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Abstract. Using fluid dampers to connect adjacent buildings for enhancing their seismic resistant
performance has been recently investigated but limited to linear elastic adjacent buildings only. This paper
presents a study of inelastic seismic response of adjacent buildings linked by fluid dampers. A nonlinear
finite element planar model using plastic beam element is first constructed to simulate two steel frames
connected by fluid dampers. Computed linear elastic seismic responses of the two steel frames with and
without fluid dampers under moderate seismic events are then compared with the experimental results
obtained from shaking table tests. Finally, elastic-plastic seismic responses of the two steel frames with
and without fluid dampers are extensively computed, and the fluid damper performance on controlling
inelastic seismic response of the two steel frames is assessed. The effects of the fundamental frequency
ratio and structural damping ratio of the two steel frames on the damper performance are also examined.
The results show that not only in linear elastic stage but also in inelastic stage, the seismic resistant
performance of the two steel frames of different fundamental frequencies can be significantly enhanced if
they are properly linked by fluid dampers of appropriate parameters. 

Key words: adjacent buildings; fluid damper; inelastic seismic response; plastic beam element; numeri-
cal simulation; experimental comparison. 

1. Introduction

Buildings in a modern city are often built closely to each other because of limited availability of
land and preference for centralized services. Although most of these buildings are separated
without any structural connections, some of them are linked together in different ways to meet
requirements such as architectural function and structural performance. For instance, some of
adjacent buildings are linked by sky bridges at several locations to provide a horizontal
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transportation system for access to the two buildings. Some of tall buildings are built with podium
structures to achieve a large open space for parking, shops, restaurants and hotel lobbies. The
concept of linking adjacent buildings or connecting podium structures to a main building using
passive dampers, semi-active dampers, or active dampers has been thus proposed to improve their
seismic resistant performance.

The investigation of using passive dampers to connect adjacent buildings for enhancing their
seismic resistant performance has been carried out by Kobori et al. (1988), Luco et al. (1998), and
Zhang and Xu (1999) among others. The use of active actuators to link a group of buildings to
reduce their seismic responses has been examined by Yamada et al. (1994), Seto and Matsumoto
(1996), and others. Klein and Healy (1985) and Christenson et al. (1999) respectively scrutinized
the performance of semi-active control devices for seismic response mitigation of adjacent buildings.
The experimental investigations of adjacent buildings linked by fluid dampers have been also
executed by Xu et al. (1999) for the buildings under harmonic excitation and by Yang et al. (2002)
for the buildings under seismic excitation through shaking table tests. All these investigations
demonstrated that the use of dampers to link adjacent buildings of different fundamental frequencies
could significantly reduce seismic response of either building if the locations and parameters of
dampers were appropriately selected. All these investigations are limited to linear elastic adjacent
buildings with the assumption that either the intensity of ground motion is moderate or because of
the installation of dampers the energy dissipation capacity of the buildings is enhanced enough to
keep the buildings elastic. However, this may not be the case for adjacent buildings located in strong
seismic zones or for inadequate energy dissipation capacity of control devices used to link adjacent
buildings.

This paper therefore focuses on inelastic seismic response and behavior of adjacent buildings
linked by fluid dampers. The background of the establishment of a nonlinear finite element model
using plastic beam element to simulate two steel frames connected by fluid damper is first given.
Followed is a procedure for solving the nonlinear equations of motion of the structural-damper
system. Computed linear elastic seismic responses of the two steel frames with and without fluid
dampers under moderate seismic events are then compared with the experimental results obtained
from shaking table tests. Finally, elastic-plastic seismic response and behavior of the two steel
frames with and without fluid dampers are investigated in terms of response time history, the
maximum story drift profile, and hysteretic loops of structural members. The fluid damper
performance on controlling inelastic seismic response of the two steel frames and the effects of the
fundamental frequency ratio and structural damping ratio of the two steel frames on the fluid
damper performance are also assessed through parametric studies.

2. Finite element formulation of system

The shaking table tests of the two steel frames with and without fluid dampers linked were
recently performed by the writers (Yang et al. 2002). The two steel frames with and without fluid
dampers were kept elastic during the tests. To make use of the test results for the validation of the
modeling procedure and the associated computer program in this study, two planar inelastic steel
frames linked by a fluid damper are established based on the two steel frames tested (see Fig. 1).
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2.1 Element mass matrix

The beams and columns of the two planar steel frames are modeled by 2-D beam elements. The
element has three degrees of freedom at each end: two translations and one rotation. The consistent
mass concept with shear deflection effect included is employed to model the inertia force of the
beam element. The element mass matrix in a local coordinate system possesses the following form
(Yokoyama 1990).

