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Abstract. From the equation of motion of a “bare” non-uniform beam (without any concentrated
elements), an eigenfunction in term of four unknown integration constants can be obtained. When the last
eigenfunction is substituted into the three compatible equations, one force-equilibrium equation, one
governing equation for each attaching point of the concentrated element, and the boundary equations for
the two ends of the beam, a matrix equation of the form [B]{ C} = {0} is obtained. The solution of

 (where�U� denotes a determinant) will give the “exact” natural frequencies of the “constrained”
beam (carrying any number of point masses or/and concentrated springs) and the substitution of each
corresponding values of {C} into the associated eigenfunction for each attaching point will determine the
corresponding mode shapes. Since the order of [B] is 4n + 4, where n is the total number of point masses
and concentrated springs, the “explicit” mathematical expression for the existing approach becomes
lengthily intractable if n > 2. The “numerical assembly method”(NAM) introduced in this paper aims at
improving the last drawback of the existing approach. The “exact” solutions in this paper refer to the
numerical results obtained from the “continuum” models for the classical analytical approaches rather than
from the “discretized” ones for the conventional finite element methods.

Key words: non-uniform beam; natural frequencies; mode shapes; bare beam; constrained beam; eigen-
function.

1. Introduction

The free vibration problem for a “uniform” beam carrying various concentrated elements, has
been studied by many researchers (Laura et al. 1975, 1977, 1987, Gurgoze 1984, Wu and Lin 1990,
Hamdan and Jubran 1991, Rossi et al. 1993, Gurgoze 1998, Wu and Chou 1998, Wu and Chen
2001). Sankaran et al. (1975), Lee (1976), De Rosa and Auciello (1996), Wu and Chou (1999),
Qiao et al. (2002), Li (2002) are the few studies concerned about the free vibration analysis of the
“uniform” and “non-uniform” beams carrying concentrated elements. In this paper, the numerical
assembly method (NAM) presented in Wu and Chen (2001) and Wu and Chou (1999) for the free
vibration analysis of a “uniform” beam carrying multiple sprung masses was used to tackle the title
problem. One of major differences between (Qiao et al. 2002, Li 2002) and the present paper is that
the beams studied are “stepped” in the former and “tapered” in the latter. Since a stepped beam is
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considered as a combination of multiple “uniform beam segments” with different cross-sectional
areas in Qiao et al. (2002), Li (2002) and this is not true for a tapered beam in this paper, the mode
shape functions for the “stepped” beams presented in Qiao et al. (2002), Li (2002) are not suitable
for the “tapered” beams studied in this paper.

From the following sections of this paper, one finds that the eigen equation of the title problem
takes the form [B]{ C} = {0}. Since the order of the overall coefficient matrix [B] is p = 4n + 4, with
n being the total number of concentrated attachments, the order of [B] is 8 for one attachment and
12 for two attachments. It is evident that the explicit expression for the eigen equation [B]{ C} = {0}
will become lengthy and complicated for the cases with n > 2, hence the literature relating to the
free vibration analysis of a non-uniform beam carrying more than “two” concentrated attachments is
rare. Because the numerical assembly method (NAM) presented in Wu and Chen (2001) and Wu
and Chou (1999) has been found to be able to easily tackle the free vibration problem of a
“uniform” beam carrying any number of concentrated attachments, this paper tries to use the same
approach to perform the free vibration analysis of the constrained “non-uniform” (tapered) beams
studied in this paper. The key point of the NAM is as follows: If the “left” side and the “right” side
of each attaching point together with the “left” end and the “right” end of the non-uniform beam are
considered as the nodal points, and the associated integration constants, Cνi (ν = 1~n; i = 1~4), are
considered as nodal displacements, then the associated coefficient matrix, [BL], [Bν] (ν = 1~n) or
[BR], may be considered as the element stiffness matrix of a beam element, so that the conventional
assembly technique of the direct stiffness matrix method for the finite element method (FEM)
(Bathe and Wilson 1976) may be used to obtain the “overall” coefficient matrix [B]. Any trial value
of  that renders the value of the determinant  vanishes denotes one of the eigenvalues of the
“constrained” non-uniform beam (carrying multiple concentrated elements).

To show the reliability of the introduced approach, the lowest five natural frequencies and some of
the corresponding mode shapes of a doubly-tapered beam carrying five concentrated elements were
calculated. Six boundary conditions were studied: free-clamped, clamped-free, simply supported  -
clamped, clamped-simply supported, clamped-clamped, and simply supported-simply supported. It
has been found that the agreement between the present results and the FEM results is good. 

For convenience, the non-uniform beam with prescribed boundary conditions is called the
“unconstrained” (or “bare”) beam if it carries no attachment and is called the “constrained” beam if
it carries any attachments.

2. Eigenfunctions of the constrained non-uniform beam

Fig. 1 shows a cantilevered doubly-tapered beam carrying n concentrated elements. The whole
cantilevered non-uniform beam with length L is subdivided into (n + 1) segments by the attaching
point ν located at x = xν (ν = 1, 2, ..., n), where denotes the ν-th “attaching point” and ( ) denotes
the ν-th “beam segment”. In addition, the “left” end and the “right” end of the beam are denoted by
L and R, respectively.

The equation of motion for a “bare” non-uniform beam is given by De Rosa and Auciello (1996),
Gorman (1975)

(1)

ω j B

∂2

∂x2
-------- EI x( )∂2y x t,( )

∂x2
-------------------- ρA x( )∂2y x t,( )

∂t2
--------------------+ 0=
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where y(x, t) is the transverse deflection, E is the Young’s modulus, A(x) is the cross-sectional area
at the position x, I(x) is the moment of inertia of A(x), ρ is the mass density of the beam material
and t is time.

For the doubly-tapered beam as shown in Fig. 1, the cross-sectional area A(x) and its moment of
inertia I(x) take the forms 

 
(2a)

(2b)

where A0 = b0h0 and I0 =  are the cross-sectional area and moment of inertia of the cross-
section of the tapered beam with width b0 and height h0 at x = 0 (see Fig. 1), respectively, while
α = hL /h0 = bL /b0 is the taper ratio of the beam with width bL and height hL at x = L. It is noted that
A(x) and I(x) are the two key parameters for a non-uniform beam, because they affect the
magnitudes of the sectional mass (ρA(x)) and sectional stiffness (EI(x)) of the non-uniform beam as
one may see from Eq. (1).

For free vibration of the beam, one has

 (3)

where  is the natural frequency of the “constrained” beam and  is the amplitude of y(x, t).
The substitution of Eqs. (2) and (3) into Eq. (1) yields

(4)

A x( ) A0 α 1–( )x
L
--- 1+

2

= ,

I x( ) I0 α 1–( )x
L
--- 1+

4

=

b0h0
3 12⁄

y x t,( ) Y x( )ei ωt=

ω Y x( )

α 1–( ) x
L
--- 1+

4d4Y x( )
dx4

----------------- 8 α 1–( ) x
L
--- 1+

3 α 1–
L

------------ 
  d3Y x( )

dx3
-----------------+

+ 12 α 1–( )x
L
--- 1+

2 α 1–
L

------------ 
 

2d2Y x( )
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2
-----------------

ρA0ω2

EI0

---------------- α 1–( ) x
L
--- 1+

2

Y x( )– 0=

Fig. 1 A cantilevered doubly-tapered beam carrying n concentrated elements
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If the following non-dimensional parameter was introduced

(5)

then Eq. (4) reduced to

(6a)

where a prime denotes the derivative with respect to ξ and

(6b)

The general solution of Eq. (6a) takes the form De Rosa and Auciello (1996), Gorman (1975),
Karman and Biot (1940)

(7)

where Ci(i = 1~4) are the integration constants, β = 2LΩ/(α − 1), J2 and Y2 are the second order
Bessel functions of first kind and second kind, while I2 and K2 are the second order modified Bessel
functions of first kind and second kind.

