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Abstract. The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of
Concrete Strength by Functional Networks) in order to provide in-place strength information of the
concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system
is developed using Functional Network (FN) by learning functions instead of weights as in Artificial
Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output
data and the input for one functional network is the output of the other functional network. Using
ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete.
Altogether seven functional networks are used for prediction of strength development. This study shows
that ISCOSTFUN using functional network is very efficient for predicting the compressive strength
development of concrete and it takes less computer time as compared to well known Back Propagation
Neural Network (BPN).
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1. Introduction

Concrete is a mixture of paste and aggregates. The paste is basically a mixture of cement and
water, binds the aggregates into rocklike mass as the paste hardens because of chemical reaction of
the cement and water according to Kosmatka et al. (2002). There is an increase in strength of
concrete while concrete hardens. 

Even though in reliability studies, the concrete strength is treated as random variable, in this
paper, the mean value of concrete strength is considered as nominal strength. However, the
variability of concrete strength can be predicted using functional and neural networks by considering
appropriate models and this is beyond the scope of the paper. The mix proportions, curing
conditions and methods of mixing, transporting, placing and testing the concrete influence its
compressive strength of concrete. Based on the strength of concrete at 7, 14 and 28 days, in
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modernized concrete construction and engineering judgement one will be in a position to remove
the concrete forms, re-shore the slab, schedule the project and control the quality. In case of pre-
stressed concrete construction, the prediction of early concrete strength enables the structural
engineer to decide on post-tensioning.

Concrete strength, according to Snell et al. (1989) and Popovics (1998) has been predicted for
many years by many investigators based on maturity concept of concrete, Chengju (1989) and
Oluokun et al. (1990) which is defined as the integral of time and temperature of concrete above a
datum temperature. In the previous investigations, only two parameters water cement ratio and
curing temperature have been used in the regression equation to develop a fixed equation based on
limited data. When the data is different from original, either it is not possible to predict the strength
or the model should be updated not only its coefficients but also its equation form.

Functional Network (FN) or Artificial Neural Network (ANN) does not need such a specific
equation form and instead it needs enough input-output data. Given any new data within the original
range, it is possible to predict the output. Earlier, Artificial Neural Network has been used for the
prediction of concrete strength by Kasperkiewicz et al. (1995) and Lee (2003). Functional networks
have been originally proposed by Castillo et al. (1992, 1998a, 1998b, 2000a, 2000b). 

The process of selecting the number of hidden layer and neurons in the hidden layer is a trial and
error until a good fit to the data is obtained. But Functional Network (FN) does not suffer from this
drawback. Functional networks were introduced by Castillo (1998a), Castillo et al. (2000a), and
Castillo et al. (1998b), Castillo et al. (2000b) as a powerful alternative to ANN. Unlike Neural
Networks (Kasperkiewicz et al. 1995), Functional Networks use domain knowledge in addition to
data knowledge. The network initial topology is derived based on the modeling of the properties of
the real world. Once this topology is available, functional equations allow one to obtain a much
simpler equivalent topology. Although functional networks also can deal with data only, the class of
problems where functional networks are most convenient is the classes where the two sources of
knowledge about domain and data are available whereas Neural networks do not consider domain
knowledge.

In this paper, Serial Functional Networks (SFN) has been used to predict the strength of concrete
at 16 hours, 20 hours, 24 hours, 2 Days, 3 Days, 7 Days and 28 Days based on seven independent
Functional Network architecture in which the output of one will be input to the other. It is also
shown that functional networks are more efficient and powerful and take much less computer time
compared to the prediction by Neural Network such as Back Propagation network as seen in the
later discussion for 3 day strength of concrete.

The functional networks are introduced in Section 2 with general methodology, including its
selection of initial topology and learning methods. In Section 3, the Associativity Functional
Network is introduced and the methodology is explained. Single and serial Functional Network
architecture is discussed in Section 4. In Section 5 the method is applied to predict the early and
later strength of concrete using seven architectures. Conclusions are drawn in Section 6. 