 (1)

where ρ, m, A, L are, respectively, material density, additional mass per unit length, cross-section
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Fig. 1 Schematic model of adjacent buildings with fluid damper used in analysis
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area and length of beam element. Other functions in the above mass matrix are expressed as:

(2)

in which

    , the radius of gyration of beam element.

, reflecting shear deflection effect.

E, G, As, and I are the elastic modulus, shear modulus, effective shear area, and moment of inertia
of beam element, respectively.

2.2 Linear-elastic element stiffness matrix

For a beam element in a completely linear-elastic state, the element stiffness matrix used in this
study is expressed as:
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 (3)

2.3 Inelastic element stiffness matrix

The nonlinear stress-strain relationship, as shown in Fig. 2, is used to describe material nonlinear
properties for the steel frames. The relationship is path-dependent so that the stress depends on the
strain history as well as the strain itself. The inelastic element stiffness matrix is derived based on
the plastic-zone method (Pi and Trahair 1994). In the plastic-zone method, the gradual spread of
yielding across the monitored cross section and along the element is modeled explicitly through
numerical integration across the discretized cross section located at selected integration points along
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Fig. 2 Stress-strain relationship of material used in analysis
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the element. Three sets of integration points along the length of the element are arranged: one at
each end section and one at the middle section. For each set (each cross section), five integration
points are selected and located, respectively, at positions of y = ±0.5h, ±0.3h, and 0.0h along the
height of the cross-section, where h is the height of the cross section and y is the coordinate in the
y-axis, one of the principle central axes of the cross section along the section height.

The inelastic element stiffness matrix changes with the motion of the steel frame under
earthquake. For a given time, the inelastic element stiffness matrix is represented by its element
tangent stiffness matrix. The general form of the tangent stiffness matrix for an elastic-plastic
element is expressed as:

(4)

where B is the strain-displacement matrix of the element; D is the elastic-plastic stress-strain matrix
of the element; and the term “Vol” denotes the volume of element. 

For the 2-D beam element, the tangent stiffness matrix can be written as:

 (5)

in which , and  are the matrices accounting for bending, shear, and axial deformation,
respectively. 

As each of these three matrices uses only one component of strain at one time, the integrand in
Eq. (4) can be greatly simplified.

 (6)
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E(ε) is the current tangent modulus which can be found from the nonlinear stress-train curve based
on the current total strain ε and its history; the term “area” denotes the cross section of the element;
x is the coordinate in the x-axis, which is the longitudinal axis of the element. In the above
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equations, the integration along the element length uses the three point Gauss rule while the
integration over the cross-sectional area of the element is performed using the five point Gauss rule.
The linear interpolation is used for determining the current tangent modulus at a Gauss point
between the two integration points.

2.4 Stress and strain calculation

The stress and strain at any point of an element need to be calculated to facilitate the judgment of
element state as well as to update the element tangent stiffness matrix. The trial elastic strain at any
point in the beam element at the i th step is given by:

 (12)

where φ b is the total curvature at the ith step; ε a is the total strain from the axial deformation at the
ith step; and  is the plastic strain from the (i − 1)th step. The total curvature and the total strain
from the axial deformation are expressed as 

 (13)

  (14)

where uB and uA are the nodal displacement vector with non-zero bending component and axial
component, respectively. The trial stress is then determined using the elastic modulus E.

 (15)

Three ingredients, namely, the yield criterion, the flow rule, and the hardening rule, should be now
considered. The yield criterion determines the stress level at which yielding is initiated. The von
Mises yield criterion is adopted in this study. The flow rule determines the direction of plastic
straining and it is given as:

    (16)

where λ is the plastic multiplier determining the amount of plastic straining; Q is a function of
stress vector, termed plastic potential which determines the direction of plastic straining.  is
the plastic strain increment. This study uses the associative flow rule and the yield function is
selected as Q. The plastic strains thus occur in the direction normal to the yield surface. The
hardening rule describes the change of the yield surface with progressive yielding so that the stress
vector for subsequent yielding can be found. Kinematic hardening is used in this study, indicating
that the yield surface remains constant in size and translates in the stress space with progressive
yielding. 

