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Abstract.  This paper presents a procedure for designing feedback controllers for defective systems with

repeated eigenvalues, and also for a nearly defective system with close eigenvalues. For the nearly
defective system, we first transform it into a defective one, and then apply the same method to deal with

the nearly defective system. A method for computing the gain matrices is discussed here. The methodologies
proposed are based on the modal coordinate equation to avoid the tedious mathematical manipulation. As
an application of the present procedure, a numerical example is given.
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1. Introduction

The complexity in the control of large flexible structures is that there may exist repeated or close
eigenvalues in these systems, thus it is desirable to develop an approach for designing the feedback
controller for such systems.

The conditions that the closed-loop eigenvectors have to satisfy in order to obtain the output
feedback gain matrices and to enable the desired eigenvalue placements have been discussed
(Kimura 1997). The techniques for synthesis of output feed-back gains have been developed
(Srinathkumar 1978, Maghami and Juang 1990, Arednal 1983). Dissipative output feedback
gain matrices were used to assign eigenproblem (Maghami and Gupta 1997). The measures of
controllability and observability of the repeated modes are discusseet(kiu1994), but it does
not deal with the corresponding design of the feedback control laws. The standard design methods
for feedback control laws can be found in Meirovitch (1990).

The above discussions on the design of the feedback control laws mainly involve the control
problems of the non-defective system, which has the complete eigenvectors to span the eigenspace.
However, in actual engineering problems, such as general damping systems, flutter analysis of
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aeroelasticity, and so on, the system called defective system does not have a set of complete
eigenvectors to span the eigenspace (Xu and Chen 1994). Recent papers in this field include the
dynamic analysis of mobility and graspability of general manipulation systems (Prattichizzo and
Bicchi 1998), and the consistent task specification for manipulation systems with general kinematics
(Prattichizzo and Bicchi 1997). Recently, Chetnal (2001) gave modal optimal control procedure

for nearly defective systems, and discussed the quantitative measurements of modal controllability
and observability of defective and nearly defective systems.

The defective systems differ from nondefective ones in that the state matcannot be
diagonalized. For this reason, the standard methods for designing the feedback controllers cannot be
used to deal with the modal control problems of the defective and nearly defective systems.

This study will present an approach for designing modal controllers for the defective system with
repeated eigenvalues based on the modal control equations, and also for the nearly defective system
with close eigenvalues. For the nearly defective system, we first transform it into a defective one,
and then use the same method to deal with the nearly defective system. The theory is illustrated by
a numerical example to prove the validity.

2. Feedback control design of defective and nearly defective systems

Consider the control system indicated by the following state equation

X(t) = AX +BZ(t) E (1)
y(t) = CX(1) O

nx1

whereA is the state matrixX(t) O R is the state vecEit) is the input,y(t) OR*** is the
output vector,B OR"** andCOR®*" are called the actuator distribution matrix and sensor
distribution matrix, respectively, indicating the locations of control forces and sensors.

DenoteAM as the algebraic multiplicity of the eigenvalues of AheandGM the number of the
linear independent eigenvectors correspondingAtolf AM=GM for the distinct or repeated
eigenvalues, the system is non-defectiveAM>GM, the system with repeated eigenvalues is
defective (Deif 1992).

In Eq. (1), we assumed that = A, = ... = A, = A  are defective repeated eigenvaluas with
multiplicity, and rest of eigenvalues,,, 1, Am+2 ..., Ay, are distinct. The right and left modal
matrices are expressed as the partitional fal{Un, Unml, V=[Vm, Vanl. &n and &y are the
modal coordinates corresponding to the repeated and distinct eigenvalues.

Using the modal transformation, we obtain modal control equations corresponding to the defective
repeated eigenvalues and distinct eigenvalues

Em = J&n+ VHBZ, (1) )
o = Na&y+ Vi 1BZy(t) 3)
Ym = CUp&, 4)

Ya = CUn_méq (5)
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Egs. (2) to (5) can be written as

$m = I+ PrZu(t), &4 = Naéy+ PyZy(t) (6)
Ym = Cném Ya = Caég (7)
where
Pn= VeB, Py=V, .B (8)
Cn=CU,, C4=CU,_n 9

If the control loops which generate the input vector by linear feedback of the state vector of the
system are introduced, then the response characteristic of the closed-loop system will be different
from that of the open loop system. Thus, it is possible to re-assign a closed-loop system
eigenvalues, which correspond to the controllable modes of the repeated defective system so that the
closed-loop response characteristic is superior to the defective characteristics of the original
uncontrolled system.

Since Egs. (6) and (7) are much simpler than the state Eq. (1), the gain matrix of the close-loop
system can be derived directly without the tedious mathematical manipulation.