2. Functional networks

The main property of the Neural Network is its ability to learn from data by using structural and
parametric learning methods. In Neural network, learning process is achieved by estimating the
connection weights by minimizing the error (Kasperkiewicz et al. 1995). Functional Networks
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(Castillo et al. 2000a) is a more generalization of Neural Network bringing together domain
knowledge and data. There is no restriction of neural function in functional neurons and arbitrary
functions are allowed. Another important property of functional network is the possibility of
dealing with functional constraints of the model. The functional network uses two types of
learning a) structural learning and b) parametric learning. In structural learning, the initial topology
of the network, based on some properties available to the designer is arrived at and finally a
simplification is made using functional equation to a simpler architecture. In parametric learning,
neuron functions are estimated by considering the combination of shape functions.

Functional networks consists of the following elements (see Fig. 1)
1. Storing units

a) One layer of input storing units: This layer contains input data x1, x2, x3 etc
b) Intermediate layer units storing intermediate information f4, f5. These units evaluates a set of

input values, coming from the previous layer and delivers a set of output values to the next
layer.

c) A layer of output units f6
2. Layer of Computing Units f1, f2, f3
A neuron in the computing unit evaluates a set of input values coming from a previous layer
3. A set of Directed Links. The functions are not arbitrary but they are determined by the structure

of the network, like x7 = f4(x4, x5, x6), as explained in Fig. 1.

In addition to data, information about other properties of the function, such as associativity,
commutativity and invariance, are used in selecting the final network. In a given functional network,
neural functions are arbitrary but in neural networks they are sigmoidal, linear or radial basis and
other functions. In functional networks, functions in which weights are incorporated are learned, and
in neural networks, weights are learned. In some functional networks, the learning method leads to
global minimum in a single step. Neural networks work well if the input and output data are
normalized in the range of 0 to 1 but in Functional networks there is no such restriction. It can be
pointed out that neural networks are special cases of functional networks.

Fig. l Functional network
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The following eight-step procedure is used for working with Functional Networks, FN.

Step. 1. Statement of the problem
Step. 2. Initial topology
Step. 3. Simplification of initial topology using functional equations
Step. 4. Arrive at conditions to hold for uniqueness
Step. 5. Data collection
Step. 6. Parametric learning by considering the linear combination of shape functions
Step. 7. Model Validation
Step. 8. if step 7 is satisfactory the model is ready to be used.

The learning method of functional network consists of obtaining the neural functions based on a
set of data D = (Ii, Oi) (i = 1, 2……n). The learning process is based on minimizing the Euclidean
Norm of error function given by

(1)

The approximate neural function ‘fi(x)’ may be arranged as

(2)

Where φ are ‘shape functions’ with algebraic expressions (1, x, x2, …, xn) or Trigonometric
functions such as (1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x)) or exponential functions. The
associative optimisation function may lead to a system of linear or nonlinear algebraic equations.

3. The associativity functional network 

Assume that for two inputs x1, x2 the output x3 is given. We can construct functional network as
shown in Fig. 2 using the functions f1, f2, and f3 as

for s = 1, 2 and ms can be any order (3)

E
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Fig. 2 Associativity functional network 
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φsi can be polynomial, trigonometric or exponential or any admissible functions and herein we call
them the shape functions. In this example we use only polynomial expressions as <1, x, x2, x3 … >.
The function f3 can be expressed as

(4)

From the input functions we can construct

(5)

Then the error in the jth data is given by

(6)

The error can be written in matrix form 

as (7)

or

ej = <bj > (8)

The sum of the squares of the error for all the data is given by

  (9)
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and writing it in matrix form we get

(11)

(12)

Using the Lagrangian multiplier technique, we define an augmented function as

(13)

(14)

We want to minimize R and thus 

(15)

or

(16)

or [G]{ u} = { v} (17)

Note that [G] matrix is symmetric and is called Vandermonde type matrix and it is nonsingular
and is very poorly conditioned for large values of the degree of the equation. To get over this
problem, one can either use the orthogonal polynomials or inputs and outputs are nomalized to lie
between 0 −1 and computations are carried out in double precision. In this paper the second
approach is used. Once we solve for unknowns {a}, for any given x1i, x2i one can write