If the equivalent stress, calculated based on the stress vector and the von Mises yield criterion,
exceeds the material yield stress, the plastic multiplier λ can be computed using the consistency
condition, which ensures that the updated stress, strain and internal variables are on the yield surface
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(Simo and Taylor 1985). The plastic strain increment is then obtained using the flow rule (Eq. 16).
Finally, the current plastic strain is updated as

 (17)

The current elastic strain vector and the current stress vector are computed by 

 (18)

  (19)

2.5 Element damping matrix of damper

The fluid damper used to connect the two steel frames is a kind of viscous damper which can be
modeled as a two-node damper element with uni-axial tension-compression capability of two
degrees of freedom at each node (Soong and Dargush 1997). No damper mass is considered. The
corresponding element damping matrix of damper can be given as

 (20)

where cd is the damping coefficient of the damper.

2.6 Equation of motion of the system

Following the conventional finite element method to assemble all the element matrices, the
equation of motion of the two steel frames linked by fluid dampers can be obtained as 

 (21)

where U(t), , and  are, respectively, the displacement vector, the velocity vector, and the
acceleration vector of the system relative to the ground;  is the ground acceleration applied at
the base of the two frames; Γ is the index vector; M is the mass of the system; and K is the elastic-
plastic stiffness matrix of the system which is the function of U(t); and C is the total damping
matrix of the system which is the combination of the structural damping matrix and the damper
damping matrix. 

  (22)

The Rayleigh damping assumption is employed to derive the structural damping matrix if the
system is in linear-elastic stage.

 (23)

in which a0 and a1 are the proportionality factors determined using the two given modal damping
ratios. If the system enters into elastic-plastic stage, the structural damping matrix is determined by
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This assumption can avoid the unnecessary complexity due to the elastic-plastic stiffness
matrix, and at the same time it is more reasonable to reflect the structural damping behavior
in elastic-plastic stage. The damper damping matrix can be assembled from the element
damping matrix of damper in the same way as the system stiffness matrix. 

3. Numerical solution 

A step-by-step numerical integration method using the Newmark-β method and the incremental
modified Newton-Raphson iteration method are employed in this study to find the solution for
inelastic seismic responses of adjacent buildings linked by fluid dampers.

3.1 Newmark-β method

The equation of motion of the damper-frame system (see Eq. 21) at the time ti can be written in
the incremental form.

 (25)

Following the Newmark-β method, the incremental pseudostatic equilibrium equation is

 (26)

where
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  (29)

In this study, β is selected as 1/4. The incremental pseudostatic equilibrium Eq. (26) is solved
using the incremental modified Newton-Raphson iteration method.

3.2 Modified Newton-Raphson iteration method

The general algorithm of the modified Newton-Raphson iteration method for the ith time step of
the incremental pseudostatic equilibrium equation can be summarized as follows:
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equilibrium Eq. (26) and the real restoring force vector in the structural system at the beginning of
the ith time step. 

• Carry out the iteration j = 1, 2, 3, …

 (31)

 (32)

 (33)

 (34)

• Check convergence
If the ( j + 1)th iteration satisfies the following criteria, the iteration can be stopped.

 (35)

 (36)

where εR and εU are the tolerances selected as 0.005 in this study; Pref and Uref are the reference
values taken as  and , respectively, in this study;  and is a vector norm, a scalar
measure of the magnitude of the vector. 

3.3 Newton-Raphson restoring force vector

The Newton-Raphson restoring force for the element is:

 (37)

The meaning of each term in the above equation can be referred to sections 2.3 and 2.4.
Analogous to the inelastic element stiffness matrix (section 2.3), the restoring force vector can be
written as

 (38)

in which  and  are, respectively, restoring bending, shear, and axial force of the element.
The subscript i has been left off for convenience.
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3.4 Incremental modified Newton-Raphson iteration method

It is noted that no any intermediate solution is in equilibrium except the final converged solution
for each time step in the modified Newton-Raphson iteration process. However, for the elastic-
plastic analysis with path-dependent nonlinear behavior, it is desirable to have some intermediate
steps in equilibrium so as to follow the right load path. In this connection, this study divides each
time step as five substeps and each of them is solved by the modified Newton-Raphson method.
This is the so-called the incremental modified Newton-Raphson iteration method. 

