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Abstract. Delaunay triangulation is combined with an adaptive finite element method for analysis of
two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed
procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique.
The adaptive remeshing technique generates small elements around the crack tips and large elements in
the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a
compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for
simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the
effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve
solution accuracy as well as reduce total number of unknowns and computational time.

Key words: adaptive mesh; Delaunay triangulation; finite element method; stress intensity factors;
crack propagation.

1. Introduction

Domain discretization into a number of elements is the first step in the finite element analysis.
Due to the ever increasing complexity of the domains, new improved general-purpose mesh
generation algorithms have been in high demand. The Delaunay triangulation, based on the concept
of the Voronoi diagram (Bowyer 1981, Watson 1981), is one of the automated mesh generation
algorithms that has recently gained popularity. The algorithm can generate mesh of arbitrary
geometry for both simply connected and multi-boundary domains. The procedure that is capable of
generating mesh with proper nodal density and regularity of the triangulation for arbitrary two-
dimensional geometry was first introduced by Weatherill and Hassan (1994) and revised by
Karamete et al. (1997). In this paper, the Delaunay triangulation which constructs triangular mesh
for crack propagation analysis is described in details. In addition, an adaptive remeshing technique

† Professor, Graduate Program Director
‡ Graduate Student
‡† Director

DOI: http://dx.doi.org/10.12989/sem.2003.15.5.563



564 Pramote Dechaumphai, Sutthisak Phongthanapanich and Paritud Bhandhubanyong

is developed and incorporated into the Delaunay triangulation in order to improve the solution
accuracy of the finite element method. The technique generates an entirely new mesh based on the
solution obtained from the previous mesh; such that elements in regions with large changes of
solution gradients become smaller and elements in areas with little changes of solution gradients
grow larger.

For crack propagation problems, the stress intensity factor is a critical parameter in the prediction
of fatigue crack growths. The standard six-node isoparametric elements are used in the finite
element models in this study. In order to improve the accuracy of the near-tip stress fields, elements
with mid-side nodes displaced from their nominal positions to quarter points are employed near the
crack tip (Barsoum 1977). The nodal displacements around the crack tip are then used to determine
the stress intensity factors using the displacement extrapolation method (Chan et al. 1970). In this
paper, several examples under mode I and II loadings are modeled to evaluate the effectiveness of
the combined procedure. In addition, the capability of the proposed procedure is further demonstrated
by the simulation of the crack propagation trajectory in a single edge cracked plate with holes under
mixed-mode loading.

2. Formulation

2.1 Stress intensity factor and crack propagation

The stress intensity factors (Anderson 1991) designated as KI and KII for the fracture modes I and
II, representing the opening and shearing mode, respectively, may be determined from (Chan et al.
1970, Guinea et al. 2000),

(1a)

 (1b)

where E is the modulus of elasticity, v is the Poisson’s ratio, κ is the elastic parameter defined by
(3 − 4v) for plane strain and (3 − ν)/(1 + v) for plane stress problems, and L is the element length.
The u and v are respectively the displacement components in the x and y directions; their subscripts
indicate the position as shown in Fig. 1.

Crack propagation in practical problems normally occurs under mixed mode loading. Based on the
maximum circumferential stress theory (Erdogan and Sih 1963), the direction of crack propagation
θ may be computed from,

(2)

For the pure mode I loading, Eq. (2) implies that the crack propagates at zero angle θ. But for
mixed mode loading, the crack propagates at non-zero angle θ as depicted in Fig. 2. The quarter-
point six-node elements (Barsoum 1977) as shown in Fig. 3 are used in this work to form up a
circular zone surrounding the crack tip. The radius of the circular zone is specified to be no larger
than one-eight of the initial crack length, and with roughly one element every 30 degrees in the
circumferential direction (Guinea et al. 2000). The increment of the crack length during each crack
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propagation step is specified by the user. With Delaunay triangulation capability described in the
following section and the presence of the crack geometry, a new mesh can be generated according
to the new geometry automatically.

