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Abstract.  The aim of this study is to develop an analytical model of a beam with open cracks and
external strengthening which is able to predict its modal scheme components (natural frequencies and
mode shapes). The model is valid as far as the excitation level is low enough not to activate non linear
effects. The application field of the model are either the prediction of the efficiency of the reinforcement
or the non destructive assessment of the structural properties. The degrees of freedom associated to the
fault lips must be taken into account in order to introduce the effect of the external strengthening. In a
first step, an analytical formulation of a beam with thin notches is proposed according to the references.
The model is then extended to incorporate the strengthening consisting in a longitudinal stiffness applied
in the vicinity of the cracks. In a second step, the analytical results are compared with these obtained
from a finite element simulation.
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1. Introduction

The dynamical behavior of a structure depends on its modal scheme components and on the
excitation source. The modal scheme components (natural frequencies and mode shapes) of a
structural member are very dependent on its geometry and a crack is a kind of geometrical fault
having a great influence on these parameters. A crack is subjected to breathing during vibration
and that is leading to a non linear behavior of the beam with coupling between bending and
longitudinal modes (Abraham 1993, Abraham and Brandon 1995 (a&b), Papadopoulos and
Dimarogonas 1987).

This work deals with the influence of an external repair on the natural frequencies, observed at
low excitation level, of a cracked homogeneous beam substructure. An analytical modeling of a
cracked homogeneous beam for both the unrepaired and repaired configuration is formulated for this
purpose. The leading assumptions made are the following:
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• The structural member to be tested is subjected to static loading that imposes a permanent open
state condition to the cracks. Regarding the excitation level, the beam undergoes small
amplitude vibrations in the vicinity of the static position and the cracks are maintained open
during vibration cycles.

• The repair consists in an external strengthening of the beam. The material used has a linear
mechanical behavior for the static and dynamic excitation ranges considered here. The repair is
applied on the vicinity of the crack when static opening conditions are applied for the cracks. 

These assumptions lead to a linear formulation because the cracks are not subjected to breathing.
Furthermore, all the materials used have a linear mechanical behaviour in the field of the study. As
a consequence, no material or structural non-linearity is considered.

In a first step, the modeling of the influence of the repair imposes to take into account the degrees
of freedom associated to the crack lips. Cracking causes the release of the degrees of freedom
associated to the section and can be viewed as a local loss of stiffness for a given inertia. The
formulation proposed here is based on an assembly of beam elements with connecting conditions
derived from fracture mechanics equations (Dimarogonas 1976). Such an approach can be found in
various studies of cracked beam vibration (Gudmundson 1983, Qian et al. 1990). Then, an external
longitudinal stiffness applied on the vicinity of the crack lips is introduced in the modeling. 

In a second step, the analytical results are compared to these obtained by finite element
simulations. The effect of the external strengthening is discussed.

2. Modeling of a beam with open cracks and external strengthening

2.1 Open crack state connecting conditions

Cracking causes a loss of stiffness of the damaged section resulting in a local displacement field
discontinuity. In the open state, a crack can be viewed as a notch which is thin enough as the inertia
remains the same (Fig. 1).

When a section of a beam is affected by a thin notch, its stiffness is locally affected and a local
flexibility can be derived from linear fracture mechanics. The degrees of freedom of the notch lips
can be introduced by modeling the beam as an assembly of beam elements connected to each other
under connecting conditions that are expressed in the transfer matrix of the damaged section (Fig. 2).
The connecting conditions are based on generalized forces continuity and displacement discontinuity
at the damaged section.