4. Linear-elastic seismic response and comparison

The two planar steel frames linked by linear fluid dampers shown in Fig. 1 are actually the
simplified model for the two steel frames recently tested by the writers on the shaking table (Yang
et al. 2002). The two test steel frames of a 1:4 length scale were designed as a symmetric 6-story
frame of 6 m high and a symmetric 5-story frame of 5 m high (see Fig. 3). The test case used in
this study for the comparison is that the two steel frames were aligned in the x-direction and linked
by linear fluid dampers in parallel. They were mounted on a 4 m× 4 m earthquake simulator and
subjected to the ground acceleration in the x-direction only. Under these conditions, the two test
steel frames linked by fluid dampers can be accordingly modeled as two planar steel frames linked
by fluid dampers for the convenience of computation. The geometric properties of the two planar
steel frames are listed in Table 1. The elastic modulus E, plastic modulus Ep, and yield stress fy of
the materials are 206 GPa, 2.06 GPa, and 215 MPa respectively. The Possion’s ratio µ and the shear
modulus G are taken as 0.3 and 79 GPa, respectively. The first three natural frequencies of 6-story
frame are 1.86 Hz, 5.86 Hz, and 9.77 Hz and the first three natural frequencies of 5-story frame are
3.42 Hz, 10.35 Hz, and 16.02 Hz. The damping coefficient of fluid damper cd is about 15.41 N.s/
mm. The first two modal damping ratios of either frame, used to constitute the structural damping
matrix, are taken as 1%. The ground acceleration is the El Centro 1940 N-S ground motion of 0.2 g
peak acceleration and 26 seconds duration inputted in the x-direction only. 

The test results showed that the two frames in this test case were in completely linear-elastic stage
no matter whether the fluid dampers were installed or not. The measured maximum strain was 722
µε in the 6-story frame and 405 µε in the 5-story frame without fluid dampers. With the two
parallel dampers connected at the 5th floor of both the frames, the maximum strain was measured as
402 µε in the 6-story frame and 196 µε in the 5-story frame while the yield strain of steel used in
the test was about 1044 µε. 

Table 1 Geometric properties of structural elements

Frame
(1)

Element
(2)

A (m2)
(3)

I (m4)
(4)

6-story frame
Beam 1.569×10−3 3.885×10−6

Column 1.433×10−3 3.281×10−7

5-story frame
Beam 1.569×10−3 3.885×10−6

Column 1.433×10−3 3.281×10−7
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Fig. 3 Configuration and instrumentation of adjacent buildings with fluid damper in shaking table test
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Displayed in Fig. 4 are the time-histories of top-floor horizontal displacement response of the 6-
story frame with one fluid damper (referring to the computer model) installed at the 5th floor and
connected to the 5-story frame. The computed time-history is compared with the measured time-
history and the comparison is satisfactory. Fig. 5(a) depicts the variation of the maximum horizontal
displacement response of the 6-story frame with height, in which one fluid damper is installed at the
5th floor and linked to the 5-story frame. Fig. 5(b) shows the same quantity but without fluid
dampers. It is seen that the computed results are close to the measured results. These results
demonstrate that the linear-elastic computer model used in this study is accurate enough and can be
used for parametric studies. The comparative results also indicate that the effect of geometric non-
linearity on the linear-elastic seismic response of steel frames is insignificant. Although this
comparison is performed for the linear-elastic steel frames, the good agreement implies that the
computed model and numerical solution used in this study may be used for the elastic-plastic
analysis of two steel frames linked by fluid dampers. 

For the case in which the 6-story frame and the 5-story frame are linked together at the 5th floor
through one fluid damper, the effect of damper damping coefficient on the seismic response
reduction is investigated using the computational model. Fig. 6 shows that the variation of
displacement response reduction ratio with the normalized damper damping coefficient. The
displacement response reduction ratio is defined as the RMS response of the frame with control to

Fig. 5 Comparison of maximum linear-elastic floor displacement response of 6-story Frame

Fig. 4 Comparison of time-history of linear-elastic displacement response at top floor of 6-story frame
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the same quantity of the frame without control. The normalized damper damping coefficient is
defined as the damper damping coefficient divided by the damper damping coefficient used in the
test. It is seen that the variation of the 6th floor response reduction ratio of the 6-story frame with
the normalized damper damping coefficient is similar to that of the first story drift of the 6-story
frame. However, the variation of the 6th floor response reduction ratio of the 6-story frame is
different from that of the 5th floor of the 5-story frame. The seismic response of the 6-story frame is
not very sensitive to the damper damping coefficient if it is larger than 0.4. The seismic response of
the 5-story frame is, however, sensitive to the damper damping coefficient. The optimal normalized
damper damping coefficient is about at 0.65 for the 6-story frame with the RMS response reduction
ratio about 23.8% for the top floor displacement response and 25.9% for the first story drift. For the
5-story frame, the optimal normalized damper damping coefficient is about 0.4 with the RMS
response reduction ratio about 41.9% for the top floor displacement response and 38.8% for the first
story drift. Fig. 7 displays the time histories of top-floor displacement response of the 6-story frame
without fluid damper and with the optimal fluid damper. The optimal fluid damper is very effective
during the whole duration of the ground motion. Apart from the significant reduction of RMS
response, the maximum displacement response is also reduced by 42%. 