(18)

or

(19)

If we assume higher order functions for f3(x3i) non-linear equations have to be solved for x3i using
the bisection or Newton-Raphson method. This is time consuming and hence for all the problems
considered in this paper only a first order function has been assumed for f3(x3i).
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4. Single and serial architecture

The simple way to determine the architecture of FN is to select the single one. The architecture
should consist of all neurons of input consisting of basic information, material proportions,
measurements and temperature and humidity of all days and output layer consisting of the strengths
of concrete at 16 hours, 20 hours, 1 day, 2 days, 3 days, 7 days and 28 days. The data is shown in
Table 1. Even though this architecture can give good results but it cannot appropriately predict the
concrete strength when the curing temperature of a specific curing day is changed. This is because it
uses the single architecture, which all nodes are fully connected, and thus all output neurons are
influenced by all input neurons. For example, the temperature and humidity of 7th day to 28th days
after pouring cannot actually influence the concrete strength development at first, second or third
day after pouring. But the single architecture involves that input values of 7th day to 28th day can
influence the output values of 1, 2 or 3rd day. Thus, the single architecture conceptually cannot be
used for predicting the concrete strength development. 

Table 1 Training data

No.

Input value

Basic information(BI) Material proportions(MP) Measurement(ME)

a b c d* e* f* g* h i j k l m n o p q r s

1 A 20.6 30 KS 9 13 16 1.79 N 2.88 FA 3.92 8.72 8.46 AE .098 23 1.8 26
2 A 20.6 30 KS 9 25 15 1.72 N 2.76 FA 3.82 8.69 8.79 AE .098 20 3.4 27
3 A 23.5 40 KS 9 25 17 1.78 N 3.09 FA 4.21 8.5 8.52 AE .108 21 4.5 26

~ ~ ~
24 A 20.6 30 KS 1 9 16 1.79 N 2.94 FA 3.23 8.72 8.46 AE .098 18 5.5 17

*: Excluded variables for avoiding duplication in actually training
a: Concrete producer, b: Nominal concrete strength(MPa), c: Delivery time(min.), 
d: region of pouring, e: month of pouring, f: day of pouring, g: time of pouring, 
h: Weight of water (kN/m3 of concrete), 
i: Cement type (N = Normal type), j: Weight of cement (kN/m3 of concrete), 
k: Type of supplementary cementitious materials (FA = Fly Ash), 
l: Weight of supplementary cementitious materials (kN/m3 of concrete), 
m: Weight of fine aggregate (kN/m3 of concrete), n: Weight of coarse aggregate (kN/m3 of concrete) 
o: Admixture type (AE = Air-Entraining), p: Weight of admixture (kN/m3 of concrete), 
q: slump (cm), r: air content (%), s: concrete temperature (oC).

No.

Input value Desired output value

Temp. and humidity history (T/H) Test results of compressive strength in air curing
(MPa)Pouring day ~ 28 days after pouring

a b ~ a b 16 h 20 h 24 h 48 h 3 D 7 D 28D

1 26 62

~

14 73 3.165 4.41 5.684 11.17 14.308 21.88 24.265
2 23 68 14 70 2.616 2.72 3.724 6.87 8.869 12.269 16.258
3 23 68 14 70 2.303 2.9 3.528 6.94 9.114 13.593 16.000

~ ~ ~
24 10 50 3.3 76 0.9898 1.362 1.881 3.254 5.39 12.054 17.63

a: Averaged temperature at a curing day (oC), b: Averaged humidity at a day (%).
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Serial functional network architecture can be introduced for solving problem rather than single
architecture. It means all input and output neurons are divided into several serial architectures and it
can produce results at intermediate stages as well as final stage. Fig. 3 shows proposed serial
functional network which has multiple architectures composed of seven FN (I-VII).

The division of single FN into seven FN has accomplished by the relation of the temperature/
humidity and concrete strength in curing period as shown in Fig. 3 and also as given below.