2.2 Finite element equations

Finite element equations for determining nodal displacements and stresses can be derived from the
governing partial differential equations that represent the equilibrium conditions (Zienkiewicz and
Taylor 2000). These equations can be written in matrix form as,

(3)

where {δ } is the vector that contains unknowns of the element nodal displacements, {F} is the load
vector, and [K] is the stiffness matrix given by,

(4)

K[ ] δ{ } F{ }=

K[ ] B[ ]T C[ ] B[ ]t Ad
A
∫=

Fig. 2 Angle of crack trajectory Fig. 3 Quarter-point six-node triangular element 

Fig. 1 Quarter-point triangular elements around the crack tip
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In the above Eq. (4), [B] is the strain-displacement matrix, [C] is the material stiffness matrix that
depends on the condition of plane stress or plane strain, t is the element thickness, and A is the
element area. Element equations (3) with appropriate boundary conditions are evaluated for each
element before assembling them together to form up a set of system equations prior to solving for
all nodal displacements.

3. Delaunay triangulation for crack propagation analysis

3.1 Concept

Dirichlet (Bowyer 1981, Watson 1981) proposed a method to construct Dirichlet tessellation or
Voronoi diagram, for which a domain could be decomposed into a set of packed convex polygons.
For a given set of points in space, {Pk}, k = 1, …, n, the regions {Vk}, k = 1, …, n, are boundaries
assigned to each point Pk and represent the space closer to Pk than to any other points in the set.
Therefore, these regions satisfy,

(5)

If all points which have some segments of a Voronoi boundary in common are joined, the
resulting shape is a Delaunay triangulation as shown in Fig. 4. In graph theory, the characteristic of
Delaunay triangulation can be defined such that the graph which any circle in the plane is said to be
empty if it contains no vertex in its interior. This defining characteristic of the Delaunay triangles is
called the empty circumcircle property.

3.2 Mesh generation procedure

The Delaunay triangulation algorithm based on the in-circle criterion was initiated by Bowyer
(1981). The algorithm was then extended and applied to an unsteady high-speed compressible flow
analysis (Phongthanapanich and Dechaumphai 2002). In this paper, the algorithm is extended to
crack propagation analysis with special isosceles six-node triangles around the crack tip. The key
idea of the algorithm is summarized in the algorithm I below;

Vk Pi : p Pi– p Pj– , j∀ i≠<{ }=

Fig. 4 Delaunay triangulation dual of Voronoi diagram for a given set of points
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Algorithm I; Delaunay Triangulation

1. Let P, k = 1, …, n, be the set of nodes on the boundaries of domain that stored in sequence of
counter-clockwise direction for all outside boundaries and clockwise direction for all inside
boundaries. Let T be the empty set of Delaunay triangles.

2. Search crack tip nodes from the set P and their two adjacent nodes. Remove crack tip nodes
from the set P and mark the position of those nodes in the set P for the next operation.

3. Create rosette nodes around crack tips as shown in Fig. 5 with the specified angle and store in
set P by insertion at the location that marked at step 2. These nodes are stored in clockwise
direction sequence for outside boundary crack tip and counter-clockwise direction sequence
for inside boundary crack tip.

4. Create an initial convex hull triangle that contains all boundary nodes inside. Add the triangle
to T.

5. Read next boundary node pi from P.
6. Search triangle ti in T which contains the node pi inside. The search starts from the triangle

which was formed last and uses Lawson’s algorithm (Lawson 1977, Sloan 1993) to march
from one triangle to the next in the direction of pi. This algorithm performs the shortest path
searching strategy and removes the need to search through the entire domain.

7. Destroy surrounding triangles of ti which lie within a circle centered at a vertex of the
Voronoi diagram. Delete these triangles from T. Then form new triangles that connected to the
node pi. These triangles must pass the in-circle criterion. Add new forming triangles into T
and determine the neighboring triangles of the triangles.

8. Go to step 5 until all nodes in P are considered.
9. Search for all triangles that have one or more vertices connected to any vertices of initial

convex hull triangles outside the domain or lie inside holes in the domain and delete these
triangles from T.

10. Add crack tip nodes in to the domain at the specified position and create rosette elements by
connecting all rosette nodes to the crack tip nodes.