Fig. 7 Time-histories of linear-elastic displacement responses at top floor of 6-story frame with and without
control

Fig. 6 Variation of linear-elastic RMS response reduction ratio with damper damping coefficient
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 5. Elastic-plastic seismic response

The elastic-plastic seismic responses of the two steel frame models without and with one fluid
damper installed at the 5th floor are computed by changing the peak acceleration of the El Centro
ground motion. The basic peak acceleration is selected as 0.2 g as used in the linear-elastic analysis.
The seismic intensity multipliers of the basic peak acceleration used in the elastic-plastic analysis
are taken from 1 to 6 for the case without control and from 1 to 8 for the case with control. The
ground acceleration selected here is referred to the model frame rather than the prototype frame.
The use of large ground acceleration will provide a clear picture of the elastic-plastic behavior of
the concerned steel frames. 

5.1 Maximum displacement response profile 

Plotted in Fig. 8(a) is the variation of the normalized maximum horizontal displacement response
of the 6-story frame with the height for a number of the seismic intensity multipliers and for the
case without control. For a given seismic intensity multiplier, the normalized maximum horizontal
displacement response at the ith floor is defined as the maximum horizontal displacement at the ith

floor divided by the maximum horizontal displacement at the top floor. It is seen that the steel
frame is a shear type of structure. When the seismic intensity multiplier ranges from 1 to 3, the
normalized maximum horizontal displacement profiles are almost overlapped, which indicates the
frame almost in the linear-elastic status. With the seismic intensity multiplier increasing from 4, the
plastic deformation of the frame becomes larger and larger. Fig. 8(b) also displays the variation of
the normalized maximum horizontal displacement response of the 6-story frame but this is for the
case with control. It is interesting to see that because of the installation of fluid damper, the
displacement profiles overlaps for the seismic intensity multiplier ranging from 1 to 5. Only starting
from the multiplier of 6, the frame exhibits plastic deformation. Comparing with the multiplier of 4
for the case without control, one may see the significant improvement of seismic resistant capacity
of the frame with the installation of fluid damper. The type of shear structure, however, is still kept
with the fluid damper. 

 

Fig. 8 Variation of normalized displacement response of 6-story frame with height 
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5.2 Maximum story drift profile

To view the distribution of elastic-plastic deformation of the steel frame along the height, the
maximum story drifts of the two steel frames with and without fluid dampers are computed. Figs. 9(a)
and 9(b) display the maximum story drifts of the 6-story frame without and with the fluid damper at
the 5th floor, respectively, for a series of the seismic intensity multiplier. It is seen from Fig. 9(a)
that when the multiplier increases from 4, the plastic deformation appears in the first story and the
first story drift gets larger and larger. This illustrates that the first story of the 6-story frame is a
weak story. With the installation of the fluid damper at the 5th floor, the occurrence of plastic
deformation is delayed to the multiplier of 6 but it still occurs at the first story. Under the same
ground acceleration, the story drifts become much smaller in the control case than in the case
without control, as shown in Figs. 9(a) and 9(b). The computed results show, however, that for the
5-story frame, the plastic deformation occurs at the second story first for both cases with and
without control. This is because the first story height is less than the other stories. The second story
is thus the weak story of the 5-story frame. 

5.3 Hysteretic characteristics 

To confirm the occurrence of plastic deformation and to view the development of elastic-plastic
deformation under increasing peak ground acceleration, the hysteretic loops of the column end
moment vs. the story drift are computed for each story of each frame for a series of seismic
intensity multipliers. Figs. 10(a) and 10(b) show the M − ∆ hysteretic loops of the first story of the
6-story frame without control for the seismic intensity multiplier of 1 and 4, respectively. Clearly,
for the multiplier of 1, i.e., under the 0.2 g peak ground acceleration, the M − ∆ curve appears in a
straight line, indicating the first story is in the perfect linear-elastic status. For the multiplier of 4, a
clear bi-linear M − ∆ hysteretic loop appears in the first story. The bi-linear M − ∆ hysteretic loop
comes from the bi-linear stress-strain relationship for the material used in this study. Comparing
Fig. 10(a) with Fig. 10(b), one may see that the column end moment and the story drift of the first
story are much larger for the multiplier of 4 than for the multiplier of 1. 