Eq. (7) represents the eigenfunction for the transverse deflection of the constrained beam. Once
the natural frequencies  (j = 1, 2, ...) and the constants for each attaching point, Ci (i = 1~4), are
determined from the next sections, one may obtain the value of . The latter are the mode
shapes of the constrained beam corresponding to the natural frequency .

For “the ν-th beam segment”, from Eq. (7) one has 

(8)

with

(9)

The differentiation of  with respect to ξν gives

 (10)

 (11)

(12)

where Jn and Yn are the n-th order Bessel functions of first kind and second kind, while In and Kn

are the n-th order modified Bessel functions of first kind and second kind with n = 3, 4, 5.

ξ x( ) α 1–( )x
L
--- 1+=

ξ4Y″″ ξ( ) 8ξ3Y″′ ξ( ) 12ξ2Y″ ξ( ) ξ2 LΩ
α 1–( )

-----------------
4

Y ξ( )–+ + 0=

ΩL( )4 ρA0ω2
L4

EI0

----------------------=

Y ξ( ) ξ 1– C1J2 β ξ( ) C2Y2 β ξ( ) C3I2 β ξ( ) C4K2 β ξ( )+ + +[ ]=

ω j

Yj ξ( )
ω j

Yν ξν( ) ξν
1– Cν1J2 β ξν( ) Cν2Y2 β ξν( ) Cν3I2 β ξν( ) Cν4K2 β ξν( )+ + +[ ]=

ξν α 1–( )
xν

L
---- 1+=

Yν ξν( )

Yν′ ξν( ) β
2
---– ξν

3 2⁄– Cν1J3 β ξν( ) Cν2Y3 β ξν( ) Cν3– I3 β ξν( ) Cν4K3 β ξν( )+ +[ ]=

Yν″ ξν( ) β
2
----

2

ξν
2– Cν1J4 β ξν( ) Cν2Y4 β ξν( ) + Cν3I4 β ξν( ) Cν4K4 β ξν( )+ +[ ]=

Yν″′ ξν( ) β
2
----

3

– ξν
5 2⁄– Cν1J5 β ξν( ) Cν2Y5 β ξν( ) Cν3– I5 β ξν( ) Cν4K5 β ξν( )+ +[ ]=
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3. Coefficient matrix [ Bν] for the ν-th attaching point

Compatibility for the deflections, slopes, and moments at the attaching point requires that 

(13a)

(13b)

(13c)

From the force equilibrium at the attaching point, one has

(14)

where 

(15)

(16)

(17)

where mcν (or kTν or kRν) represents the v-th rigidly-attached concentrated mass (or translational
spring or rotational spring) and  is the total mass of the beam.

The substitution of Eqs. (8)~(12) into Eqs. (13) and (14) leads to

(18a)

(18b)

(18c)

Yν
L ξν( ) Yν

R ξν( )=

Y′ν
L ξν( ) Y′ν

R ξν( )=

Y″ν
L ξν( )

kRν
*

α 1–( )ξν
4

-----------------------Y′ν
L ξν( )+ Y″ν

R ξν( )=

4 α 1–( )3ξ3Y″ν
L ξν( ) α 1–( )3ξ4Y ′″ν

L ξν( ) kTν
* mcν

* 1
3
--- α 1–( )2 α+ ΩL( )4–

 
 
 

Yν
L ξν( )–+

4 α 1–( )3ξ3
Y″ν

R ξν( ) α 1–( )3ξ4
Y″′ν

R ξν( )+=

kRν
* kRνL

EI0

-----------=

kTν
* kTνL

3

EI0

-------------=

mcν
* mcν

mb

--------
mcν

ρA0L
1
3
--- α 1–( )2 α 1–( ) 1+ +

-----------------------------------------------------------------------------= =

mb ρ= A0L 1 3⁄ α 1–( )2 α 1–( ) 1+ +[ ]

Cν1J2 β ξν( ) Cν2Y2 β ξν( ) Cν3I2 β ξν( ) Cν4K2 β ξν( )+ + +

Cν 1+ 1, J2 β ξν( )– Cν 1+ 2, Y2 β ξν( )– Cν 1+ 3, I2 β ξν( )– Cν 1+ 4, K2 β ξν( )– 0=

Cν1J3 β ξν( ) Cν2Y3 β ξν( ) – Cν3I3 β ξν( ) Cν4K3 β ξν( )+ +

Cν 1+ 1, J3 β ξν( )– Cν 1+ 2, Y3 β ξν( )– Cν 1+ 3, I3 β ξν( ) Cν 1+ 4, K3 β ξν( )–+ 0=

β
2
---

2

ξν
2– Cν1J4 β ξν( ) Cν2Y4 β ξν( ) Cν3I4 β ξν( ) Cν4K4 β ξν( )+ + +[ ]

kRν
*

α 1–( )
--------------- β

2
--- 

 ξν
11– 2⁄ Cν1J3 β ξν( )[ Cν2Y3 β ξν( ) – Cν3I3 β ξν( ) Cν4K3 β ξν( )]+ +–

β
2
---

2

ξν
2– Cν 1+ 1, J4 β ξν( ) Cν 1+ 2, Y4 β ξν( ) Cν 1+ 3, I4 β ξν( ) Cν 1+ 4, K4 β ξν( )]+ + +[ 0=–



158 Der-Wei Chen

(18d)

where
 

 (18e)

It is noted that, in Eqs. (13) and (14), the “left side” of the ν-th attaching point located at x = xν
belongs to the segment (ν) and the “right side” belongs to the segment (ν + 1), thus the associated
coefficients are represented by Cνi and Cν+1, i (i = 1~4), respectively, as may be seen from Eqs.
(18a)~(18d).

To write Eqs. (18a)~(18d) in matrix form gives

(19)

where

(20a)

(20b)

and

                 

(20c)

where 

8β2 Cν1J4 β ξν( ) Cν2Y4 β ξν( ) Cν3I4 β ξν( ) Cν4K4 β ξν( )+ + +[ ]

β3ξν
1 2⁄ Cν1J5 β ξν( )[ Cν2Y5 β ξν( ) – Cν3I5 β ξν( ) Cν4K5 β ξν( ) ]+ +–

8θνξν
2– Cν1J2 β ξν( )[– Cν2Y2 β ξν( ) Cν3I2 β ξν( ) Cν4K2 β ξν( ) ]+ + +

8β2
Cν 1+ 1, J4 β ξν( ) Cν 1+ 2, Y4 β ξν( ) Cν 1+ 3, I4 β ξν( ) Cν 1+ 4, K4 β ξν( )]+ + +[–

β3+ ξν
1 2⁄ Cν 1+ 1, J5 β ξν( ) Cν 1+ 2, Y5 β ξν( ) Cν 1+ 3,– I5 β ξν( ) Cν 1+ 4, K5 β ξν( )]+ +[ 0=