4.1 Determination of input neurons

The number of input neurons in a functional network is determined from the variables that
influence concrete strength. Because there are too many variables, it is unable to actually produce

Fig. 3(a) FN I-III Architectures for prediction of early concrete strength

Architecture A B C

 FN IV S(1D) (T/H)- 1 day S(2D)
FN V S(2D) (T/H)- 2 day S(3D)

 FN VI S(3D) (T/H)- 3-6 day (average) S(7D)
 FN VII S(7D) (T/H)-7-28 days(average) S(28D)

Fig. 3(b) FN IV - VII Architectures for prediction of concrete strength at 2, 3, 7, 28 days
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the input patters within a given time and also it is not practical in view of an engineering approach
that allows a little error of about ±10%. All possible variables are considered in an initial
development stage. Table 1 shows that 73 variables can be classified into four categories: basic
information (BI, 3 variables), material proportions (MP, 9 variables), measurements (ME, 3
variables) and temperature and humidity history from pouring day to 28th day after pouring (T/H, 58
variables). These variables are reduced by taking the average temperature and humidity from 3-6
days and 7-28 days.

4.2 Determination of output neurons

The concrete strength gradually develops with age. The compressive strength at 28 day generally
represents an indication for design strength and quality control. The early concrete strength within 3
days after pouring is importantly considered whether the concrete is strong enough to handle
removal of forms and reduction of shoring. The concrete strength for ISCOSTFUN is determined at
seven different ages: 16 hours, 20 hours, 1 day, 2 days, 3 days, 7 days and 28 days. Therefore, the
basic number of output neurons even though it is seven but in serial FN architecture there is only
one output as shown as shown in Fig. 3.

4.3 Serial functional network architecture

FN-I predicts the early strength of 16-hour period based on two basic information as nominal
concrete strength and delivery time in minutes and six material proportions as weight of water,
weight of cement, weight of cementitious material, weight of fine aggregate, weight of coarse
aggregate and weight of admixture (all weights/cu.m of concrete) and three measurements such as
slump in cm, percentage of air content and concrete temperature and the average temperature and
humidity on the pouring day. Altogether there are 13 inputs and one output as shown in Table 2.

FN-II predicts the early strength of 20-hour period based the above 13 inputs and hence this
architecture consists of 13 inputs and one output.

FN-III predicts the early strength of 24-hour period based on the same 13 inputs and hence this
architecture consists of 13 inputs and one output.

FN-IV predicts the two-day strength of concrete based on one-day strength and the average
temperature and humidity on the first day after pouring. Hence this architecture consists of three
inputs and one output.

FN-V predicts three-day strength of concrete based on two-day strength and the average
temperature and humidity of the second day after pouring. Hence this architecture consists of three
inputs and one output.

FN-VI predicts seven-day strength of concrete based on three-day strength and the average
temperature and humidity of third to sixth day after pouring. Hence this architecture consists of
three inputs and one output.

FN-VII predicts twenty-eighth day strength of concrete based on seven-day strength and the
average temperature and humidity of seventh to twenty eighth day after pouring. Hence the
architecture consists of three inputs and one output.
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5. Strength of concrete

5.1 16 hour strength

First thirteen inputs and one output are normalized with respect to maximum and minimum values
(see Table 2) such that minimum value of each variable maps into 0 of the normalized space and
maximum maps into 1 of the normalized space. Even though this is not a requirement in Functional
Networks, this method produces a well-conditioned matrix [G] in Eq. (17). Second order function is
used for thirteen inputs and linear function is used for output as