With the installation of fluid damper at the 5th floor, the M − ∆ curve of the first story of the 6-
story frame appears in a straight line for the seismic intensity multiplier of 4 (see Fig. 10c). This

Fig. 9 Variation of maximum story drift of 6-story frame with height
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demonstrates that the installation of fluid damper postpones the occurrence of the plastic
deformation. The column end moment and the story drift are also reduced significantly, compared
with those in Fig. 10(b). When the seismic intensity multiplier reaches above 6, the plastic
deformation occurs in the first story of the frame with control, as shown in Fig. 10(d). It is found
that if the plastic deformation is developed in one story, the maximum column end moment remains
almost unchanged while the story drift still increases with increasing ground motion intensity. 

5.4 Optimal damper damping coefficient

To further evaluate the effectiveness of fluid damper in reducing the elastic-plastic seismic
response of the steel frame, the RMS displacement response reduction ratios are computed for each
floor of each frame against the normalized damper damping coefficient. The fluid damper is
installed at the 5th floor and the seismic intensity multiplier is 6. Some of the computed results are
shown in Fig. 11. It is seen that the variation of the 5th floor response reduction ratio of the 5-story
frame with the normalized damper damping coefficient is similar to that of the first story drift of the
5-story frame. However, the variation of the 5th floor response reduction ratio of the 5-story frame is
different from that of the 6th floor of the 6-story frame. The seismic response of the 6-story frame is
not very sensitive to the damper damping coefficient if it is larger than 0.4. The seismic response of
the 5-story frame is, however, sensitive to the damper damping coefficient. This is similar to the
linear-elastic steel frames, as shown in Fig. 6. The optimal normalized damper damping coefficient

Fig. 10 Hysteretic loops of first story of 6-story frame 
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is about at 0.7 for the 6-story frame with the RMS response reduction ratio about 39.1% for the top
floor displacement response and 31.9% for the first story drift. For the 5-story frame, the optimal
normalized damper damping coefficient is about 0.3 with the RMS response reduction ratio about
37.0% for the top floor displacement response and about 0.4 with the RMS response reduction ratio
about 40.7% for the first story drift. 

Comparing with Fig. 6 for the linear-elastic case, one may observe that the effectiveness of the
fluid damper in reducing elastic-plastic seismic response is lower than in reducing linear-plastic
seismic response for the 6-story frame but remains almost the same for the 5-story frame. The
optimal damper damping coefficients for reducing the elastic-plastic seismic response of the steel
frames change slightly compared with those for reducing the linear-elastic seismic response. This
feature is favorable for the practical use of the fluid damper. 

5.5 Comparison of response time history

Fig. 12 depicts the time histories of top-floor displacement response of the 6-story frame without
fluid damper and with the optimal fluid damper for the seismic intensity multiplier of 6. Both are
elastic-plastic response time-histories. The effectiveness of fluid damper in reducing either the RMS

Fig. 12 Time-histories of inelastic displacement responses at top floor of 6-story frame with and without
control

Fig. 11 Variation of inelastic RMS response reduction ratio with damper damping coefficient
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elastic-plastic response or the maximum elastic-plastic response is clearly demonstrated. Compared
with Fig. 7 for the linear-elastic seismic response time-histories, it is also seen that the effectiveness
of the fluid damper in reducing elastic-plastic seismic response is lower than in reducing linear-
elastic seismic response. This is because the intrinsic energy dissipation capacity of the frames in
the inelastic range is higher than in the elastic range.

5.6 Effects of frequency ratio 

To assess the influence of the fundamental frequency ratio of the two frames on the control
performance, the fundamental frequency of the 5-story frame is adjusted from 3.42 Hz to 2.74 Hz.
Thus, the fundamental frequencies of the two frames are more close to each other than before and
the new frequency ratio becomes 1:0.8 compared with the previous frequency ratio of 1: 0.54.
According to the optimal damper damping coefficients obtained from Fig. 6 and Fig. 11 for the
frames with the frequency ratio of 1:0.54, the damper damping coefficient of 0.5cd namely 7.70 N.s/
mm, is used for the present matter. The computed maximum story drifts of the 6-story frame with
the fluid damper at the 5th floor are displayed in Fig. 13 for the frequency ratios of 1:0.54 and 1:0.8
and for the seismic intensity multipliers of 1 and 6. It is seen that the effectiveness of the fluid
damper is deteriorated significantly when the frequency ratio is changed from 1:0.54 to 1:0.8 no
matter what the multiplier is. By taking the 1st story drift of the 6-story frame as an example, the
maximum story drift ratio (the maximum story drift with control over the maximum story drift
without control) is increased from 0.45 to 0.85 for the seismic intensity multiplier of 1 and from
0.50 to 0.86 for the seismic intensity multiplier of 6 when the frequency ratio is increased from
1:0.54 to 1:0.8. It seems that the fluid damper is more effective when the fundamental frequencies
of the two frames are far apart. However, it should be pointed out that the damper damping
coefficient used in the computation may not be the optimal damping coefficient for the two frames
of the frequency ratio of 1:0.8. The control performance could be enhanced for the case of the
frequency ratio of 1:0.8 if the damper damping coefficient is increased. 