3.3 Automatic node creation procedure

The Delaunay triangulation algorithm described above does not explain the method for creating
new nodes inside the domain. So far, researchers have introduced several approaches for creating

Fig. 5 Removal of the crack tip node and creation of rosette nodes around the crack tip
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new nodes inside the domain by refining boundary triangles such that the set of boundary points
guide new node placements (Frey 1987, Borouchaki and George 1997). The new node creation
procedure for geometry with crack developed in this paper is extended from that proposed by
Weatherill and Hassan (1994), and Karamete et al. (1997). The shape and size of triangles or
density of nodes inside the domain are controlled by two coefficients, the Alpha and the Beta
coefficients. The Alpha coefficient controls node density by changing the allowable shape of the
formed triangles. The Beta coefficient controls the regularity of triangulation by disallowing node
within a specified distance of each other to be inserted in the same sweep of the triangles within the
field. The suggested values of both the Alpha and the Beta coefficients for coarse and fine triangular
meshes are 0.8 and 0.9, and 0.5 and 0.6 respectively.

The main idea of the automatic node creation procedure is the search for the triangle that
conforms with both Alpha and Beta testing criteria and a new node placement at the centroid of that
triangle. New triangles can then be created by Delaunay triangulation algorithm as described in
algorithm I. The detailed implementation of the automatic node creation procedure is described in
algorithm II as follows.

Algorithm II; Mesh Refinement

1. Let P, k = 1, …, n, be the set of nodes on the boundaries of domain that stored in sequence of
counter-clockwise direction for all outside boundaries and clockwise direction for all inside
boundaries.

2. Let V be the empty set of new inserted nodes and let T be the set of Delaunay triangles which
constructed from algorithm I.

3. Compute the nodal distribution value dpi for each boundary nodes pi by,

 (6)

where  is the Euclidean distance assuming that node i is surrounded by M nodes (see Fig. 6).
4. Read triangle ti from T.
5. If one vertex of this triangle is connected to any crack tip node then go to step 4 to read the

next triangle.
6. Calculate centroid of the triangle ti and define as node Q, then compute the nodal distribution

value of node Q by using Eq. (6). Compute the distance dm, m = 1, 2, 3, from node Q to each
of the three vertices of the triangle ti.

7. Perform the Alpha test for node Q.
  If dm < (α dpq) for any m = 1, 2, 3, then reject the node Q and go to step 4.

8. Compute the distance sj for any j = 1, …, N from node Q to be inserted to the other nodes.
9. Perform the Beta test for node Q. 

 If sj < (β dpq) for any j = 1, ..., N, then reject the node Q and go to step 4.
10. Accept the node Q for insertion by the Delaunay triangulation algorithm (Algorithm I). Assign

the interpolated value of the nodal distribution value to the new node Q and add node Q into V.
11. Go to step 4 until all triangles in T are considered.
12. Perform the Delaunay triangulation of the derived nodes in V by Algorithm I.
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1
M
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A demonstration of a domain refinement by creating a new node inside the domain by Algorithm
I and II is shown in Fig. 7. The new node that conforms with both the Alpha and Beta testing
criteria is inserted at the centroid of the triangle and the in-circle testing criterion is applied to all
neighborhood triangles. With this process, a new mesh with refined triangles is formed.

3.4 Mesh smoothing

Shapes and sizes of triangles formed from the previous step can be improved by applying a mesh
smoothing technique. This paper uses the Laplacian smoothing technique because of less
computational time requirement. The point repositioning formula is derived from the finite
difference approximation of the Laplace’s equation (Frey 1987). Each interior node is moved
successively to the centroid of the area which is formed by connecting neighbouring nodes. Several
passes are made through the entire set of all interior nodes to produce optimized shape and size of
the triangles. The new node locations using the Laplacian smoothing are computed from,

(7)

where xi and yi are the coordinates of the surrounding M nodes.
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Fig. 6 Calculation of the nodal distribution values

Fig. 7 Mesh refinement with automatic node creation scheme (Algorithm II)
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Fig. 8 Mesh refinement and smoothing for the single edge cracked plate
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To demonstrate the efficiency of the Delaunay triangulation algorithm and the Laplacian
smoothing technique, Fig. 8 shows the progress of the domain discretization refinement for the
single edge cracked plate. The geometry consists of a horizontal crack line on the left boundary of
the domain. Fig. 9 shows detailed rosette triangular elements around the crack tip constructed by the
above algorithms.

