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Abstract. A novel finite element model based on the incremental endochronic theory with the effect of
temperature was developed in this study to explore the deformed behaviors of a flexible pavement
material. Three mesh systems and two loading steps were used in the calculation process for a specimen
of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test
for temperatures at 20oC and at 40oC were compared with available experimental measurements to verify
the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the
thermal effect were presented from deformations in different profiles and displacement plots for the entire
specimen. The characteristics of changing asphalt concrete material under a specified loading condition
might be seen clearly from the numerical results, and might provide an useful information in the field of
road engineering.
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1. Introduction

Temperature sensitive material such as asphalt concrete is frequently used as a pavement material
in the field of road engineering. Due to flexible nature of the asphalt concrete, it requires a suitable
model to describe the changing behavior of the material under loading conditions for helping a road
designer from practical point of view. Indeed, there do exist many theoretical models for analyzing
the mechanical behavior of a material, and which basically may include elastic model, hypo-elastic
model, visco-elastic model, plastic model, and elastic-plastic model (e.g., AASHTO 1993,
Henrinksen 1984, Kerh and Huang 1998, Liu 1993, Lu 1998, Lu and Pang 1995, Monismith 1992,
Rowe et al. 1995, Sargious 1975, Uzan 1992, Wieckowski 2000, Yoon et al. 1999). Among these
models, each one do have its own advantages and disadvantages, but the endochronic model based
on plastic theory with a modification have been successfully derived and applied to describe the
stress-strain behavior for the flexible pavement material.

From previous research papers, it can be found that the endochronic theory has mostly applied for
metal, truss, composite and sand materials (e.g., Lee 1995, Peng and Ponter 1993a, 1993b, Sugiura
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et al. 1987, Valanis and Fan 1983, Wu et al. 1995, 1990, Wu and Aboutorabi 1988, Wu and Wang
1983, Wu et al. 1985, Wu and Sheu 1983, Wu and Aboutorabi 1988). The application of this
method to asphalt concrete material is relatively less to see up to the present time; particularly, the
finite element analysis in this topic is still opened in recent for researchers. Kerh and Huang (1998)
conducted a work in this area; a finite element model based on the incremental endochronic theory
for flexible pavement material has been developed. Reasonable agreement with the laboratory results
has been shown in their study, but the effect of temperature was out of their consideration. As the
asphalt concrete can be influenced significantly by the factor of temperature, it does deserve an
attention to include the thermal effect in the model to further exploring more details in this
interesting problem. Therefore, the objective of this study is mainly based upon the finite element
method to develop a new numerical model including the effect of temperature in the incremental
endochronic theory for describing the deforming behaviors of the flexible pavement material.

For developing a numerical model including the temperature effect for the flexible pavement
material, it requires at first have a theoretical model for finite element formulation. Lu (1998), has
derived a series of constitutive equations from the endochronic plasticity for this problem. The
thermal factor was introduced in the most temperature sensitive parts of the constitutive equations,
which are the bulk modulus and shear modulus, the hardening function, and the evolution equations
for internal variables. Note that in particular the bulk modulus and shear modulus are no longer
constants but a function of temperature. This model modification has shown to be very useful for
describing the stress-strain behaviors for an asphalt concrete material under 40oC, but the ability is
decreased as the temperature getting higher. In spite of the disadvantage of this endochronic theory
in high temperature conditions, this model might be sufficiently to provide an application in a
general road temperature condition, and could be used as a theoretical background for the present
study. 

To further investigate the stress-strain characteristics of the flexible pavement material, in this
study, the developed finite element model in line of the endochronic theory is taken to analyze the
deformed behaviors of a three-dimension asphalt concrete specimen under a specified loading for
both of temperatures at 20oC and 40oC. Three mesh generations and two loading steps are used in
the calculation process to compare the obtaining solutions. Some of the computational results are
compared with experimental measurements available in SHRP reports (Lytton and Roque 1991,
Monismith et al. 1991) to demonstrate the ability of developing numerical scheme. Illustrations of
the deforming body are presented in detail in accordance with the isotropic response and the
deviatoric response obtained from the present finite element formulation. These numerical results
may provide valuable information for a practical engineer in the design of flexible pavement
structure.