θν
kTν

*

α 1–( )3
-------------------

mcν
* 1

3
--- α 1–( )2 α+ ΩL( )4

α 1–( )3
----------------------------------------------------------------–=

Bν[ ] Cν{ } 0{ }=

Cν{ } Cν1  Cν2  Cν3  Cν4  Cν 1+ 1,   Cν 1+ 2,   Cν 1+ 3,   Cν 1+ 4,{ }=

C4ν 3–   C4ν 2–   C4ν 1–   C4ν  C4ν 1+   C4ν 2+   C4ν 3+   C4ν 4+{ }=

C4ν 3– Cν1 C4ν 2– Cν2 …,=   C4ν 4+ Cν 1+ 4,=, ,=

4ν 3–   4ν 2–   4ν 1–   4ν  4ν 1+   4ν 2+   4ν 3+   4ν 4+   

Bν[ ]

J2 δν( )  Y2 δν( )  I2 δν( )  K2 δν( )  J2 δν( )–   Y2 δν( )–   I2 δν( )–   K2 δν( )–

J3 δν( )  Y3 δν( )  I– 3 δν( )  K3 δν( )  J3 δν( )–   Y3 δν( )–   I3 δν( )  K3 δν( )–

∇1ν  ∇2ν  ∇3ν  ∇4ν  ∇5ν–   ∇6ν–   ∇7ν–   ∇8ν–

∆1ν  ∆2ν  ∆3ν  ∆4ν  ∆5ν–   ∆6ν–   ∆7ν–   ∆8ν–

4ν 1–

4ν
4ν 1+

4ν 2+

=

∇1ν β2J4 δν( )
2kRν

*

α 1–( )
-----------------βξν

7 2⁄– J3 δν( ), ∇2ν β2J4 δν( )
2kRν

*

α 1–( )
-----------------βξν

7 2⁄– Y3 δν( ),–=–=

∇3ν β2
I4 δν( )

2kRν
*

α 1–( )
-----------------βξν

7 2⁄– I3 δν( )+= , ∇4ν β2
K4 δν( )

2kRν
*

α 1–( )
-----------------– βξν

7 2⁄– K3 δν( ),=

∇5ν β2
J4 δν( )= , ∇6ν β2

Y4 δν( )= , ∇7ν β2
I4 δν( ), ∇8ν β2

K4 δν( ),==

δν β ξν , ∆1ν 8β2
J4 β ξν( ) β3ξν

1 2⁄ J5 β ξν( ) 8θνξν
2– J2 β ξν( ),––==
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(20d)

4. Coefficient matrix [ BL] for the left end of the beam

For a cantilever beam with left end clamped, the boundary conditions are 

(21a),(21b)

From Fig. 1 one sees that the left end of the beam, L, coincides with the left end of the first beam
segment (ν = 1), hence from Eqs. (8), (9), (21a) and (21b) one obtains

(22a)

(22b)

To write the last two expressions in matrix form gives

(23)

where

      
  

(24)

(25)

where the [ ] and { } represent the rectangular matrix and the column vector, respectively, and

(26)

In Eq. (24) and the subsequent equations, the digits shown on the top side and right side of the
matrix represent the identification numbers of degrees of freedom (dof) for the associated constants

(i = 1, 2, ...).

5. Coefficient matrix [ BR] for the right end of the beam

For a cantilever beam with right end free, the boundary conditions are 

(27a),(27b)

∆2ν 8β2Y4 β ξν( ) β3ξν
1 2⁄ Y5 β ξν( )– 8θνξν

2– Y2 β ξν( ),–=

∆3ν 8β2
I4 β ξν( ) β3ξν

1 2⁄ I5 β ξν( ) 8θνξν
2– I2 β ξν( ),–+=

∆4ν 8β2
K4 β ξν( ) β3ξν

1 2⁄ K5 β ξν( )– 8θνξν
2– K2 β ξν( ),–=

∆5ν 8β2
J4 β ξν( ) β3ξν

1 2⁄ J5 β ξν( ), ∆6ν 8β2
Y4 β ξν( ) β3ξν

1 2⁄ Y5 β ξν( ),–=–=

∆7ν 8β2I4 β ξν( ) β3ξν
1 2⁄ I5 β ξν( ), ∆8ν 8β2K4 β ξν( ) β3ξν

1 2⁄ K5 β ξν( )–=+=

Y 1( ) 0, Y ′ 1( ) 0==

J2 β( )C11 Y2 β( )C12 I2 β( )C13 K2 β( )C14+ + + 0=

J3 β( )C11 Y3 β( )C12 I3 β( )C13– K3 β( )C14+ + 0=

BL[ ] CL{ } 0{ }=

1   2   3   4

BL[ ] J2 β( )  Y2 β( )  I2 β( )  K2 β( )
J3 β( )  Y3 β( )  I– 3 β( )  K3 β( )

1

2
=

CL{ } C11  C12  C13  C14{ } C1  C2  C3  C4{ }= =

C1 C11= C2 C12= C3 C13= C4 C14=, , ,

Ci

Y″ α( ) 0, 4α 1– Y″ α( ) Y″′ α( )+ 0==
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Since the right end of the beam, R, coincides with the right end of the (n + 1)-th segment
(ν = n + 1), as one may see from Fig. 1, hence from Eqs. (11), (12), (27a) and (27b) one obtains 

 (28a)

(28b)

To write Eqs. (28a) and (28b) in matrix form gives

  (29)
where 

(30a)

(30b)

               (31)

(32)

p = 4n + 4 (33)

In the last equations, p represents the total number of equations. From the above derivations one
sees that from each attaching point for a concentrated element one may obtain four equations
(including three compatibility equations and one force-equilibrium equation) and from each
boundary (L or R) one may obtain two equations. Hence, for a beam carrying n concentrated
elements, the total number of equations that one may obtain for the integration constants
Cνi(ν = 1~n, i = 1~4) is equal to 4n + 4, i.e., p = 4n + 4 as shown by Eq. (33). Of course, the total
number of unknowns (Cνi) is also equal to 4n + 4. From Eq. (8) one sees that the solution 
for each beam segment contain four unknown integration constants Cνi(i = 1~4), hence if a beam
carries n concentrated elements, then the total number of the beam segment is n + 1 and thus the
total number of unknown (Cνi) is equal to 4(n + 1) = 4n + 4 = p.

6. Overall coefficient matrix [ ]  of the entire beam and the frequency equation

If all the unknowns Cνi(ν = 1~n, i = 1~4) are replaced by a column vector {C} with coefficients
Ck(k = 1, 2, ..., p) defined by Eqs. (26), (20b) and (32), then the matrices [BL], [Bν] and [BR] are
similar to the element property matrices (for the finite element method) with corresponding
identification numbers for the degrees of freedom (dof) shown on the top side and right side of the
matrices defined by Eqs. (20c), (24) and (30a). Basing on the assembly technique for the direct

J4 β α( )Cn 1+ 1, Y4 β α( )Cn 1+ 2, I4 β α( )Cn 1+ 3, K4 β α( )Cn 1+ 4,+ + + 0=

8J4 β α( ) βα1 2⁄ J5 β α( )–[ ]Cn 1+ 1, 8Y4 β α( ) βα1 2⁄ Y5 β α( )–[ ]Cn 1+ 2,+

8I4 β α( ) βα1 2⁄ I5 β α( )+[ ]Cn 1+ 3, 8K4 β α( ) βα1 2⁄ K5 β α( )–[ ]Cn 1+ 4,+ + 0=