5.7 Effects of structural damping ratio

To show the influence of the structural damping ratio of the two frames on control performance,
the structural damping ratio of 5% is applied to the two frames with the multiplier of either 1 or 6.

Fig. 13 Variation of maximum story drift of 6-story frame with height for different frequency ratios
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The frequency ratio of the two frames remains at 1:0.54. The computed maximum story drifts of the
6-story frame without and with the fluid damper at the 5th floor are plotted in Fig. 14 and listed in
Table 2 for the structural damping ratios of 1% and 5% and for the seismic intensity multipliers of 1
and 6. Listed in Table 2 is also the response ratio of the maximum story drift with control to the
maximum story drift without control for the frame for different structural damping ratios and
different seismic intensity multipliers. It is seen that when the structural damping ratio is increased
from 1% to 5%, all the maximum story drifts are reduced for the frame either with or without
control and with either the multiplier of 1 or 6. It is also seen that except for the first floor, the

Table 2 Maximum story drifts and response ratios of the 6-story frame

Location Multiplier Story Drift
(1% Damping Ratio)

Response 
Ratio

Story Drift
(5% Damping Ratio)

Response
Ratio

Without Control 
(mm)

With Control
(mm)

(4)/(3) Without Control 
(mm)

With Control
(mm)

(7)/(6)

(1) (2) (3) (4) (5) (6) (7) (8)

1st

Story
1 5.99 3.01 0.50 4.02 2.59 0.64
6 40.8 20.2 0.50 33.4 15.8 0.47

2nd

Story
1 6.43 3.10 0.48 4.64 2.64 0.57
6 28.2 17.3 0.61 22.9 15.6 0.68

3rd

Story
1 6.26 3.22 0.51 4.43 2.86 0.65
6 21.4 18.3 0.86 19.2 16.9 0.88

4th

Story
1 5.77 2.98 0.52 4.23 2.65 0.63
6 21.5 16.3 0.76 19.4 15.2 0.78

5th

Story
1 4.73 2.48 0.52 3.41 2.17 0.64
6 18.3 13.3 0.73 16.1 12.4 0.77

6th

Story
1 3.27 2.00 0.61 2.34 1.77 0.76
6 13.1 11.1 0.85 11.7 10.1 0.86

Fig. 14 Variation of maximum story drift of 6-story frame with height for different structural damping ratios
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response ratio of the frame with the multiplier of 6 is higher than that with the multiplier of 1,
which indicates that the fluid damper is more effective for the frame under small earthquake event
than under large earthquake event. Also except for the first floor, the response ratio is higher for the
frame with higher structural damping ratio no matter what the multiplier is. This indicates that the
fluid damper is more effective in the case of smaller structural damping ratio. However, the above
observations do not apply for the first floor. The response ratio of the first floor with the multiplier
of 6 is the same as or less than that with the multiplier of 1. Furthermore, for the frame with the
multiplier of 6, the response ratio of the first floor with higher structural damping ratio is smaller
than that with lower structural damping ratio. It is noted that the first floor is the weakest floor of
the 6-story frame. Thus, the first floor of the controlled frame of higher structural damping ratio
enters inelastic stage far less than that of lower structural damping ratio, resulting in a better control
performance. 