2. Theoretical background of endochronic models with temperature factor

The endochronic theory can be categorized into two types rely on which model, Hemholtz free
energy model or Gibbs free energy model, is employed in the formulation. Previous studies as
reviewed in the above section have shown that the latter model is more suitable to analyze the
mechanical behaviors of a flexible pavement material (Lu 1998, Lu and Pang 1995 and cited
references). Thus, according to the Gibbs free energy, the basic stress controlled equation has the
form:
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(1)

where σ is the stress, γ h and π s represent the isotropic and deviatoric internal variables, with h and
s are the total numbers of variables. Additionally, A, B, C, D, E are the fourth-order isotropic
tensors. From this equation, a detailed deviation of stress-strain relationship and a series of
constitutive equations of the endochronic models can be found in the above references. Here now by
considering the thermal factor in three major parts of the constitutive equations, at first, assuming
that the bulk modulus and shear modulus are not constant values but reasonable varied with the
temperature, so the terms may be modified as:

(2)

(3)

where K1h, K2h, K3h, K1d, K2d, K3d, I0, J0 are material constants; T is the absolute temperature; I1

and J2 are the first invariant of stress and the second invariant of deviatoric stress. The above
relationships make the bulk modulus and shear modulus decreasing its value with temperature
nonlinearly.

From the stress-strain curve of asphalt concrete material in experimental results, it can be found
that the tendency of curve varied with the temperature, which imply that the hardening function may
consider as the second temperature sensitive part in the endochronic models. Then, the modified
isotropic hardening function h(θkk) and deviatoric hardening function f (ZD) may be written as: 

(4)

(5)

where θkk is the maximum attainable plastic volumetric strain, and ZD denotes the deviatoric
intrinsic time, also the symbols ch, αh, βh, cd, αd, βd are material constants.

To account for the third temperature sensitive part, the increment of internal variables, dγkk and
dPij can be modified as:

(6)

(7)

where 

(8)

(9)
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 (10)

and where C0, C2, D0, D2, M0a, M0b, N0a, N0b, N0c, N2a, N2b, N2c are constants associated with the
corresponding equations or material parameters. 

3. Development of finite element models with temperature effect

As introduced in previous section, the governing constitutive equations based on the endochronic
theory may be divided into the isotropic portion and the deviatoric portion. Here now in this section
the finite element method is applied to develop a numerical model for analyzing changing behaviors
of the flexible pavement material. For the incremental isotropic response, the equation is:

  
(11)

where dσkk is the increment of isotropic stress, dεkk is the increment of isotropic strain, and dγkk is
the internal variable for isotropic deformation. If the thermal factor is considered in the internal
variable, the above equation then becomes:

(12)

For the incremental deviatoric response, the equation is:

(13)

where dSij represents the increment of deviatoric stress, and deij denotes the increment of deviatoric
strain. From the definitions and by introducing the temperature factor, the equation can be derived
as follows:

  (14)

To employ the finite element method properly (e.g., Fagan 1992, Moaveni 1999), the above
equation must be converted to a matrix form as:

 (15)

where the stress vector and the strain vector are:

(16)

(17)

In addition to the temperature effect, the symmetric transformation matrix [D] and the force vector
{dHP} can be derived from Eqs. (14) and (15) and thus the complete forms for these matrix and
vector are:
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(18)

and

           

(19)

From the principle of virtual work, it states that the volume integral of the element stress multiple
by a virtual strain is equal to the element external force multiple by a virtual displacement.
Therefore, the equation for an element in matrix form can be obtained as:
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 (20)

where {du} is the displacement vector, {dP} is the external force on the element, and V is the
volume of the element. Furthermore, [B] denotes the strain-displacement relationship matrix, which
can be calculated from shape functions of the chosen element. After assembly for the entire
elements, the above global equation can finally be simplified as:

(21)

where the stiffness matrix  and the plastic pseudo-force vector {dPF} =

 are obtained on an element basis. In each element, the corresponding matrix or

vector can be evaluated by using Gauss quadrature. After prescribed boundary conditions, the
resulting global system of equations can then be calculated by direct numerical method.

4. Verification and illustration of numerical results

To perform the finite element calculation and to comply with experimental conditions, consider
now a circular cylinder of 4 inches in diameter and 4 inches in height. As it has a symmetric shape,
only one half of the cylinder is taken for analysis, and three mesh systems mesh1, mesh2 and
mesh3 are used to divide the specimen. Shown in Fig. 1 is the example for mesh3 system, where
there are 6 × 6 elements in X-Y plane, and there are 3 elements equally arranged in Z-component.
Hence, a total of 108(196 nodes) cubic eight-node isoparametric elements is included in this mesh,
which is the finest grid used for computation in this study if compared with two other mesh
systems, mesh1 (4 × 4 × 3) and mesh2 (6 × 6 × 2), which have 48(100) and 72(147) elements
(nodes), respectively. 
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Fig. 1 Mesh generation of the circular cylinder specimen (mesh3 system)
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For the boundary conditions, the deformations in X and Y directions are constrained on nodes of
the top surface elements, but only Z-component is confined on each node of the bottom surface
element. For the side boundary, free conditions are applied to find out the tendency of calculation
results. In these conditions, the top surface element (Z = 2) is contacted with a portion of
compression test equipment, so that the contact surface may consider as supported by a hinge and
no deformations are allowed in X and Y components, which may imply that significant friction
force exists on the top platen of the test machine. As indicated above, the whole cylinder has a
symmetrical shape (4 inches in total height, Z =−2 to 2), the present finite element computation is
taken only a half of the specimen (2 inches in height, Z = 0 to 2) for modeling the problem. That is,
the bottom surface (Z = 0) in here is the center surface of the whole cylinder in Z-direction, which
is not the contact surface between specimen and compression test machine. Thus, the boundary
conditions in this element surface are set to zero deformations in Z-component due to symmetrical
behavior. This corresponds to the existence of friction force for the whole specimen but zero values
on this neutral surface. These boundary conditions are reasonable as they do not violate the physical
meanings of boundary condition prescribed on the top platen.