Here we assume that the modes corresponding tontlefective repeated eigenvalues of the
defective system and the distinct eigenvalues are controllable.

If the direct output feedback control is used, the modal control forces are given as follows

PoZn(t) = ViBGn&m  PuZy(t) = V,_ BGi&q (10)
where
Gy = [GM,, GM,, --,GM,], Gj = [GD,, GD,, -, GD,_,] (11)

Substituting Eq. (10) into Eqg. (6), yields

En = (J+PuGm)én, &1 = (Ag+PuGy)&y (12)
or
&l [3+P.Gni 0 |[&,
T R o (13)
& 0 Ag+PyGy L

Eqg. (13) indicates that the effect of the input variable given by(Hg). is to change the Jordan
matrix J and A4 into new matrices$i,, andHq given by

Hn= J+P,Gr,  Hg = Ag+ PGy (14)
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Eqg. (14) indicates that the defective repeated eigenvalues), = ... = A, are not the eigenvalues
of matrix H,,, the A4 are not the eigenvalues lgf;.
Denote the assigned new distinct eigenvaluespagj=1, 2, -, m) and corresponding
eigenvectors awV,, they satisfy the following eigenvalue problem
[J+P,GnlW, = pW,  (j=1,2,, m) (15)
or
[J+PuGn—plIW; =0 (j=1,2,,m) (16)
SinceW; # 0 , the eigen-determinant of the matrix is zero
defJ +P,Gn—pl] = 0 (17)

Considering the Egs. (8) and (11), we have

p.GM; p,GM, - p,GM,
PmG; — p.GM; p,GM, .- p,GM, (18)
pmG Ml pmG M2 pmG Mm

Wherep; = [pl! P2, -+, pm] .
After introduction of Eq. (18) into Eq. (17), Eq. (17) becomes

A—p+GM;p; 1+GMyp; - GM,p;
detl GMiP  A-p+GMp, - GMyp, -0 (G=12--,m) (19
GMlpm GMme /\_pi+GMmpm

Expanding Eqg. (19), yields

mla GMgp.s | _ s
(A-p)" 1+ ~1 =0 (j=21,2"--,m) (20)
J Zo Z1(/\ )
If p,# A, from Eq. (20), we have
L GMspI+s

Z)Zl(/\ = (=12 m) (21)

In order to obtain a convenient form, we introduce the following notations

F=1: (22)
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where
1 1 1
Fj = |: — 5 m} (23)
A=A (o -1" (g-A)
and
pl p2 pm
p=| P Ps... 0 24)
Pm 0 ..-0

wherepy, p, -+, pm are the elements of i, in Eq. (8).

Gm = [GMy, GM,, ---, GM,] (25)
E'=[1,1, 1] (26)
Using these notations, tme Eq. (21) can be written in a matrix equation
FPG, = E (27)
It is possible to solve (27) for the gain ved&y;, i.e.,
G,=P'F'E (28)

This is the solution for the gain vector of the defective systems with repeated eigenvalues. The
control law of the defective system is given by

Z(t) = G'&(1) (29)
whereG' = [G] : G{]
Using the modal transformation
x(t) = Ug(t) (30)
one has
&) = V(1) (31)
Thus, Eq. (29) becomes
&m
Z(t) = [Gn : Ggl|...| =[G i GaIV™x(1) (32)
&4

If the eigenvalues),, A,, ..., are distinct, the gain mati@; can be obtained by Meirovitgi990)

GDJ - kljl(pk_/\J)/pJ |;I (/\k_/\i) (J =12, n_m) (33)

21
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where p(k=1, 2, -, n—-m) are the assigned new eigenvaluds(j=1, 2, -, n—-m) are
eigenvalues associated with the controllable modes.

It should be pointed out that if some small changes of parameters of the defective systems are
introduced, the system with the defective repeated eigenvalues can be perturbed into nearly defective
one with close eigenvalues. For such a case, from a mathematical view point, although the close
eigenvalues are distinct, the dynamic characteristic of the system is still defective.

In a similar way to the deduction presented in Céeeal. (2001) for nearly defective system with
close eigenvalues, the following equation can be obtained

Em(t) = (‘]0 + 5‘]0) Em(t) + szm(t) = JOEm(t) + szm(t) (34)
where
_ 1
ho =13 A (35)
Jo=| Mo (36)
... 1
Ao
A=Ay -1
83, = 2= (37)
-1
/\n_/\O

Eqg. (34) shows that the feedback control design problem of the nearly defective system with close
eigenvalues can be transformed into one of the defective system with repeated eigenvalues, which
are equal to the average value of the close eigenvalues.