Table 2 Normalized values of the input and output

S.No Nom Con
strength

Del time
minutes

wt of water
in 1cum of 
concrete

 wt of cement 
in 1cum of 
concrete

wt of cem 
matl in 1cum 
of concrete

 wt of sand
in 1 cum of 

concrete

wt of coarse 
agg in 1 cum 
of concrete

1 0.1176471 0.2 0.66 0.176 0.1111111 0.725 0.32
2 0.1176471 0.2 0.52 0.128 0.1037037 0.7175 0.485
3 0.2058824 0.6 0.64 0.26 0.1333333 0.6675 0.35
4 0.1176471 0.6 0.8 0.248 0.0740741 0.73 0.165
5 0.2941176 0.6 0.76 0.428 0.1111111 0.62 0.205
6 0.0294118 0.2 0.56 0.052 0.0296296 0.7925 0.42
7 0.1176471 0.6 0.52 0.156 0.0518519 0.7175 0.485
8 0.6764706 0.6 0.44 0.864 0.1185185 0.4175 0.37
9 0.9705882 0.6 0.42 0.972 0.4592593 0.1025 0.655
10 0.1176471 0.6 0.34 0.096 0.0444444 0.7175 0.67
11 0.6764706 0.6 0.2 0.428 0.9481481 0.4075 0.32
12 0.1176471 0.6 0.52 0.156 0.0518519 0.7175 0.485
13 0.3823529 0.6 0.34 0.624 0.1481481 0.49 0.575
14 0.1176471 0.6 0.66 0.204 0.0592593 0.725 0.32
15 0.9705882 0.6 0.42 0.972 0.4592593 0.1575 0.7
16 0.2941176 0.2 0.76 0.428 0.1111111 0.62 0.205
17 0.1176471 0.2 0.52 0.156 0.0518519 0.7175 0.485
18 0.3823529 0.6 0.34 0.624 0.1481481 0.49 0.575
19 0.1176471 0.6 0.66 0.204 0.0592593 0.725 0.32
20 0.1176471 0.6 0.52 0.156 0.0518519 0.7175 0.485
21 0.1176471 0.2 0.52 0.156 0.0518519 0.7175 0.485
22 0.0294118 0.2 0.7 0.096 0.037037 0.8025 0.265
23 0.1176471 0.2 0.66 0.204 0.0592593 0.725 0.32
24 0.1176471 0.2 0.66 0.204 0.0592593 0.725 0.32
25 0.1176471 0.6 0.52 0.156 0.0518519 0.7175 0.485
26 0.2058824 0.6 0.64 0.288 0.0814815 0.6675 0.35
27 0.9705882 0.6 0.42 0.972 0.4592593 0.1025 0.655
28 0.5294118 0.6 0.3 0.744 0.0592593 0.48 0.64

Min 16.66 MPa 25 1.47 kN 2.45 0.245 5.88 7.84
Max 49.98 MPa 50 1.96 kN 4.9 1.568 9.8 9.8
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(20)

(21)

fi xi( ) aij xi
j i 1 13,=

j 0=

2

∑=

f14 x14( ) a14 j, x14
0

j 0=

1

∑=

Table 2 Continued

wt of admixture
in 1 cum 
concrete

slump
cm

air content
%

concrete
temp

Ave temp
curing day

Ave humi
curing day

test strength
16 hours

MPa

0.0222222 0.1333333 0.08888889 0.44 0.86 0.55 0.364
0.0186667 0.2666667 0.26666667 0.48 0.78 0.7 0.289333333
0.0284444 0.2 0.38888889 0.44 0.78 0.7 0.246666667
0.0257778 0.3333333 0.43333333 0.44 0.7 0.7 0.354666667
0.1102222 0.2333333 0.44444444 0.44 0.7 0.7 0.457333333
0.0115556 0.3333333 0.26666667 0.44 0.453333333 0.85 0.150666667
0.0186667 0.2666667 0.44444444 0.52 0.453333333 0.85 0.230666667
0.2942222 0.4666667 0.22222222 0.52 0.543333333 0.6375 0.386666667
0.8097778 0.8666667 0.08888889 0.68 0.553333333 0.585 0.917333333
0.0151111 0.1333333 0.5 0.52 0.553333333 0.585 0.185333333
0.4773333 0.4666667 0.4 0.6 0.5 0.125 0.849333333
0.0186667 0.4 0.55555556 0.32 0.5 0.125 0.124
0.6151111 0.8666667 0.03333333 0.32 0.5 0.125 0.142666667
0.0222222 0.2666667 0.53333333 0.24 0.5 0.125 0.073333333
0.8577778 0.8666667 0.11111111 0.36 0.166666667 0.875 0.086666667
0.1102222 0.5333333 0.44444444 0.12 0.5 0.125 0.134666667
0.0186667 0.3333333 0.5 0.32 0.5 0.125 0.114666667
0.6151111 0.8666667 0.06666667 0.2 0.433333333 0.125 0.066666667
0.0222222 0.4 0.35555556 0.32 0.5 0.125 0.126666667
0.0186667 0.1333333 0.4 0.32 0.5 0.125 0.109333333
0.0186667 0.0666667 0.48888889 0.08 0.333333333 0.25 0.06
0.0142222 0.4333333 0.27777778 0.08 0.333333333 0.25 0.064
0.0222222 0.4 0.5 0.08 0.333333333 0.25 0.06
0.0222222 0.5333333 0.5 0.08 0.333333333 0.25 0.068
0.0186667 0.3333333 0.5 0.32 0.5 0.125 0.108
0.0284444 0.6 0.22222222 0.52 0.543333333 0.6375 0.2
0.8097778 0.8666667 0.04444444 0.44 0.5 0.125 0.373333333
0.4755556 0.5333333 0.38888889 0.36 0.066666667 0.25 0.036
0.00735 10 1 15 0 40 0.475
0.1176 25 10 40 30 80 7.84 