4. Adaptive remeshing technique

The remeshing technique generates an entirely new mesh based on the solution obtained from a
previous mesh. The technique was first introduced and applied for high-speed compressible flow
analysis (Peraire et al. 1987). In this paper, the technique is modified and corporated into the
Delaunay triangulation and the finite element method to analyze crack propagation problems. There
are two main steps in the implementation of the adaptive remeshing technique; the first step is the
determination of proper element sizes and the second step is the new mesh generation.

4.1 Element sizes determination

The von Mises stress σ is used as the indicator for computing proper element sizes at different
locations in the domain (Dechaumphai 1996). As small elements must be placed in the region
where changes in the von Mises stress gradients are large, the second derivatives of the von Mises
stress at a point with respect to global coordinates x and y are needed. Using the concept of
principal stresses determination from a given state of stresses at a point, the principal quantities in
the principal directions X and Y where the cross-derivatives vanish are determined,

 

 (8)

The maximum principal quantities are then used to compute the proper element size hi by requiring
that the error should be uniform for all elements,

 (9)
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Fig. 9 Rosette triangular elements around the crack tip of the single edge cracked plate
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where λi is the higher principal quantity of the element considered, 
 

(10)

In Eq. (9), λmax is the maximum principal quantity for all elements and hmin is the minimum
element size specified by users.

4.2 Adaptive mesh regeneration

The proposed adaptive mesh regeneration is based on the concepts of the Delaunay triangulation
and the mesh refinement as described by Algorithm I and II. The new mesh is constructed using the
information from the previous mesh (background mesh), such that it consists of small elements in
the regions with large changes in solution gradients, and large elements in the other regions where
the changes in solution gradients are small. Detailed process of the adaptive remeshing technique is
described in algorithm III as follows.

Algorithm III; Adaptive Remeshing

1. Let P, k = 1, …, n be the set of nodes of the background mesh. Let T, l = 1, …, m be the set
of triangles of the background mesh.

2. Let NP be the empty set of nodes and NT be the empty set of triangles.
3. Calculate the new proper element size hi of all the nodes of the background mesh by Eqs. (8)

and (9). Then rediscretize all boundaries of the domain based on the new proper elements size
hi and recompute the nodal distribution values dpi for all the boundary nodes before adding all
nodes into NP.

4. Obtain nodal values of the new mesh by interpolating the nodal values of the background
mesh. Construct boundary triangles from the new boundary nodes in NP by Algorithm I and
store all the new triangles into NT.

5. Refine the boundary triangles based on the given values of the Alpha and Beta coefficients by
Algorithm II and store all new inserted nodes into NP.

6. Read next interior node pi of the background mesh from P.
7. If hi > hmax then go to step 6.
8. Search triangle ti in NT which contains the node pi using the method described in step 6 of

Algorithm I. Then calculate the centroid of the triangle ti and define as node Q, and compute
the nodal distribution value of node Q by Eq. (6).

9. Compute the distance dm, m = 1, 2, 3, from node Q to each of the three vertices of the
triangle ti.

10. If hi > average of dm or hmin > dm, m = 1, 2, 3 then go to step 6.
11. Otherwise accept the node Q for insertion by the Delaunay triangulation algorithm (Algorithm I).

Assign the interpolated value of the nodal distribution value to the new node Q and add to NP.
12. Go to step 6 until all nodes in P are considered.
13. Perform the Delaunay triangulation of the inserted nodes in NP by Algorithm I and smooth

the mesh.
14. Create mid-side nodes for all element sides and relocate all mid-side nodes of the crack tip

elements to the quarter-point positions as shown in Fig. 1.

λ i max ∂2σ
∂X2
--------- ∂2σ

∂Y2
---------, 

 =



Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks 573

5. Algorithm evaluation

The fracture mechanics simulation with the finite element program is used to evaluate the
efficiency of the combined Delaunay triangulation and the adaptive remeshing technique. The entire
procedure is first used to determine the stress intensity factors for problems with analytical solutions
or experimental data so that their results can be compared. The procedure is then employed to
capture the crack trajectory by adapting the mesh automatically with the crack growth.

5.1 Determination of stress intensity factors

Three well-known geometries used in the evaluation of the proposed procedure are: (1) the center
cracked plate, (2) the compact tension specimen, and (3) the single edge cracked plate under mixed-
mode loading.