Note that before go for the computation, it requires to determine the several material parameters,
which may be obtained by curve fitting the experimental data (Lytton and Roque 1991, Monismith
et al. 1991). Further to say is that by comparing the obtained stress-strain curve from theory with
available experimental data, and when the theoretical curve is in consistent with the result of
experiments, the resulting constants are then determined for both of isotropic and deviatoric parts,
where hydrostatic compression test and triaxial test are used for both parts respectively. As the
present finite element models are developed on the basis of endochronic theory, the choice of
material parameters can be taken directly from the theoretical report (Lu 1998), who has described
the details of obtaining these material constants using various theoretical equations. Therefore, for
the isotropic portion, the material constants are: αh = −5/oK, βh = 1905, θm = 0.00255, k1 = 0.9,
k1h = 50000, k2h = 0.0052/oK, k3h = −1.85, B0 = 0.47, ch = 2.1, E0 = 100 KPa, I0 = 1000 KPa, M0a =
−0.005 KPa/oK, M0b = 2.57 KPa. For the deviatoric portion, the constants are: αd = 100/oK, βd =
−26770, C0 = 0.526, C2 = 0.526, Cd = 10, D0 = 600 KPa, D2 = 600 KPa, J0 = 50 KPa, K2 = 0.75,
K1d = 400000, K2d = 0.0015/oK, K3d = −0.37, N0a = 183, N0b = 0.068, N0c = 13, N2a = 825 KPa,
N2b = 716/oK. N2c = 1.1 KPa. With these curve fitting material constants, some have units but some
are not as shown above, the numerical computation can be performed and the results are presented
in the next discussions.

For verification of the present finite element models, the computational results compared with
theoretical solutions and SHRP experimental measurements of an uni-axial compression test are
exhibited in Figs. 2 and 3 for different cases of temperature. From the stress-strain curves, it can be
seen that reasonable good agreements are achieved for both of temperature conditions, and the
accuracy of computational results is improved as the element number is increased, i.e. mesh3
obtained the most accurate results which comply with the basic principle of finite element method.
Additionally, if a statistical t-test is performed for results of mesh3 system and experiment, it can be
find that the former temperature case has t = −2.12, and the latter temperature case has t = 2.1. Both
tests are within the acceptance intervals −2.3646 <t < 2.3646 and −2.2622 <t < 2.2622, with
significance level α = 0.05, for degree of freedoms ν = 7 and ν = 9, respectively. These tests may
further to enhance the reliability of the present numerical results.

To further check the effect of loading steps in the calculation process, consider the uniform axial
stress p on the specimen is divided into 300 and 600 loading steps; that is, the increment of loading



122 Tienfuan Kerh and Y. C. Lin

in each step is p/300 and p/600 for the two cases. Then, the values of strain can be obtained from
numerical calculation, and shown in Figs. 4 and 5 are the computational stress-strain curves for the
two temperatures. These comparisons proved that the more loading steps the more reliable results
may be expected, but the computational cost may also be increased.

As presented in the above illustrations, the mesh3 system and the 600 loading steps employed in
this study can obtain results of sufficiently numerical accuracy, so the same conditions will be used
for analyzing more details of deforming behavior for the asphalt concrete material. Due to three
cubic elements are equally divided the specimen in Z-direction as seen in the finest mesh system,
the nodal solutions in four profiles (Z = 2.0, 4/3, 2/3, 0) thus can be taken for describing the
behaviors of the deformed material under a specified loading. By taking the case of temperature
40oC as an example, exhibited in Fig. 6 is the isotropic response in the X-Y plane for these four
profiles, and a symmetric deformation is seen for the four profiles. Whereas, when the deviatoric
response is included in the plots as shown in Fig. 7, owing to the added pseudo-force or friction
force is not zero at each incremental calculation of the internal variables, the deforming behavior
becomes a non-symmetric pattern for the four profiles. In both figures, it also can be seen that the
fourth profile has higher deformation than the other profiles due to the effect of compression. 