output = test strength at 16 hours and all the others are inputs
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and

(22)

or x14 is given by

(23)

In Eq. (23), 1…13 denote inputs and 14 denotes the output either 16 hr, 20 hr or one day strength.
FN-I architecture is used and to solve the equations, the initial X values are assumed to be 0.2 and
the α values are assumed to be 0.8. The second order equation is used for the thirteen inputs and
linear function is used for the output. The undetermined parameters in Eq. (21) for the input and in
Eq. (22) for the output are given in Table 3. Fig. 4 shows the comparison of normalized values of

f14 x14( ) fi xi( )
i 1–

13

∑ a14 0, a14 1, x14+= =

x14
f14 x14( ) a14 0,–

a14 1,
----------------------------------=

Table 3 Undetermined parameters for FN-I in Eqs. (21) and (22)

Input ai0 ai1 ai2

1 0.2738 1.2838 6.981
2 −0.8606 11.0614 −13.790
3 2.104 −6.932 2.0401
4 4 −15.892 −0.557
5 3.521 −13.908 1.509
6 1.153 2.19 −19.785
7 2.623 −8.656 −2.281
8 −0.028 3.7515 1.945
9 0.831 −0.247 0.4607
10 0.548 1.618 −1.776
11 0.849 −0.770 2.629
12 1.37 −3.665 4.069
13 .8843 −0.4636 0.2109

Output 14 −0.972 0.857

Fig. 4 Comparison of 16 h strength by FN and actual test values
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strength at 16 h obtained from Functional Networks and the actual values. It is observed that a
correlation coefficient of 0.9977 is obtained between functional network values with actual values.

5.2 20 hour and 24 hour strength

Using the architectures FN-II and FN-III with 13 inputs the early strength of 20 hour and 24 hour
are obtained. Figs. 5 and 6 show the comparison of normalized values of strength obtained from
Functional Networks and the actual values. It is observed that correlation coefficients of 0.9993 and
0.9992 are obtained between functional network values and the actual value.

5.3 2 day 3 day 7 day and 28 day strength

Similarly FN-IV, V, VI and VII are used to predict the normalized strengths of concrete at 2 day,
3 day, 7 day and 28 days. It is observed that except FN-IV the correlation coefficients obtained in
other three architectures are greater than 0.95 and for FN-IV, the correlation coefficient is 0.90976.
Figs. 7-10 show the comparison of normalized values of strength obtained from Functional

Fig. 5 Comparison of 20 h strength by FN and actual
test values

Fig. 6 Comparison of 1 D strength by FN and actual
test values

Fig. 7 Comparison of 2 D strength by FN and actual
test values

Fig. 8 Comparison of 3 D strength by FN, neural
and actual test values
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Networks and the actual values. The initial values and α values, the order of the equation and the
correlation coefficients for the above seven FN architectures are given in Table 4. For 28 day
strength the average error between actual values and the values obtained from Functional Networks
is 11.7%.