BR[ ] CR{ } 0{ }=

4n 1 4n 2+ 4n 3+ 4n 4++

BR[ ] J4 β α( )  Y4 β α( )  I4 β α( )  K4 β α( )
ε1 ε2 ε3 ε4

p 1–

p
=

ε1 8J4 β α( ) βα1 2⁄ J5 β α( )–[ ], ε2 8Y4 β α( ) βα1 2⁄ Y5 β α( )–[ ],==

ε3 8I4 β α( ) βα1 2⁄ I5 β α( )+[ ], ε4 8K4 β α( ) βα1 2⁄ K5 β α( )–[ ]==

CR{ } Cn 1+ 1,   Cn 1+ 2,   Cn 1+ 3,   Cn 1+ 4,{ }=

C4n 1+   C4n 2+   C4n 3+   C4n 4+{ }=

C4n 1+ Cn 1+ 1, , C4n 2+ Cn 1+ 2,= , C4n 3+ Cn 1+ 3, , C4n 4+ Cn 1+ 4,== =

Yν ξ( )

B
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stiffness matrix method, it is easy to arrive at the following coefficient equation for the entire
vibrating system

(34)

Nontrivial solution of the problem requires that 

(35)

which is the frequency equation, and the half-interval technique [Faires and Burden 1993] may be
used to solve the eigenvalues (j = 1, 2, ...). To substitute each value of  into Eq. (34) one may
determine the values of unknowns Ck(k = 1, 2, ..., p). Among which, from Eq. (26) one sees that

, , , , ν = 1~n, hence the substitution of
Cνi(i = 1~4) into Eq. (8) will define the corresponding mode shape . For a cantilever beam
carrying one (n = 1) and two (n = 2) concentrated elements, the corresponding overall coefficient
matrices  and  were shown in Appendix 1 [see Eqs. (A1) and (A2)]. From the lengthy
expressions one sees that the conventional explicit formulations are not suitable for a beam carrying
more than two (n > 2) concentrated elements. However this is not true for the numerical assembly
method (NAM) adopted in this paper.

7. Coefficient matrices [ BL] and [ BR] for various boundary conditions

From the previous sections one finds that the form of the coefficient matrix [Bν] for each attaching
point of the concentrated element has nothing to do with the boundary conditions of the beam,
hence for a “constrained” beam with various supporting conditions the only thing one should do is
to modify the values of the two boundary matrices [BL] and [BR] defined by Eqs. (24) and (30a),
respectively, according to the actual boundary conditions. And then the same numerical assembly
procedures introduced in the last section may be followed. This is one of the predominant
advantages of the NAM. The boundary matrices [BL] and [BR] for various boundary conditions were
placed in Appendix 2 at the end of this paper.

8. Numerical results and discussions

The dimensions and physical properties of the doubly-tapered beam studied in this paper are:
L = 40 in, E = 3.0 × 107 psi, A0 = 1.5 in2, I0 = 0.28125 in4, ρ = 0.283 lbm, α = 2.0, mb = ρA0L
[1/3(α − 1)2 + (α − 1) + 1] = 29.715 lbm, kb = EI0/L3 = 312.5 lbf/in.

For convenience, three non-dimensional parameters for each concentrated element were introduced
:  and . In addition, the two-letter
acronyms, FC, CF, SC, CS, CC and SS, were used to denote the free-clamped (FC), clamped-free
(CF), simply supported-clamped (SC), clamped-simply supported (CS), clamped-clamped (CC), and
simply supported-simply supported (SS) boundary conditions of the beam, respectively.

8.1 Comparing with the existing results

In order to compare the results of NAM with the corresponding ones of De Rosa and Auciello

B[ ] C{ } 0{ }=

B 0=

ω j ω j

C4ν 3– Cν1= C4ν 2– Cν2= C4ν 1– Cν3= C4ν Cν4=
Y

j( ) ξ( )

B[ ] 1( ) B[ ] 2( )

mci
* mci mb⁄ kTi

* kTi kb⁄=,= kRi
* kRi EI0 L⁄( )⁄ i 1 2 … n, , ,=,=
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(1996), the “unconstrained” SS and FC tapered beams (without carrying any concentrated elements)
were studied first. The lowest four non-dimensional frequency coefficients, Ωj ( j = 1~4), with the
taper ratios α = 2.0 and α = 1.4, respectively, were shown in Table 1. It is evident that the results of
the introduced method (NAM) and those of De Rosa and Auciello (1996) are in good agreement.

For the case of the tapered cantilever beam carrying “a single” translational spring at its free end
and with a taper ratio α = 2.0, Table 2 shows the lowest four non-dimensional frequency
coefficients, (j = 1~4), obtained from the NAM and those from De Rosa and Auciello (1996). It
is also found that the values of (j = 1~4) obtained from the NAM are very close to those of De
Rosa and Auciello (1996). According to the above comparison results, it is believed that the adopted
method (NAM) in this paper is robust and accurate.

8.2 Free vibration analysis of the “unconstrained” tapered beam

Since the information regarding the natural frequencies and mode shapes of a doubly-tapered
beam carrying multiple concentrated elements has not been found yet, the numerical results of this
paper are compared with those obtained from the conventional finite element method (FEM) to
confirm their reliability. To this end, the above-mentioned tapered beam was replaced by a stepped

Ω j

Ω j

Table 2 The lowest four non-dimensional frequency coefficients Ωj( j = 1~4) for the FC tapered  beam carrying
“a single” translational spring at its free end and with a taper ratio α = 2.0

 Methods
Non-dimensional frequency coefficients

10.0
NAM 2.85540 5.44142 8.74258 12.11962

De Rosa and Auciello (1996) 2.85540 5.44140 8.74260 12.11960

1.0
NAM 2.44201 5.38055 8.72799 12.11413

De Rosa and Auciello (1996) 2.44200 5.38050 8.72800 12.11410

0.1
NAM 2.38344 5.37454 8.72654 12.11358

De Rosa and Auciello (1996) 2.38340 5.37450 8.72650 12.11360

*NAM = numerical assembly method

kT1
* kT1

kb

------=
Ω1 Ω2 Ω3 Ω4

Table 1 The lowest four non-dimensional frequency coefficients Ωj ( j = 1~4) for the “unconstrained” non-
uniform beam (without carrying any concentrated elements) with the support conditions: SS and FC

Boundary
 conditions

  Taper ratios 
α  Methods

Non-dimensional frequency coefficients

Ω1 Ω2 Ω3 Ω4

SS 2.0
NAM 3.7300 7.6302 11.4217 15.2083

De Rosa and Auciello (1996) 3.7300 7.6302 11.4217 15.2083

FC 1.4
NAM 2.3766 5.3739 8.7264 12.1135

De Rosa and Auciello (1996) 2.3766 5.3739 8.7264 12.1135

*NAM = numerical assembly method
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Table 3(a) Influence of number of beam elements (Ne) on the lowest five natural frequencies of the CF
unconstrained doubly-tapered beam using FEM

Number of
elements, Ne

Natural frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

40 7.23856 73.51321 236.92092 477.81289 798.75291
50 7.23694 73.50012 236.88221 477.73541 798.62131
60 7.23607 73.49300 236.86116 477.69338 798.55044
70 7.23554 73.48871 236.84846 477.66806 798.50792

# Exact sol. 7.23408 73.47681 236.81331 477.59822 798.39106

#The exact solutions were obtained from NAM (without concentrated elements).

beam as shown in Fig. 2. Table 3(a) shows the influence of the total number of beam elements for
FC unconstrained doubly-tapered beam (with taper ratio α = 2.0), Ne, on the lowest five natural
frequencies obtained from FEM. From the table one sees that the FEM results are very close to the
corresponding “exact” solutions obtained from application of Bessel’s functions when . For
this reason, the FEM results of this paper were obtained based on Ne = 60. The cross-sectional area
Ai and the moment of inertia Ii of the i-th “uniform beam segment” for the stepped beam shown in
Fig. 2 are equal to the average values of the corresponding ones for the i-th “tapered beam
segment”, respectively, and the mass per unit length of the i-th uniform beam segment is evaluated
by ρAi. The length of each uniform beam segment is l = L/60 = 2/3 in for the case of Ne = 60.

