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Abstract. In this paper, a new block iterative algorithm is presented by using the special feature of the
continuous Riccati equation in the optimal shape control. Because the real-time control require that the
CPU time should be as short as possible, an appropriate modal control algorithm is sought. The
computing cost is less than the one of the all state feedback control. A numerical example is given to
illustrate the algorithm.
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1. Introduction

Space structures, aircraft, and the like are required to be light in weight due to the high cost of
transportation. Since they are also lightly damped, owing to the low internal damping of the
materials used in their construction, the increased flexibility may allow large amplitude vibration
and shape deformation, which may cause structural instability. These problems lead to a drastic
reduction in accuracy and precision of operation. Thus, it is highly desirable to control excessive
vibration and shape deformation and to stabilize the structure during operation (Atluri et al. 1988
and Meirovitch 1990).

This paper is concerned with thin piezoelectric layers which are coupled with conventional
materials and used as distributed sensors and distributed actuators in an intelligent advanced
structure design(Hwang et al. 1993, Im et al. 1989, Tzou et al. 1990 and Chen et al. 2001). One
piezoelectric layer serves as a distributed sensor and the other layer serves as a distributed actuator.
The direct effect is used in distributed sensing and the converse effect in distributed active vibration
suppression and shape control of the advanced structure. Thus the sensing layer detects the
oscillation of the distributed systems and the actuator controls the vibration or shape of the system. 

Up to now, research in this area has been primarily focused on experimental and theoretical
studies. In general, experimental models are limited by size, cost, and many other laboratory
unknowns. Theoretical models can be more general, but analytical solutions are restricted to
relatively simple geometries and boundary conditions. When the geometry and boundary conditions
become relatively complicated, difficulties occur with both theoretical and experimental models.
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Thus, the finite element development becomes very important in modeling and analysis of advanced
flexible structures with integrated distributed piezoelectric sensors and/or actuators (Shi et al. 1990).

Before now, only beam elements (Hwang et al. 1993 and Im et al. 1989), plate elements and
isoparametric hexahedron solid elements (Tzou et al. 1990) were developed. They don't suit to
three-dimensional thin shell structure, for instance, a paraboloid antenna for controlling its shape
and suppressing its oscillation. Therefore, Chen et al. (2001) presents an eight-node and forty-DOF
isoparametric shell element (Guyan 1965 and Xie et al. 1981) in which the shear effects are
considered, and a finite element formulation (Xie and He 1981, Zhang et al. 1986 and Zienkiewicz
1971) is presented for modeling the dynamic as well as static response of laminated shell structure
containing distributed piezoelectric materials (PVDF) subjected to both mechanical and electrical
load.

By using the feature of Riccati equation in the optimal shape control, a new block iterative
algorithm is given. It can save the memory and reduce the CPU time. If the order of the finite
element equation is very large (for example, more than 1000), all methods cannot ensure the real-
time control. In order to solve the problem, the modal control algorithm is presented to ensure both
the real-time control and precision of the shape control. Finally, a numerical example is given to
illustrate the modal control algorithm.

2. The Riccati equation in the optimal shape control

The finite element equation (Ahmad et al. 1970 and Chen et al. 2001) of an intelligent structure
(plate or shell structure) is

(1)

Where M is the mass matrix; C is the damping matrix; K is the stiffness matrix; Dn×r is control
matrix, which is determined by the position of actuators; δ is the nodal displacement vector; Ur×1 is
control vector; r is DOF’s (degree of freedom) number of nodes which are relative with actuators, n
is structural DOF’s number. Let the state vector be as

(2)

So that the state equation can be expressed as
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(6)

Where On×n is zero matrix; In×n is identity matrix.
The object is to determine an optimal shape control minimizing the quadratic performance

measure 

(7)

Where Q1, Q3 are real symmetric positive semi-definite matrices and Q2 is a real symmetric positive
definite matrix; Item UTQ2U is of effect limiting control amplitude; Item  is limiting
the final control precision of the structure; tf is final time of control. The optimal shape control
problem using the performance measure Eq. (7) can be interpreted as the problem of driving the
initial state as close as possible to zero while placing a penalty on the control effort, i.e.,
displacements are as close as possible to zero, therefore, the structure keeps the original shape.

By the Hamilton’s necessary condition for optimality, the optimal shape control can be obtained
(Meirovitch 1990)

(8)

Where  is the optimal feedback control gain matrix; Matrix P satisfies the Riccati
equation

(9)

(10)

From Eq. (9), the Riccati matrix P is symmetric, and Kalman proved that P is constant as .

3. The block iterative algorithm

Virtually, the optimal control U* can be expressed as the sum of the displacement negative
feedback and velocity negative feedback 

(11)
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Inserting Eqs.(2), (6), (11) and (12) to Eq. (8) yields

Simplifying

(14)

(15)

Where  is the displacement negative feedback gain matrix;  is the velocity negative feedback
gain matrix.

If the solution matrices P21, P22 is obtained, the optimal control U* can be computed by Eqs. (8),
(14) and (15). Letting

(16)

Inserting Eqs. (5), (6), (12) and (16) to Eq. (9) yields
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Which can be integrated backward in time by the initial conditions. For Eqs. (9) and (10), the four-
order Runge-Kutta formulation is as

(21)

Where

(22)

h is step length. For the structural stiffness matrix (Meirovitch 1990), if

(23)

The present algorithm is convergent as h is less than 10−I and divergent as h is more than 10−I+1. For
the sake of computation, let h be equals to 10−I. Using Eq. (21) and solving Eqs. (17), (18) and
(19) simultaneously, we can obtain P21, P22. The above method is very well for saving memory and
computing time.