6. Conclusions

Elastic and inelastic seismic responses of adjacent buildings with and without fluid dampers
connected have been investigated using plastic-zone beam elements and nonlinear finite element
approach. Computed linear elastic seismic responses of the two steel frames with and without fluid
dampers under moderate seismic events were compared with the experimental results obtained from
shaking table tests, and a satisfactory comparison was achieved. The elastic-plastic seismic
responses of the two steel frames with and without fluid dampers were extensively computed and
the fluid damper performance on controlling inelastic seismic response of the two steel frames was
assessed. The results showed that not only in linear elastic stage but also in inelastic stage, the
seismic resistant performance of the two steel frames could be significantly enhanced. The optimal
damper damping coefficients for reducing the elastic-plastic seismic response of the steel frames
changed only slightly compared with those for reducing the linear-elastic seismic response. The
seismic response reduction of the 6-story steel frame was not sensitive to damper damping
coefficient if the coefficient exceeded a certain value but this was not true for the 5-story steel
frame. The computed horizontal floor displacement responses, the story drifts, and the hysteretic
loops of the steel frames under increasing peak ground acceleration clearly demonstrated the
occurrence and distribution of plastic deformation. The installation of fluid damper postponed the
occurrence of the plastic deformation but did not change the distribution pattern of the plastic
deformation.

The effects of the fundamental frequency ratio and structural damping ratio of the two steel
frames on the damper performance were also examined. It was found that the control performance
was better for the frame with the frequency ratio of 1:0.54 than that with the frequency ratio of
1:0.8. It was also found that except for the first story, the control performance was better for all the
stories of the frame with lower structural damping ratio. It should be pointed out that all the above
conclusions were made based on the two frames investigated. The general procedure for
determining the optimum damper damping ratio and the effectiveness of the fluid damper based on
the dynamic properties of two adjacent buildings for the design purpose is under investigation by
simplifying the two adjacent buildings as a two-degree-of-freedom system.



534 Y. L. Xu, Z. Yang and X. L. Lu

Acknowledgements

The writers are grateful for the financial supports from the Hong Kong Polytechnic University
through its Area of Strategic Development Programme in Structural Control and Intelligent
Buildings to the first writer and the National Natural Science Foundation of China through an
NNSF grant (50025821) to the third writer. 

References 

Christenson, R.E., Spencer, B.F. and Johnson, E.A. (1999), “Coupled building control using active and smart
damping strategies”, Proc. 5th Int. Conf. on Application of Artificial Intelligence to Civil and Struct. Engng.,
Oxford, UK, 187-195.

Klein, R.G. and Healy, M.D. (1985), “Semi-active control of wind induced oscillations in structures”, Proc. 2nd

Int. Conf. on Struct. Control, Ontario, Canada, 354-369.
Kobori, T., Yamada, T., Takenaka, Y., Maeda, Y. and Nishimura, I. (1988), “Effect of dynamic tuned connector

on reduction of seismic response: application to adjacent office buildings”, Proc. 9th World Conf. On
Earthquake Engng., 5, Tokyo-Kyoto, Japan, 773-778.

Luco, J.E. and De Barros, F.C.P. (1998), “Optimal damping between two adjacent elastic structures”, Earthq.
Engng. Struct. Dyn., 27, 649-659.

Pi, Y.L. and Trahair, N.S. (1994), “Nonlinear inelastic analysis of steel beam-columns. I: theory”, J. Struct.
Engng., ASCE, 120(7), 2041-2061. 

Seto, T. and Matsumoto, Y. (1996), “A structural vibration control method of flexible buildings in response to
large earthquakes and strong winds”, Proc. 2nd Int. Workshop on Struct. Control, Hong Kong, 490-496.

Simo, J.C. and Taylor, R.L. (1985), “Consistent tangent operations for rate-independent elastoplaticity”, Comp.
Methods Appl. Mech. Engng, 48, 101-118.

Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John
Wiley & Sons, Chichester, England.

Xu, Y.L., Zhan, S., Ko, J.M. and Zhang, W.S. (1999) “Experimental investigation of adjacent buildings
connected by fluid damper”, Earthq. Engng. Struct. Dyn., 29, 557-575.

Yamada, Y., Ikawa, N., Yokoyama, H. and Tachibana, E. (1994), “Active control of structures using the joint
member with negative stiffness”, Proc. 1st World Conf. On Struct. Control, 2, Los Angeles, California, USA,
TP2: 41-49.

Yang, Z., Xu, Y.L. and Lu, X.L. (2002), “Experimental study of seismic adjacent buildings with fluid dampers”,
J. Struct. Engng., ASCE, 129(2), 197-205.

Yokoyama, T. (1990), “Vibrations of a hinging Timoshenko beam under gravity”, J. Sound Vib., 141(2), 245-258.
Zhang, W.S. and Xu, Y.L. (1999), “Dynamic characteristics and seismic response of adjacent buildings linked by

discrete dampers”, Earthq. Engng. Struct. Dyn., 28, 1163-1185.