In Table 3(b) and the subsequent Tables, the same doubly-tapered beam (taper ratio α = 2.0) with
six boundary conditions (i.e., FC, CF, SC, CS, CC and SS) were studied. From Table 3(b) one sees
that the NAM results and FEM results are very close to each other. In Fig. 3 one sees that the node
number Nmj for the j-th mode shape of the six types of boundary conditions of the beam are given
by Nmj = j − 1. It is noteworthy in Fig. 3 that the modal displacements near the left ends of the SC,
CS, CC or SS tapered beam are larger than those near the right end of the beam. This is reasonable,
because the stiffness of the left end is much smaller than that of the right end of each tapered beam
as one may see from Fig. 1 and Fig. 2. 

Ne 60≈

Fig. 2 The finite element model for the doubly-tapered beam: (a) Top view and (b) Front view
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Fig. 3 The lowest five mode shapes Yj(ξ) ( j = 1~5) for the “unconstrained” doubly-tapered beam (without
carrying any concentrated elements) with the support conditions: (a) FC, (b) CF, (c) SC, (d) CS,
(e) CC and (f) SS 
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8.3 Free vibration analysis of the “constrained” tapered beam

Case 1: carrying five point masses 
For the tapered beam carrying five point masses with locations and magnitudes shown in Table 4,

Table 3(b) The lowest five natural frequencies ωj( j = 1~5) for the “unconstrained” doubly-tapered beam
(without carrying any concentrated elements)

 Boundary
 conditions   Methods

Natural frequencies (rad/sec)

ω1 ω2 ω3 ω4 ω5

FC
NAM 25.77532 108.93610 270.72329 511.65966 832.52916
FEM 25.77957 108.96115 270.79725 511.80228 832.79109

CF
NAM 7.23408 73.47681 236.81331 477.59822 798.39106
FEM 7.23607 73.49300 236.86116 477.69338 798.55044

SC
NAM 71.61388 212.87668 433.85401 734.70179 1115.57882
FEM 71.62427 212.91674 433.93632 734.84742 1115.82269

CS
NAM 53.77585 196.23185 417.05549 717.82045 1098.63870
FEM 53.78521 196.26335 417.12164 717.93454 1098.81537

CC
NAM 91.83540 251.75856 492.37771 813.02661 1213.79486
FEM 91.84257 251.77828 492.41639 813.09170 1213.89496

SS
NAM 38.76810 162.22786 363.50517 644.48275 1005.41779
FEM 38.76997 162.23740 363.53147 644.54148 1005.51533

*NAM = numerical assembly method;  FEM = finite element method

Table 4 The locations and magnitudes of the four kinds of concentrated attachments

Concentrated 
attachments

Locations of point 
masses and/or 

translational springs 
and/or rotational 

springs 

Magnitudes
of translational spring 

constants

Magnitudes
of rotational spring 

constants

Magnitudes
of point masses

Remarks

ξ1 ξ2 ξ3 ξ4 ξ5

Point masses 0.1 0.3 0.5 0.7 0.9 0.2 0.2 0.2 0.2 0.2 Case1

Translational 
springs 0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0 Case2

Rotational 
springs 0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0 Case3

Point masses 
, 

translational 
springs  

and rotational 
springs 

0.1 0.3 0.5 0.7 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.2 0.2 0.2 0.2

Case4
(Combina-

tion of 
Case1, 

Case2 and 
Case3)

ξj xj L⁄= kTi
* kTi kb⁄= kRi

* kRi EI0 L⁄( )⁄= mci
* mci mb⁄=

kT1
* kT2

* kT3
* kT4

* kT5
* kR1

* kR2
* kR3

* kR4
* kR5

* mc1
* mc2

* mc3
* mc4

* mc5
*

mci
*

kTi
*

kRi
*

mci
*

kTi
*

kRi
*
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the calculated lowest five natural frequencies (j = 1~5) were shown in Table 5 and the
corresponding mode shapes (j = 1~5) for the six types of boundary conditions were shown in
Figs. 4(a)~4(f ), respectively. It can be seen that the lowest five natural frequencies of the
“constrained” beam, (j = 1~5), shown in Table 5 are smaller than the corresponding ones of the
“unconstrained” beam, ωj( j = 1~5), shown in Table 2. The difference between  and ωj,

, increases with increasing the mode number j. But the lowest five mode shapes of
the “constrained” beam shown in Fig. 4 look like those of the “unconstrained” beam shown in Fig. 3.
The five “identical” point masses “uniformly” distributed along the beam length should be the main
reason arriving at the last result.

The percentage differences between  and  shown in the parentheses ( ) of Table 5
were calculated with the formula: , where  and

 denote the j-th natural frequencies of the “constrained” beam obtained from the NAM and
the FEM, respectively. In Table 5 one finds that the maximum value of εj is = 0.0667% (for the
FC boundary condition), hence the accuracy of the NAM is good.

Case 2: carrying five translational springs 
For the same tapered beam carrying five translational springs with locations and magnitudes

shown in Table 4, the lowest five natural frequencies (j = 1~5) of the constrained beam were
shown in Table 6. Comparing with the results of Table 6 and Table 2, one sees that the lowest five
natural frequencies of the “unconstrained” beam, (j = 1~5), shown in Table 2 are smaller than
the corresponding ones of the “constrained” beam, (j = 1~5), shown in Table 6. Furthermore, the
maximum value of the percentage difference between  and  (j = 1~5) is  =
0.0324% (for the CF beam), hence the accuracy of the NAM is excellent for the present case. Since
the corresponding mode shapes for the “constrained” beams are almost coincident with the ones for
the “unconstrained” beams, the former were not shown in this paper.

Case 3: carrying five rotational springs
For the same tapered beam carrying five rotational springs with locations and magnitudes given in

Table 4, the lowest five natural frequencies (j = 1~5) were shown in Table 7. From Table 7 and
Table 2 it is seen also that the lowest five natural frequencies of the “unconstrained” beam are
smaller than the corresponding ones of the “constrained” beam. The maximum value of the
percentage difference is found to be = 0.0469% (for the FC beam). The corresponding mode
shapes for the “constrained” beam are also almost identical with the ones for the “unconstrained”
beam and not shown here.

Case 4: carrying five point masses, five translational springs and five rotational springs 
Finally, the tapered beam carrying five point masses, five translational springs and five rotational

springs, a combination of Case1, Case2 and Case3, is studied. The computed lowest five natural
frequencies (j = 1~5) were shown in Table 8 and it is interesting that the values of  for the
present Case 4 are very close to those for Case 1, where the tapered beam carries five point masses
alone. This is the reason that the corresponding mode shapes of the present case (see Fig. 5) are
almost the same as the lowest five mode shapes of the tapered beam of the Case 1 (see Fig. 4 ). It is
noted that only the lowest five mode shapes of the tapered beam with FC, CF and SC were shown
in Fig. 5.