4. Modal control algorithm

The deformation of the structure is caused mainly by the response of the lower modes, and the
amplitude responses of higher modes are very small in contrast to the lower modes. So that lower
modes play main role in the deformation of the structure.

Because the shape control requests the real-time control, the computing time of the feedback
control should be as short as possible and the computing precision be also reasonable. For this
reason, the modal control algorithm is presented.

By using expansion theorem, we obtain

(24)

Where qi (i = 1, 2, …, nf) is modal coordinate and {q} is the corresponding modal coordinate
vector; [Φ] is the modal matrix; nf is the number of modes we used; φ i (i = 1, 2, …, nf) satisfies the
normalizing condition, i.e., 
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Where  is the diagonal matrix of eigenvalues, i.e.,

(26)

Substituting Eq. (24) into Eq. (1) and pre-multiplying it by , we have

(27)

Where  is the diagonal matrix of the structural damping; fmc is modal
control force.

The state equation in the modal coordinates is obtained

(28)

(29)

Where

(30)

Here the performance measure is

(31)

The optimal modal control is

(32)

Where  is the optimal modal feedback gain matrix, matrix  satisfies Riccati
equation.

(33)

By using the block iterative algorithm in section 3, we can obtain matrix , and the optimal modal
control can be obtained.

5. Numerical example

In this section, the dynamic characteristics of a shell structure (Fig. 1) with surface coupled
distributed piezoelectric sensor and actuator are evaluated. The first nine mode shapes and
associated voltage distributions are obtained.
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5.1 Model definition

The shell structure (diameter: 1 m; thickness: 5 mm; height: 100 mm; ρ = 2.68E3; E = 8.0E9;
µ = 0.28) with a distributed piezoelectric PVDF (material property can be found in Tzou et al.
1990) layer (0.1 mm) serving as a distributed actuator on the top surface, and another PVDF on the
bottom surface as a distributed sensor, was used as a numerical example. The structure was divided
into 240 elements, 80 for each layer.

5.2 Mode shape and modal voltage distribution

The output signals of each node on the distributed piezoelectric sensor layer can be calculated as a
function of the displacements (see Eq. (67) in Chen et al. 2001). After the nodal voltage is
calculated, the overall voltage distribution of the structure can be plotted by connecting all nodal
voltage amplitudes. Thus, for a given mode, the modal voltage distribution can be observed. The
first nine structural mode shapes and modal voltage distributions are illustrated in Figs. 2-10, here,
the first and second mode, the third and fourth, the fifth and sixth, the eighth and ninth are repeated
frequencies respectively. 

Fig. 1 Finite element modeling of a shell structure with distributed piezoelectric sensor/actuator

Fig. 2 First mode shape and modal voltage distribution
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The first mode is vibration along the positive direction of x-axis; the second mode along y-axis; the
third mode along the lines of the slope angle  and ; the fourth mode along X-axis and negative
X-axis, and so on, but the seventh modal is vertical up or down vibration. From Figs. 2-10, the
deformation of the structure is mainly caused by the lower modes. It plays an important role in the
structural deformation.

π
4
--- 3

2
---π

Fig. 3 Second mode shape and modal voltage distribution

Fig. 4 Third mode shape and modal voltage distribution

Fig. 5 Fourth mode shape and modal voltage distribution
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5.3 The optimal shape control 

Letting Q1 and Q2 are equal to identity matrix I respectively, Q3 is zero matrix; C is damping
matrix (here, α = 0.0121, β = 8.2270 × 10−5); D is equal to identity matrix I. When a pulse force is
applied at edge nodes of the structure, the z-displacement of the edge node is plotted in Fig. 11. By

Fig. 6 Fifth mode shape and modal voltage distribution

Fig. 7 Sixth mode shape and modal voltage distribution

Fig. 8 Seventh mode shape and modal voltage distribution
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adding the optimal shape control to the structure (section 3), the z-displacement of the same node is
plotted in Fig. 12. In computing the optimal shape control, the block iterative algorithm is used. For
the higher order structure, the other methods aren’t available, the main reason is because they
cannot guarantee the real-time control; by adding the optimal modal shape control to the structure
(section 4, let nf = 9), the z-displacement of the same node is plotted in Fig. 13.

From the above Figs. 11-13, the original shape of the antenna structure can be recovered quickly,

Fig. 9 Eighth mode shape and modal voltage distribution

Fig. 10 Ninth mode shape and modal voltage distribution

Fig. 11 The pulse response of the antenna structure
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and the effect of the optimal modal shape control is almost the same as the one of the optimal shape
control for all state, but the CPU time is about 1 minute, and the all state is about 55 minutes
(computing with common Pentium III PC), so that the optimal modal shape control algorithm is
favorable. Adjusting the coefficient matrix of the performance measure, we can obtain the different
control effects.

6. Conclusions

From the numerical example, the modal control algorithm is effective. It needs shorter time to
obtain the optimal control. If the method of section 3 is used to calculate the optimal shape control
of all state feedback, it needs the more computing time to compute the gain matrix for the large
structure and cannot reach the effects of the real-time control, but the two methods combined will
result in the good effects. Therefore, the modal control algorithm is very important for the real-time
control.
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Fig. 12 The optimal shape control of the antenna structure

Fig. 13 The optimal modal shape control of the antenna structure
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