3. Eigenvalue perturbation analysis for the closed-loop systems

From the above discussion, it can be shown that feedback control design of the nearly defective
system with close eigenvalues can be transformed into one of the defective system with a repeated
eigenvalue, which is equal to the average value of the close eigenvalues. If the feedback control law
given by Eq. (32) is applied to the nearly defective system with close eigenvalues, the assigned
eigenvalues will have some perturbations. In this section we present the eigenvalue perturbation
analysis of the closed-loop system. These are induced by the error datrixeq. (37).

If the feedback control law (32) is applied to nearly defective system with close eigenvalues, from
Eq. (34) we obtain
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H [30+PuGni O o
X = EU ...... S v +U6JOV'EX = (AA + JA)X (38)
O 0 P A+ PGy 0

The eigenproblem corresponding to Eq. (38) is

(AA +SA)U = Pu (39)
Jo+ P, G 0
whereAA = U| S v A = UaI V"
0 PNy PyGJ
The eigenvalued and eigenvectdr (@A + JA) can be expressed in the following form
(Chen 1999)
D= Pt EP;t (40)
U = Uj+ EUq + - (41)

wherep, = —a,+jB(j = J/-1) , (=1, 2, are the eigenvalues of the matAA, p; anduy are
the corresponding 1st order perturbations.
It can be shown that the 1st order perturbaiimn,is

pi = VIGAu;  (i=1, 2, m) (42)
If the following condition
ai+6minsrlisai+6max (l :1’ 21"'1 m) (43)

is satisfied, the closed-loop system will have good dynamic stability, whésehe modal damping
ratio, and

6min = minRe(bi)! 5max = maXRe(bi) (44)

It is obvious that as long as (i =1, 2,---, m) are large enough for designing the feedback control
law of the defective system with repeated eigenvalues, the closed-loop system may have the
dynamic stability we need. This indicates that the present procedure for designing the feedback
control law of the nearly defective system with close eigenvalues is available.

The procedure of feedback control design for the nearly defective systems with close eigenvalues
is summarized as follows:

1) Form state matriA of nearly defective system and computelose eigenvalueg, ..., Ay,

2) Compute
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3) Compute generalized modal matri¢¢sandV using the invariant subspace recursive procedure
presented in Chen (1999);

4) Form a approximate defective system using Eq. (34);

5) Compute G,y and G4 from Egs. (28) and (33) for the approximate system with defective
repeated eigenvaluk;

6) Eigenvalue perturbation analysis of the closed-loop systems using Eq. (40).

4. Numerical example

In order to illustrate the application of the present procedure, a numerical example of the defective
system is given as follows.

We consider the flutter problem of an airfoil in simplified formulation. The airfoil is replaced by a
rigid rectangular panel with two degrees of freedom, the vertical displaceraent the rotatiorr .
It is assumed that aerodynamic lift force is proportional to the angle of attac#l to the square of
the velocityv of flight. The differential equations of motion are &hial. (1989)

mh+sd + K,h = —pv’aba

sh+J,d4+K,a = pv’abea

wherem is the mass of the panealthe static moment of the cross section area of the phritle
moment of inertiaK,, the bending stiffnes¥, the torsional stiffness, respectively.

If the parameters are given as follows/(pal?) = 5, s/(mb) = 0.25, J,/(ml¥) = 0.5, eb= 0.4,
Kn/m=0.25,K,/J, =1, andu = v(J,/K,)"%b, then the above differential equations become

Mg+Kg =0

2
M= |1 02 K = 025 o0
0.25 0.5 0 0.5- 0.08°

If the parameteu = 1.32567735, the state matrix has the following form

where

0.0 0.0 — 0.28571428571429-0.19632103395740
A = {0 M K} — (0.0 0.0 0.14285714285714- 0.62065221321282
| 0 1.0 0.0 0.00000000000000  0.0000000000P000
0.0 1.0 0.00000000000000 0.00000000000000

The control matrixB in Eq.(1) for single-input control force is

0 0.00000000000040
s=| H _ | 0.00000000000000
I1] ~ |-0.57142857142857
2.28571428571429
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The flutter of the airfoil is characterized by the conditions:Rif{A) =0, [,(A) #0 , which
describe the critical state of the flutter; R(A) >0, 1,(A) #0 , which describe the flutter occurs,
and the eigenvalue is also the corresponding flutter frequency.

From the above discussion, we see how important it is to know the behaviours of eigenvalues of
systems.

The eigenvalues ok are

A; = 0.67318886946616 A, = 0.67318886946616
A3 = —0.67318886946616 A, = —0.67318886946616

wherei = ./-1 . This system is defective. Becau&gA,) =0, 1,,(A;) %0 , the system is in the
critical state of the flutter. The main problem of the control is to stabilize the system, i.e., make it
more safe.