ω j

Yj

ω j

ω j

ωj∆ ωj ω j–=

ω jNAM ω jFEM

εj
* ω jFEM ω jNAM–( ) 100% ω jFEM⁄×= ω jNAM

ω jFEM

ε5
*

ω j

ω j

ω j

ω jNAM ω jFEM ε4
*

ω j

ε5
*

ω j ω j
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Table 6 The lowest five natural frequencies for the doubly-tapered beam carrying five translational springs
with locations and magnitudes shown in Table 4 (Case 2) 

  Boundary
  conditions    Methods

Natural frequencies (rad/sec)

FC
NAM 26.29514 109.02847 270.75305 511.67078 832.53629

(0.0124%) (0.0156%) (0.0272%) (0.0298%) (0.0302%)
FEM 26.29841 109.04551 270.82695 511.82345 832.78851

CF
NAM 8.01201 73.58781 236.85090 477.61491 798.40294

(0.0229%) (0.0233%) (0.0244%) (0.0283%) (0.0324%)
FEM 8.01385 73.60496 236.90878 477.75025 798.66244

SC
NAM 71.75531 212.92459 433.87894 734.72216 1115.58902

(0.0144%) (0.0188%) (0.0226%) (0.0226%) (0.0236%)
FEM 71.76570 212.96469 433.97730 734.88810 1115.85300

CS
NAM 53.93133 196.27981 417.07681 717.83287 1098.65660

(0.0117%) (0.0160%) (0.0159%) (0.0159%) (0.0161%)
FEM 53.93766 196.31121 417.14301 717.94694 1098.83335

CC
NAM 91.93714 251.79607 492.39517 813.03983 1213.80835

(0.0078%) (0.0078%) (0.0079%) (0.0080%) (0.0082%)
FEM 91.94429 251.81572 492.43390 813.10483 1213.90843

SS
NAM 38.99935 162.28989 363.53401 644.50344 1005.43491

(0.0013%) (0.0059%) (0.0067%) (0.0091%) (0.0097%)
FEM 38.99984 162.29947 363.55836 644.56219 1005.53216

ω 1 ω 2 ω 3 ω 4 ω 5

Table 5 The lowest five natural frequencies for the doubly-tapered beam carrying five point masses with
locations and magnitudes shown in Table 4 (Case 1) 

  Boundary
  conditions   Methods

Natural frequencies (rad/sec)

FC
NAM 15.89633 73.69710 192.03138 384.84166 682.50090

(0.0059%) (0.0137%) (0.0173%) (0.0363%) (0.0667%)
FEM 15.89728 73.70723 192.99816 384.98167 682.95681

CF
NAM 5.52700 52.35275 165.56475 336.91485 480.72236

(0.0204%) (0.0223%) (0.0279%) (0.0341%) (0.0345%)
FEM 5.52813 52.36443 165.61112 337.03006 480.88865

SC
NAM 48.02431 142.94833 280.18354 434.93220 886.24478

(0.0248%) (0.0259%) (0.0261%) (0.0263%) (0.0607%)
FEM 48.03623 142.98542 280.25657 435.04620 886.78312

CS
NAM 37.94101 134.90981 288.55991 449.57620 664.70462

(0.0191%) (0.0215%) (0.0245%) (0.0440%) (0.0441%)
FEM 37.94829 134.93887 288.63082 449.77431 664.99837

CC
NAM 62.95041 172.69856 339.87602 480.22513 891.00593

(0.0107%) (0.0114%) (0.0242%) (0.0292%) (0.0616%)
FEM 62.95718 172.71836 339.95835 480.36575 891.55583

SS
NAM 26.85947 109.60386 239.57739 386.62265 659.12812

(0.0085%) (0.0119%) (0.0224%) (0.0346%) (0.0410%)
FEM 26.86177 109.61694 239.63125 386.75668 659.39873

Note: The percentage differences between  and  shown in the parentheses ( ) were determined
with the formula: 

ω 1 ω 2 ω 3 ω 4 ω 5

ω jNAM ω jFEM

ε j
* ω jFEM ω jNAM–( ) 100% ω jFEM⁄×=
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Fig. 4 The lowest five mode shapes  (j = 1~5) for the doubly-tapered beam carrying five point masses
with locations and magnitudes shown in Table 4 for the support conditions: (a) FC, (b) CF, (c) SC, (d)
CS, (e) CC and (f) SS

Yj ξ( )
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Table 8 The lowest five natural frequencies for the doubly-tapered beam carrying five point masses, five
translational springs and five rotational springs with locations and magnitudes shown in Table 4 (Case 4) 

  Boundary
  conditions   Methods

Natural frequencies (rad/sec)

FC
NAM 17.95168 76.56920 194.61172 387.01715 688.08834

(0.0155%) (0.0230%) (0.0341%) (0.0595%) (0.0630%)
FEM 17.95447 76.58686 194.67814 387.24765 688.52217

CF
NAM 8.02218 54.51508 167.52606 338.80454 481.14907

(0.0194%) (0.0218%) (0.0217%) (0.0339%) (0.0343%)
FEM 8.02374 54.52701 167.56256 338.91961 481.31423

SC
NAM 49.41539 144.42144 281.10500 435.36013 888.03352

(0.0150%) (0.0208%) (0.0223%) (0.0225%) (0.0415%)
FEM 49.42281 144.45156 281.16784 435.45835 888.40263

CS
NAM 39.23242 136.44081 290.24124 450.23705 665.32369

(0.0187%) (0.0183%) (0.0243%) (0.0438%) (0.0515%)
FEM 39.23978 136.46584 290.31181 450.43445 665.35801

CC
NAM 64.00580 174.17462 341.44197 480.54032 892.59772

(0.0104%) (0.0112%) (0.0240%) (0.0291%) (0.0392%)
FEM 64.01249 174.19418 341.52403 480.68022 892.94784

SS
NAM 28.60715 111.27047 240.81870 387.07959 659.92196

(0.0036%) (0.0065%) (0.0068%) (0.0078%) (0.0095%)
FEM 28.60818 111.27877 240.83519 387.11016 659.98481

ω 1 ω 2 ω 3 ω 4 ω 5

Table 7 The lowest five natural frequencies for the doubly-tapered beam carrying five rotational springs with
locations and magnitudes shown in Table 4 (Case 3)

Boundary
conditions Methods

Natural frequencies (rad/sec)

FC
NAM 28.57494 113.36598 275.08862 516.08580 835.99703

(0.0206%) (0.0296%) (0.0332%) (0.0461%) (0.0469%)
FEM 28.58084 113.39965 275.18016 516.32394 836.39012

CF
NAM 9.92873 76.34653 239.57561 480.79005 800.93904

(0.0129%) (0.0218%) (0.0242%) (0.0406%) (0.0448%)
FEM 9.93002 76.36314 239.63380 480.98562 801.29828

SC
NAM 73.51209 215.18391 436.01313 735.64242 1117.93677

(0.0131%) (0.0133%) (0.0312%) (0.0332%) (0.0339%)
FEM 73.52172 215.21274 436.14948 735.88716 1118.31519

CS
NAM 55.44877 198.43105 419.82751 720.59389 1098.94536

(0.0152%) (0.0158%) (0.0158%) (0.0158%) (0.0162%)
FEM 55.45725 198.46246 419.89382 720.70791 1099.12295

CC
NAM 93.25099 253.95781 495.19543 815.19702 1214.95692

(0.0076%) (0.0077%) (0.0078%) (0.0080%) (0.0082%)
FEM 93.25809 253.97731 495.23398 815.26203 1215.05692

SS
NAM 41.05421 164.70974 365.89295 645.95905 1006.46270

(0.0027%) (0.0113%) (0.0122%) (0.0242%) (0.0290%)
FEM 41.05532 164.72836 365.93775 646.11574 1006.75493

ω 1 ω 2 ω 3 ω 4 ω 5
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8.4 Influence of magnitude and location of the single point mass mc