Fig. 2 Comparison of finite element solutions with
theoretical and experimental results (T = 20oC
= 293oK)

Fig. 3 Comparison of finite element solutions with
theoretical and experimental results (T = 40oC
= 313oK)

Fig. 4 Comparison of loading steps in the calculation
process (T = 20oC = 293oK)

Fig. 5 Comparison of loading steps in the calculation
process (T = 40oC = 313oK)
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Fig. 6 Deformation of each profile due to the isotropic effect (T = 40oC = 313oK)

Fig. 7 Deformation of each profile due to the isotropic and deviatoric effects (T = 40oC = 313oK)
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To view more clearly in each nodal deformation, three-dimensional displacement plots, including
both of isotropic response and deviatoric response, for the entire specimen are shown in Figs. 8 and 9.
From the boundary conditions for both figures, only deformation in Z-direction is observed in the
top profile, but in the bottom profile, no deformation in Z-direction is seen due to the applied
constraint conditions. Again, these 3-D displacement plots clearly to show that the isotropic
response has a symmetric behavior, but a tendency of non-symmetric behavior is occurred for the
deviatoric response. These detailed deformation analysis of the flexible pavement material under a
specified loading condition may help engineer to understand more about the characteristics of an
asphalt concrete and may provide an useful information for a road designer.

Note that a perfect material does not exist from practical point of view; in particular, the asphalt
concretes mainly consist of sand, gravel and asphalt mixtures. As the size and the shape of each
particle can never be the same, so it is non-uniformly distributed in usual for a test specimen. As a
result, the non-symmetrical mechanical behavior more or less may be existed even the experimental
measurement is controlled within very strictly conditions. From some engineering aspects, the
deviation of material behavior is out of importance, as it does not affect the global results significantly.
However, theoretically we like to develop a model and try to describe its changing behavior more
precisely. In the present study, the deviatoric part of the endochronic plastic theory is one of the
methods to approach this problem. In each incremental calculation step, if the deviatoric internal
variable dPij is set to zero in Eqs. (13) and (14), then the computational results have symmetrical shapes

Fig. 8 Three-dimensional displacement plot of the isotropic response (T = 40oC = 313oK, unit: m)

Fig. 9 Three-dimensional displacement plot of the isotropic and deviatoric responses (T = 40oC  = 313oK, unit: m)
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as presented in Figs. 6 and 8, respectively On the other hand, although the external compression
force on the top boundary surface of the specimen can be equally distributed to each node of the
element, when , the non-zero friction force or pseudo-force {dPF} which calculated from
{dHP} in Eqs. (19) and (21), may not be equally applied in each node of the elements locally, and
thus obtained non-symmetrical deformations as shown in Figs. 7 and 9, respectively.

Besides, the deviatoric material constants employed in this study are basically gained from curve
fitting the available experimental data. According to the endochronic theory, three tests including
volumetric compression test, pure shear test and deviatoric test may be required for corresponding to
isotropic response, deviatoric response in non-axial direction and deviatoric response in axial
direction. But in reality, the deviatoric test is not easy to perform directly for a flexible pavement
material, and thus the simplest way to obtain its data is by using the subtraction result of uni-axial
test (non-pure axial direction) and the volumetric compression test (pure axial direction). Since the
measurements can never be perfect due to any reason, and the error of data set usually is acceptable
within a reasonable range. Therefore, the post-calculation in the developed finite element model
may also be expected to obtain some deviations in the deformations. In addition, the direction of
non-symmetrical deformed behavior is not a major concern as the specimen studied in this study
has a circular profile, and the result makes no difference for the properly defined coordinate system.

5. Conclusions

The flexible pavement material such as asphalt concrete is significantly influenced by the variation
of temperature. Based on the endochronic plasticity theory with the effect of temperature, a series of
constitutive equations have been derived by previous researchers for describing its stress-strain
behaviors. However, the application of numerical method to this crucial issue was relatively less to
see up to the present time. Therefore, in this study, a new incremental governing equation has been
developed by the application of finite element method to the endochronic theory with the
consideration of thermal factor. Three mesh systems have been used in the calculations to check the
grid independence, and two loading steps have been compared to check their influence on the
solutions. The computational results for the case of an uni-axial compression test at temperatures
20oC and 40oC have compared with experimental measurements available in SHRP reports to verify
the accuracy of the present numerical model. Then, the isotropic response and the deviatoric
response of a specimen under uniform pressure condition have properly described from various plots
of different deformation profiles and 3-D displacements. The results have shown that a symmetric
deformation was observed for the isotropic response, but if the deviatoric response is included in the
analysis, a non-symmetric deformation pattern was occurred due to the plastic pseudo-force is not
zero at each incremental calculation of the internal variables. The analyzing results might provide
valuable information for a practical engineer in the design of flexible pavement material.
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