90131
+33.71109 +68.39705 +87.88583 +120.01548 +120.02185% 36.41
FEM —-3.04654 -1.54438 -2.55889 -3.32948 -1.44252
SFSF +15.76099 +23.94770 +45.34587 +75.58326 +80.294571 294.43
ANCM -2.78451 -1.50279 -2.60375 -3.70522 -1.05019
+18.97477 +25.216468 +44.47374 +75.66683 +78.07101 37.07

6. Conclusions

1. The analytical-and-numerical-combined method (ANCM) is available for the determination of
eigenvalues of a uniform plate carrying any number of spring-damper-mass systems.

2. The effective spring constait; and the effective damping coefficiety of the massless
“equivalent spring-damper system” are two parameters composed of the effects due to the linear
spring constank,, the damping coefficienC, and the concentrated masg of the “original
spring-damper-mass system”.

3. The imaginary parts of the eigenvalues for a uniform plate carrying any number of spring-
damper-mass systems represent the damped natural frequencies of the constrainey; plate,
The influence onw,; of the magnitudes of the damping coefficients of the spring-damper-mass
systems(C, ,, is negligible.
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Appendix A

Imaginary part for the equation of motion of a uniform plate carrying a spring-damper-
mass system

From Eq. (24b) one has
(@) Car) T5 Whle Y)W Y1)
= 2w, (1), i=42..,n (AL)
or in matrix form

[Al{T;} = (2ore)[B]{0}} (A2)
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where
[Bloxn = [Mdwun = 1111 oy
[Alwcn = (@) Cer) TWi(Xer Vel
[Wi(Xe Ye)lwxm = { WilXe, Ye)} s T Wi (Xer Y}
{Wi(Xe, Ye) wxa = { Wa(Xe, Ye) Wa(Xe, Ye) -+ - Wi (Xe, Ye) b e
{qj}n'xl = {0,0,- - Ontox1
The value ofCe; appearing in Eq. (A4) is defined by Egs. (17a)-(17b).

Appendix B

(A3)
(A4)
(A5)
(A6)

(A7)

Imaginary part for the equation of motion of a uniform plate carrying any number of spring-

damper-mass systems

From Eq. (34b) one has

; (a)| ECeff, U)kzl\K/k(Xa v Ye U)\TVk(Xe, v Ye u)q](t)
=1 -
= 2w:0,7i(1), i=L2..n

or in matrix form

[Al{T} = (2@:®)[Bl{q;}
where

[Bluxn = [Mwxnw = 11 -o 110w

[A]n'xn' = il(a)l ECeff, u) |:[\T\/J'(Xe, v Ye, u)]n’xn’

[WilXe o Ve o)l = {WilXe s Ve o) ot EWE(Xe, 01 Yo 0) st
{Wi(Xe,0r Ve o)}z = {Wa(Xe, 0, Ve, 0) Wa(Xe s Ve 0) -+ -+ Wo (e, ur Ve, o)} o1
{T}nxn = {00 Ond e
The value ofC;, appearing in Eq. (All) is defined by

C - _Fluc‘lu_ElquuDiD
S YT

For the values of;,, F1,, Gi, andH,, one may refer to Egs. (38a)-(38d).

(A8)

(A9)

(A10)

(A11)

(A12)
(A13)

(A14)

(A15)