The Jordan matrix of this system is

A1 00
0A 00
0 0A;1
0 0 02
The right and left modal matricés andV are

—0.46540318867956-0.273084186906270.46540318867956-0.27308418690627
U= —0.39700584910218 0.559296478229293- 0.3970058491021855929647822929

0.691341172150100.66056754098396-0.69134117215016-0.6605675409839

0.5897391873633%0.61336913663528-0.58973918736331 0.6133691366352

—0.68374618664713 -0.53836500812307 —0.68374618664713 -0.53836500812307
y = |~0-45788328680308 0.63111613367462— 0.45788328680308).63111613367462

0.32665905473259 0.36242133822492-0.32665905473259-0.3624213382249

0.46489559029220-0.42486035051943-0.46489559029220 0.4248603505194

and
Pm = VB

—0.8759561751064
1.1782072801729

I:’mZ

vie = 0.8759561751064
" -1.1782072801729

Taking the singular-value decompositionRyf; andP,;, yields (Cheret al. 2001)
%, = diag(o; = 1.46815244976792 0 = 0)
s, = diag(d’ = 1.46815244976792 05 = 0)
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Since 0:>0,03=0,0°>0,05=0 , the 1st and 3rd modes are controllable, the 2nd and 4th

modes are uncontrollable.
In order to improve the defective characteristic of the original uncontrolled system, the new

eigenvalueg, andp; can be assigned @g=-0.25 + 1.0 andp; = —0.25- 1.0.
Because the 2nd mode is uncontrollable, the modal control force can be given by
PriZm(t) = ViiBGmém

whereV,; contains only the first 2 columns ¥ G,y = [GMy, O], &1 = [é4, &N
From Eqg. (14), one has

The eigendeterminat (19) becomes

det|:/\l_p1+GMlpl 1 -0
GM;p; A=pyf

Expanding this equation, yields
(A1=p1+ GMp;) (A= p1) —GMp, = 0

or

GM.p; _GM;p, } -0

A 2|:1_
(pl l) pl_/\l (pl_Al)z

If p,#A;, we have

GM1p1+ GM,p, _
Pr=A (p-2y)°

It follows that the gain vector, whe@,, = [GM;, 0", whereGM,; is given by

2
oM, = —PmM) o 11847507715314 0.00743570028943
P1(P1— A1) + P2

wherep; = -0.25 + 1.0.
The required control law for thé, is

0.08100749758773 0.00508413171i 55
0.05424816982604 0.00340468288 2%(,[)
0.00242893882782 0.03870125070836
0.00345682427529 0.05507895933404

Zm(t) = GpaVmX(t) =
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If p3=-0.25- 1.0, the required control law for thig can be also obtained

0.08100749758778 0.00508413171i 55
0.0542481698260¥ 0.00340468288 2;((,[)
0.00242893882782 0.03870125070636
0.00345682427529 0.05507895933404

Zo(t) = GraVimaX(t) =

It can be verified that state matrix of the closed-loop system in Eq. (13) is

P.Gy, : O
H=J+ R =
! PGz
0.006513+ 0.776968 1.0 0.000000 0.00000
—0.008760-0.139589 0.0 0.000000 0.00000
0.000000 0.0 0.006513 0.776968 1.000000
0.000000 0.0 — 0.0087600.139589 -0.673188

and that the eigenvalues of this matrix is
A, = —0.25+1.0i, A, = 0.25651334758476 0.450157502721L.35
A; = —0.25-1.0i, A, = 0.25651334758476 0.450157502721L35

The results show that; and A; are the required eigenvalues. The original defective system with
repeated eigenvalues is changed into nondefective one with distinct eigenvalues. It should noted that
because of the coupling between the 1st and 2nd modes, the 2nd eigenvalue is changed into
0.25651334758476 + 0.45015750272186m 0.6731888694661.6For the uncontrollable mode 4,
the similar results can be also obtained. From the results we see thatRgihge 0, and
R.(A4) > 0, the 2nd and 4th modes of the closed-loop system obtained by the 1st stage design can
not be stabilized. To stabilize the system the 2nd stage design is necessary. After the 1st stage
design, the system is changed into nondefective one with distinct eigenvalues, it is easy to obtain the
gain matrixGy with Eq. (33).

5. Conclusions

The vibration control of the systems with repeated or close eigenvalues is an important problem in
engineering. This paper focuses on the case of the defective or nearly defective systems with
repeated or close eigenvalues, and presents the design methods of the modal controller based on the
generalized modal coordinates, thus avoiding the tedious mathematic manipulation. From
mathematical view point, although the close eigenvalues of the nearly defective system are distinct,
the dynamic characteristic of the system is still defective. For such case, the methods for computing
the gain vector of the distinct eigenvalues can not be used, and we have to use the methods
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presented by this paper, so as to obtain the effective results. The conclusions are supported by the
given numerical example.
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