For three day strength, back propagation neural network (BPN) also has been used for comparison
with learning rate of 0.6 and momentum factor of 0.9 and sigmoidal gain of 1 and the network is
trained for 10000 iterations. It took 160 seconds in Pentium III with 333.3 MHz speed with 64 MB
RAM and the correlation coefficient of 0.99 is obtained between actual and BPN values. Whereas
the time taken in functional network is only 5 seconds.

5.4 Traditional method 

The strength of concrete is related to the maturity of concrete that can be expressed as a simple
mathematical function of time and temperature. The maturity method has been widely accepted at
civil engineering practice due to its simplicity. The prediction results by maturity method are
compared to those of FN model and the tested values as shown in Fig. 11. For the 25th data, with
the following parameter values: constant averaged temperature 5 deg centigrade, W/B = 55%,

Fig. 9 Comparison of 7 D strength by FN and actual
test values

Fig. 10 Comparison of 28 D strength by FN and
actual test values

Table 4 Initial values, order of the equation and correlation coefficient

FN
Architecture

Initial values
of X 

Initial Values
of α

Order of
Equation

Correlation
Coefficient

I 0.2 0.8 2 0.9977
II 0.2 0.8 2 0.9993
III 0.2 0.8 2 0.9992
IV 0.001 0.005 3 0.90976
V 0.001 0.005 7 0.9539
VI 0.4 0.8 3 0.9570
VII 0.1 0.1 8 0.9739
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F∞ = 210, m = 4.66, k = 1.83, in the maturity method the following logistics equation is used (Han
and Han 2001).

(24)

where F∞ is the ultimate strength of concrete, M is the maturity of concrete, k and m are
experimental constants. Correlation coefficient of 0.9481 is obtained between functional network
values and maturity strength equation. There is error between these two methods because maturity
method requires only two variables as inputs: water to cement ratio and average temperature during
curing periods. Therefore, the usefulness of maturity method by existing publications is not enough
to predict the concrete strength development of test patterns used in this study.

6. Conclusions

The FN based model has been developed for predicting the concrete strength development. The
following conclusions are obtained from this study.

1. In Artificial Neural Networks, weights are trained whereas in functional networks the functions
are trained. In Functional networks, in addition to data knowledge domain knowledge also is
required. Using this domain knowledge, serial functional network is applied to predict the early
and later strength of concrete.

2. Serial functional networks are more suitable rather than single one FN for predicting the
strength in both early and later periods. Even though this paper does not support this conclusion
explicitly, this is obvious since the 2nd day strength is not influenced by the temperature and
humidity from 3-28 days. 

3. Functional Networks predict the strength quite accurately since the correlation coefficients
obtained from FN values and the actual value are greater than 0.95 except for 2-day prediction
in which case the correlation coefficient is 0.90976.

4. Functional Networks take much less computer time as compared with conventional BPN as
seen for three-day strength of concrete.

Fc

F∞

1 exp k.logM– m+( )+
--------------------------------------------------------=

Fig. 11 Comparison of predicted compressive strength by FN with test values and logistics equation
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5. FN based model predicts better than traditional maturity method within the cylinder test data
used in this study. It could deal with enough factors to influence the concrete strength
development.

6. It is not required to normalize the input and output data. Normalization is carried out so that
resulting matrix is well conditioned.
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Notation

a : undetermined parameters
A : Matrix
b : undetermined parameters
BI : Basic inputs
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c : undetermined parameter
d : undetermined parameter
Di : ith set of input and output
E : Euclidean Error norm
f : function
F(i) : Output obtained from Functional Network
g : function
H : function
I : Input
k : Experimental constant in Eq. (24)
m : order of the equation
m : Experimental constant in Eq. (24)
M : Maturity of concrete
ME : Measurement
MP : Material properties
ndata : number of data
O : Target Output
T/H : Temperature and Humidity
x : Input vector
α : Constant
φ : Shape function
 