If , then the influence of location of the single point mass mc with magnitudes
,  and , respectively, on the lowest three natural frequencies of the

constrained CF doubly-tapered beam were shown in Figs. 6(a) for the first frequency , 6(b) for
the second one  and 6(c) for the third one . From Fig. 6(a) one sees that the first natural
frequency ( ) of the CF beam decreases when the distance between the single point mass mc and
the left clamped end of the beam, xc (or , L is the beam length), increases; besides, at
any specified location of the single point mass mc(i.e., xc = constant), the value of  decreases
with increasing the magnitude of the single point mass. The last results are due to the fact that, for
the first mode shape of the CF beam, the effective spring constant is given by  and the
value of  is proportional to . From Figs. 6(b) and 6(c) one sees that, at any specified
location of the single point mass mc, the value of (or ) also decreases with increasing the
magnitude of the single point mass mc, but the influence of location of the single point mass on the
second natural frequency  and the third one  is more complicated. From the second and third

mc
* mc mb⁄=

mc
* 1= mc

* 5= mc
* 10=

ω1

ω2 ω3

ω1

ξc xc L⁄=
ω1

kc 3EI xc
3⁄=

ω1 kc mc⁄
ω2 ω3

ω2 ω3

Fig. 5 The lowest five mode shapes  (j = 1~5) for the doubly-tapered beam carrying five point masses,
five translational springs and five rotational springs with locations and magnitudes shown in Table 4
for the support conditions: (a) FC, (b) CF, (c) SC, (d) CS, (e) CC and (f) SS 

Yj ξ( )
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mode shapes of the “unconstrained” CF tapered beam shown in Fig. 3(b) one sees that there exists
one node at  in the second mode shape and two nodes at  and 0.86L,
respectively, in the second mode shape. This will be the reason why the second natural frequency
( ) of the constrained tapered beam for the case of  is equal to that with  = 5 or  = 10
when the point mass is located at  (or ) as one may see from Fig. 6(b).
Similarly, when the point mass is located at node 1 with  or node 2 with ,
the influence of the magnitude of the point mass ( = 1, 5 or 10) on the third natural frequency
( ) of the constrained tapered beam is nil as shown in Fig. 6(c). It is noted that the horizontal
solid lines in Figs. 6(a), 6(b) and 6(c) were used to indicate the first, second and third natural
frequencies of the “unconstrained” CF tapered beam, respectively.

x 0.78L≈ x 0.47L≈

ω2 mc
* 1= mc

* mc
*

xc 0.78L≈ ξc xc L⁄ 0.78≈=
xc1 0.47L≈ xc2 0.86L≈

mc
*

ω3

Fig. 6 Influence of magnitude and location of the single point mass on the lowest three natural frequencies of
the CF doubly-tapered beam: (a) first frequency ; (b) second frequency ; (c) third frequency ω1 ω2 ω3
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9. Conclusions 

(1) For a doubly-tapered beam with various boundary conditions and carrying more than “two”
concentrated elements, the exact natural frequencies and the corresponding mode shapes are
easily determined with the numerical assembly method (NAM). 

(2) The modal displacements near the left end of the “unconstrained” doubly-tapered SC, CS, CC,
or SS beam are larger than those near the right end of the beam. This is a reasonable result,
because the stiffness of the left end is much smaller than that of the right end for the doubly-
tapered beam studied in this paper.

(3) The free vibration characteristics of a tapered beam are significantly influenced by the
distributions and magnitudes of the concentrated attachments along the beam length.

(4) If the total number of nodes for the r-th mode shape is q and the distance between the point
mass mc and the left supporting end of the constrained beam is denoted by xci, then the
influence of magnitude of the point mass on the corresponding natural frequency  is nil,
when the point mass is located at x = xci(i = 1~q) (i.e., located at any of the nodes).
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Appendix 1

For a non-uniform cantilever beam (CF) respectively carrying one and two concentrated elements, the
“explicit” expressions for the overall coefficient matrices [B](1) and [B](2) were given by Eqs. (A1) and (A2),
respectively.

                              

(A1)

where 

β = 2LΩ/(α − 1),

C1 C2 C3 C4 C5 C6 C7 C8

B[ ] 1( )

J2 β( )  Y2 β( )  I2 β( )  K2 β( )  0  0  0  0
J3 β( )  Y3 β( )  I3 β( )–   K3 β( )  0  0  0  0
J2 δ1( )  Y2 δ1( )  I2 δ1( )  K2 δ1( )  J2 δ1( )–   Y2 δ1( )–   I2 δ1( )–   K2 δ1( )–
J3 δ1( )  Y3 δ1( )  I3 δ1( )–   K3 δ1( )  J3 δ1( )–   Y3 δ1( )–   I3 δ1( )  K3 δ1( )–

∇11 ∇21 ∇31  ∇41  ∇51  – ∇61–   ∇71–   ∇91–
∆11 ∆21  ∆31  ∆41  ∆51–   ∆61–   ∆71–   ∆81–

0  0  0  0  J4 β α( )  Y4 β α( )  I4 β α( )  K4 β α( )
0  0  0  0  ε1  ε2  ε3  ε4

1
2
3
4
5
6
7
8

=

∇11 β2J4 δ1( ) 2kR1
*

α 1–( )
-----------------βξ1

7 2⁄– J3 δ1( )–= , ∇21 β2Y4 δ1( ) 2kR1
*

α 1–( )
-----------------βξ1

7 2⁄– Y3 δ1( ),–=

∇31 β2I4 δ1( ) 2kR1
*

α 1–( )
-----------------βξ1

7 2⁄– I3 δ1( ), ∇41 β2K4 δ1( ) 2kR1
*

α 1–( )
-----------------βξ1

7 2⁄– K3 δ1( ),–=+=

∇51 β2J4 δ1( ), ∇61 β2Y4 δ1( )= , ∇71 β2I4 δ1( )= , ∇81 β2K4 δ1( ),==

ε1 8J4 β α( ) βα1 2⁄ J5 β α( )–[ ]= , ε2 8Y4 β α( ) βα1 2⁄ Y5 β α( )–[ ],=

ε3 8I4 β α( ) βα1 2⁄ I5 β α( )+[ ]= , ε4 8K4 β α( ) βα1 2⁄ K5 β α( )–[ ]=

∆11 8β2J4 β ξ1( ) β3ξ1
1 2⁄ J5 β ξ1( )– 8θ1ξ1

2– J2 β ξ1( ),–=

δ1 β ξ1, ∆21 8β2Y4 β ξ1( ) β3ξ1
1 2⁄ Y5 β ξ1( )– 8θ1ξ1

2– Y2 β ξ1( ),–==

∆31 8β2I4 β ξ1( ) β3ξ1
1 2⁄ I5 β ξ1( ) 8θ1ξ1

2– I2 β ξ1( ),–+=
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(A2)

where

∆41 8β2K4 β ξ1( ) β3ξ1
1 2⁄ K5 β ξ1( )– 8θ1ξ1

2– K2 β ξ1( ),–=

∆51 8β2J4 β ξ1( ) β3ξ1
1 2⁄ J5 β ξ1( )–= , ∆61 8β2Y4 β ξ1( ) β3ξ1

1 2⁄ Y5 β ξ1( ),–=

∆71 8β2I4 β ξ1( ) β3ξ1
1 2⁄ I5 β ξ1( )+= , ∆81 8β2K4 β ξ1( ) β3ξ1

1 2⁄ K5 β ξ1( )–=

θ1
kT1

*

α 1–( )3
-------------------

mc1
* 1

3
--- α 1–( )2 α+ ΩL( )4

α 1–( )3
---------------------------------------------------------------–=

C1 C 2 C 3 C4 C 5 C 6

B[ ] 2( )