The center cracked plate: The geometry of the center cracked plate and its final adaptive mesh
are shown in Fig. 10. The plate has an initial crack length 2a = 100 units, and the thickness t = 1
unit. The stress intensity factor for this problem was derived (Isida 1971) in closed-form as,

 (11)

Both the full and a quarter models were used to analyze this problems. The computed stress
intensity factor KI from either model is 16.7611 comparing to 16.7192 from Eq. (11) with the
difference of 0.25%.

The compact tension specimen: The geometry of the compact tension specimen and its final
adaptive mesh are shown in Fig. 11. The specimen has an initial crack length a = 3 mm., the width
w = 50.8 mm., and the thickness t = 25.4 mm. The closed-form formula for the stress intensity
factor (ASTM 1996) is,

(12)
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Fig. 10 Problem statement and the final mesh of the center cracked plate
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The computed stress intensity factor from the adaptive model as shown in Fig. 11 is 27.718
comparing to 27.935 from Eq. (12) with the difference of 0.75%.

The single edge cracked plate under mixed-mode loading: The geometry of the single edge
cracked plate and its final adaptive mesh are shown in Fig. 12. The plate has an initial crack length
a = 3.5 units. The computed stress intensity factors KI and KII from the adaptive mesh shown are
34.10 and 4.52 comparing to the reference values of 34.00 and 4.55 (Rao and Rahman 2000) with
the differences of 0.3% and 0.7%, respectively.

Fig. 11 Problem statement and the final mesh of the compact tension specimen

Fig. 12 Problem statement and the final mesh of the single edge cracked plate under mixed-mode loading
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5.2 Simulation of crack growth trajectory

Fig. 13 describes the flow-chart for predicting the crack growth trajectory of a single edge cracked
plate with holes under mixed-mode loading. The single edge cracked plate with dimensions as
shown in Fig. 14 has three small holes on it. The plate is simply supported near the lower corners,
and is subjected to a concentrated load at the center of the upper edge. This problem was carried
out using the experiment by Bittencourt et al. (1996) with two cases of the initial crack length, a,
and its location, b, as shown by the table in Fig. 14. For the first case, the initial crack length, a,
and its location, b, are 1.5 and 5.0 units, respectively. The results of the adaptive finite element
meshes and the crack growth trajectory are depicted in Fig. 15. The figure shows that the crack

Fig. 13 Flow-chart for predicting crack growth trajectory
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Fig. 14 Problem statement for the single edge crack plate with holes

Fig. 15 Adaptive finite element meshes and the crack growth trajectory for the single edge cracked plate with
holes under mixed-mode loading (Case I)
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growth trajectory passes near the lower hole and ended at the middle hole. Fig. 16 shows the similar
result but for the second case with the initial crack length, a, and its location, b, of 1.0 and 4.0,
respectively. For this latter case, the crack propagates toward the middle hole. The crack growth
trajectories for these two cases resemble very well with the experimental results.

6. Conclusions

The adaptive finite element method using Delaunay triangulation for crack propagation analysis
was presented. The concept of the Delaunay triangulation for two-dimensional mesh construction was
explained. The mesh generation procedure with automatic node creation and mesh smoothing were
described in details. The technique was combined with the finite element method for analyzing crack
problems under single and mixed mode loadings. The isoparametric six-node triangular elements,
with mid-side nodes displaced from their nominal positions to quarter points of the crack tip, were
employed to form up a circular zone surrounding the crack tip in order to increase solution accuracy.

The solution accuracy was further improved by implementing an adaptive remeshing technique to
the Delaunay triangulation algorithm. The adaptive remeshing technique places small elements
around the crack tips and in regions with large changes of stress gradients. At the same time, larger
elements are generated in other regions to minimize the total number of unknowns and the
computational time. Several examples were employed to evaluate the combined Delaunay
triangulation, the finite element method, and the adaptive remeshing technique. The combined
procedure was used to predict the stress intensity factors for several geometries with different
loadings, as well as to capture the crack growth trajectory. These examples demonstrated the
capability of the combined adaptive Delaunay triangulation with the finite element method for
solving crack propagation problems effectively.

Fig. 16 Adaptive finite element meshes and the crack growth trajectory for the single edge cracked plate with
holes under mixed-mode loading (Case II)
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