J2 β( )  Y2 β( )  I2 β( )  K2 β( )  0  0  
J3 β( )  Y3 β( )  I– 3 β( )  K3 β( )  0  0  
J2 δ1( )  Y2 δ1( )  I2 δ1( )  K2 δ1( )  J2 δ1( )–   Y2 δ1( )–   
J3 δ1( )  Y3 δ1( )  I3 δ1( )–   K3 δ1( )  J3 δ1( )–   Y3 δ1( )–   

∇11  ∇21  ∇31  ∇41  ∇– 51  ∇– 61  
∆11  ∆21  ∆31  ∆41  ∆– 51  ∆– 61  
0  0  0  0  J2 δ2( )  Y2 δ2( )  
0  0  0  0  J3 δ2( )  Y3 δ2( )  
0  0  0  0  ∇12  ∇22

0  0  0  0  ∆12  ∆22  
0  0  0  0  0  0  
0  0  0  0  0  0  

=

C7 C 8 C 9 C10 C 11 C 12

0  0  0  0  0  0
0  0  0  0  0  0

I2 δ1( )–   K2 δ1( )–   0  0  0  0
I3 δ1( )  K3 δ1( )–   0  0  0  0

∇– 71  ∇– 81  0  0  0  0
∆– 71  ∆– 81  0  0  0  0

I2 δ2( )  K2 δ2( )  J– 2 δ2( )  Y– 2 δ2( )  I– 2 δ2( )  K– 2 δ2( )
I– 3 δ2( )  K3 δ2( )  J– 3 δ2( )  Y– 3 δ2( )  I3 δ2( )  K– 3 δ2( )
∇32  ∇42  ∇– 52  ∇– 62  ∇– 72  ∇– 82

∆32  ∆42  ∆– 52  ∆– 62  ∆– 72  ∆– 82

0  0  J4 β α( )  Y4 β α( )  I4 β α( )  K4 β α( )
0  0  ε1  ε2  ε3  ε4

1
2
3
4
5
6
7
8
9
10
11
12

∇1ν β2J4 δν( ) 2kRν
*

α 1–( )
-----------------βξν

7 2⁄– J3 δν( ), ∇2ν β2Y4 δν( ) 2kRν
*

α 1–( )
-----------------βξν

7 2⁄– Y3 δν( ),–=–=

∇3ν β2I4 δν( ) 2kRν
*

α 1–( )
-----------------βξν

7 2⁄– I3 δν( ), ∇4ν β2K4 δν( ) 2kRν
*

α 1–( )
-----------------βξν

7 2⁄– K3 δν( ),–=+=

∇5ν β2J4 δν( ), ∇6ν β2Y4 δν( ),= ∇7ν β2I4 δν( ), ∇8ν β2K4 δν( ), β 2LΩ α 1–( ),⁄====
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,

,

Appendix 2

The coefficient matrices for the “left” end of the beam, [BL], and those for the “right” end of the beam,
[BR], with the FC, SC, CS, CC and SS boundary conditions were given below.

(1) Free-clamped beam

1 2 3 4

(A3)

 4n + 1   4n + 2  4n + 3  4n + 4

                   (A4)

(2) Simply supported-clamped beam

1  2   3 4

(A5)

4n + 1   4n + 2  4n + 3  4n + 4

       (A6)

(3) Clamped-simply supported

  1  2    3 4

       (A7)

∆1ν 8β2J4 β ξν( ) β3ξν
1 2⁄ J5 β ξν( )– 8θνξν

2– J2 β ξν( ), δν β ξν ,=–=

∆2ν 8β2Y4 β ξν( ) β3ξν
1 2⁄ Y5 β ξν( )– 8θνξν

2– Y2 β ξν( ),–=

∆3ν 8β2I4 β ξν( ) β3ξν
1 2⁄ I5 β ξν( ) 8θνξν

2– I2 β ξν( )–+=

∆4ν 8β2K4 β ξν( ) β3– ξν
1 2⁄ K5 β ξν( ) 8θνξν

2– K2 β ξν( )–=

∆5ν 8β2J4 β ξν( ) β3ξν
1 2⁄ J5 β ξν( ), ∆6ν 8β2Y4 β ξν( ) β3ξν

1 2⁄ Y5 β ξν( ),–=–=

∆7ν 8β2I4 β ξν( ) β3ξν
1 2⁄ I5 β ξν( ), ∆8ν 8β2K4 β ξν( ) β3ξν

1 2⁄ K5 β ξν( ),–=+=

ε1 8J4 β α( ) βα1 2⁄ J5 β α( )–[ ]= , ε2 8Y4 β α( ) βα1 2⁄ Y5 β α( )–[ ],=

ε3 8I4 β α( ) βα1 2⁄ I5 β α( )+[ ]= , ε4 8K4 β α( ) βα1 2⁄ K5 β α( )–[ ],=

θν
kTν

*

α 1–( )3
-------------------

mcν
* 1

3
--- α 1–( )2 α+ ΩL( )4

α 1–( )3
--------------------------------------------------------------- ν 1 2,=( )–=

BR[ ] J4 β( )  Y4 β( )  I4 β( )  K4 β( )
8J4 β( ) βJ5 β( )–   8Y4 β( ) βY5 β( )–   8I4 β( ) βI5 β( )+   8K4 β( ) βK5 β( )–

1
2

=

BL[ ] J2 β α( )  Y2 β α( )  I2 β α( )  K2 β α( )
J3 β α( )  Y3 β α( )  I– 3 β α( )  K3 β α( )

p 1–
p

=

BR[ ] J2 β( )  Y2 β( )  I2 β( )  K2 β( )
J4 β( )  Y4 β( )  I4 β( )  K4 β( )

1
2

=

BL[ ] J2 β α( )  Y2 β α( )  I2 β α( )  K2 β α( )
J3 β α( )  Y3 β α( )  I– 3 β α( )  K3 β α( )

p 1–
p

=

BR[ ] J2 β( )  Y2 β( )  I2 β( )  K2 β( )
J3 β( )  Y3 β( )  I– 3 β( )  K3 β( )

1
2

=
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     4n + 1   4n + 2 4n + 3 4n + 4

       (A8)

(4) Clamped-clamped

1  2   3 4

       (A9)

4n + 1   4n + 2  4n + 3  4n + 4

     (A10)

(5) Simply supported-simply supported beam

1  2   3 4

     (A11)

4n + 1   4n + 2  4n + 3  4n + 4

     (A12)

 

BL[ ] J2 β α( )  Y2 β α( )  I2 β α( )  K2 β α( )
J4 β α( )  Y4 β α( )  I4 β α( )  K4 β α( )

p 1–
p

=

BR[ ] J2 β( )  Y2 β( )  I2 β( )  K2 β( )
J3 β( )  Y3 β( )  I– 3 β( )  K3 β( )

1
2

=

BL[ ] J2 β α( )  Y2 β α( )  I2 β α( )  K2 β α( )
J3 β α( )  Y3 β α( )  I– 3 β α( )  K3 β α( )

p 1–
p

=

BR[ ] J2 β( )  Y2 β( )  I2 β( )  K2 β( )
J4 β( )  Y4 β( )  I4 β( )  K4 β( )

1
2

=

BL[ ] J2 β α( )  Y2 β α( )  I2 β α( )  K2 β α( )
J4 β α( )  Y4 β α( )  I4 β α( )  K4 β α( )

p 1–
p

=