Fig. 1 General configuration
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In a multi-damage case, consisting in a beam with N notches, the transfer matrix of kth notched
section linking the generalized forces and displacements on both sides can be expressed as:

(1)

The loss of stiffness due to the fault is taken into account in the terms Cij (i, j = 1, 2) that
constitute the flexibility matrix due to the presence of the fault. The flexibility matrix is derived
from the strain energy associated to the notch:

(2)

Where P is the shear force and M is the bending moment.
The strain energy Wnotch is derived from the Griffith principle by taking into account the opening

modes of the fault. For a planar formulation, the opening modes considered are the two in-plane
opening modes, as shown in Fig. 3.
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Fig. 3 Opening modes of the notch
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The strain energy Wnotch is computed by integrating the energy loss factor along the length of the
notch (Tada et al. 1973):

(3)

Where KIP and KIM are the strain intensity factors (SIF) related to the participation of the shear
forces and moment to the first opening mode. KIIP is the SIF related to the second opening mode
due to the shear forces. The expressions of the different SIF used here are (Tada et al. 1973):

(4)

(5)

(6)

Where:

(7)

Eqs. (2) to (6) are used to compute the transfer matrix T related to each notched section. This
matrix tends to the transfer matrix of an undamaged section when the length of the notch tends to
zero. 

2.2 Open crack with external strengthening: connecting conditions

The bridging element considered here, consists in a longitudinal spring which stiffness is krepair ·
(150 MNm−1). This value is imposed by applications concerning beam strengthening that are
undertaken. It is applied on the cracked face of the beam and then limits the relative displacements
of the crack lips (Fig. 4). Its mass can be neglected.
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Fig. 4 External strengthening of a cracked section
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The beam with fully open crack undergoes linear vibrations. So the bridging effect can be
superposed to this of the crack resulting in a strengthening of the equivalent elastic hinge. The
stiffness of the elastic hinge takes into account the longitudinal stiffness of the bridging element
krepair. The rotational stiffness of the cracked bridged section is given by:

(8)

The stiffness of the hinge corresponding to the notched section with bridging element is then:

(9)

And the resulting flexibility associated to the rotation discontinuity is given by:

(10)

The transfer matrix of the notched section with external strengthening is then:

(11)

2.3 Generalized displacements and forces vector

The Timoshenko beam cinematic is described by two independent variables which are the
transverse displacement v (x, t) and the rotation of the section  θ (x, t). All the sections remain plane
but are not perpendicular to the mid fiber (Fig. 5).

For such a beam the generalize displacements and forces are:

(12)
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Fig. 5 Section rotation within a Timoshenko beam
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(14)

where k is the shear factor that can be expressed for a rectangular section as:

(15)

Separating the time and space variables gives:

(16)

(17)

The governing equations can be written as:

(18)

where r is the gyration radius given by 

(19)

and D is the differential operator:

(20)

The equation can be written in a matricial form as:

(21)
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(26)

Where  and  are functions of the wave numbers pj. Introducing Eqs. (25) and (26) into Eq. (21)
and searching the roots of the matrix determinant leads to the characteristic polynomial associated
to the beam. The wave numbers pj are the roots of the characteristic polynomial:

(27)

This is a four-degree polynomial then, there are four wave numbers pj with j = 1 to 4.
 is related to  by considering Eq. (21) that gives: 

(28)

Then  can be expressed by a function fB and  by:

(29)

As consequences, the generalized forces are related to :
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As a consequence, the generalized displacements and forces vector can be written as:

(34)

θ x( ) Bj
ke

pj x

j 1=

4

∑=

Aj
k Bj

k

pj
2

a1+( ) pj
2

a2+( ) a3pj
2+ 0=

Bj
k Aj

k

Aj
k pj

2 a1+( ) pjBj
k– 0=

Bj
k Aj

k

Bj
k fBAj

k pj
2 a1+
pj

----------------Aj
k= =

Aj
k

P x( ) Cj
ke

pj x

j 1=

4

∑=

Cj
k fCAj

k kAG
a1

pj

----- 
  Aj

k= =

M x( ) Dj
ke

pj x

j 1=

4

∑=

Dj
k fDAj

k EI pj
2 a1+( )Aj

k= =

v

θ
T

M

k A1  A2  A3  A4

B1  B2  B3  B4

C1  C2  C3  C4

D1  D2  D3  D4

k e
p1x

k

e
p2x

k

e
p3x

k

e
p4x

k

=

0 xk Lk≤ ≤ k 1  to  N 1+( )=



444 P. A. Ovigne, M. Massenzio, E. Jacquelin and P. Hamelin

At each side of the beam, the generalized forces are given by:

(35)

(36)

(37)

(38)

2.4 Assembly of the beam elements

The assembly of the beam elements number k and k + 1 follows the connecting conditions of the
notch number k. That can be written as: 

(39)

(40)

(41)

(42)

2.5 Boundary conditions 

For free-free boundary conditions the generalized forces are zeroes at the beam tips:
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(45)

(46)

2.6 Global equation system

Eqs. (39) to (42), written for N notches and added to the four boundary conditions, Eqs. (43) to (46),
lead to a 4(N + 1) × 4(N + 1) system in terms of  coefficients Eq. (47).

(47)

2.7 Natural frequencies and mode shapes of the beam

The natural pulsation ω of the beam set the determinant of the matrix [Mat] equal to zero

(48)

For a given pulsation, the  coefficients vector in Eq. (47) is computed as a function of one
arbitrary  coefficient and the mode shape is computed with Eq. (25).

3. Finite element validation 

The analytical results are compared with these obtained from finite element simulations (ANSYS
code) for three configurations of a beam: intact, notched and notched with external strengthening. A
planar analysis is done and the natural frequencies are calculated in a plane stress configuration. A
quadrangular type of solid elements is used. This element is defined by four nodes having two
degrees of freedom at each node and includes extra displacement shapes. Only results concerning thin
-plane bending modes are presented.

3.1 Specimens

The beam is 765 mm long and has a section of 39 × 20 mm (Fig. 6). The material has a Young
modulus of 216 GPa and a Poisson ration of 0,3. A central notch is modeled (length: 30 mm, width:
2 mm). The longitudinal stiffness (150 106N/m) is applied on the vicinity of the crack (Fig. 6).
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3.2 Results

The results are given in Table 1 for the intact beam, in Table 2 for the notched beam and in Table 3
for the notched beam with external strengthening.

The formulation proposed is valid and is able to predict the frequency changes induced by the
presence of a thin notch with external strengthening. As expected the even modes are not affected
by a central notch.

Table 1 Finite element validation: intact beam 

Mode number Analytical results Finite element results  Difference (%)

1 357.14 357.30 0.04
2 968.07 970.11 0.21
3 1853.9 1864.4 0.56
4 2976.4 3013.6 1.23
5 4299.1 4402.6 2.35

 
Table 2 Finite element validation: notched beam

Mode number Analytical results Finite element results  Difference (%)

1 185.38 178.30 3.97
2 968.09 969.25 0.12
3 1481.5 1414.40 4.74
4 2976.4 3016.90 1.34
5 3707.9 4204.10 11.8

Table 3 Finite element validation: notched beam with external strengthening

Mode number Analytical results Finite element results  Difference (%)

1 316.14 303.28 4.24
2 968.07 969.39 0.14
3 1719.0 1678.30 2.42
4 2976.4 3008.00 1.05
5 4038.5 4245.9 4.88

Fig. 6 Beam with a central notch
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3.3 Discussion

During calculations it clearly appears that only the C22 or  term associated to the rotation
discontinuity plays an important role in the flexibility matrix in Eq. (1). As a consequence the
transfer matrix of the notched section can be simplified considering only this term, leading to
Eq. (49).

(49)

Eq. (49) gives the expression of the transfer matrix of an elastic hinge. The stiffness of the hinge
equals the inverse of C22. Indeed, regarding the importance of bending, shearing effects can be
neglected. Furthermore, when the length of the notch is small, C22 tends to zero and the transfer
matrix of the cracked section tends to the one of an intact one with both continuity of the
generalized forces and displacements.

The contribution ηrepair of the external strengthening to the stiffness of the section can be defined
by Eq. (50):

(50)

Eq. (50) and Fig. 7 show that ηrepair increases with the crack length. This can be seen on Fig. 7.
ηrepair is quickly increasing with the crack length. In that case (Fig. 7), the external strengthening

represents half the stiffness of the hinge. For a small crack length, this contribution is null and then,
the transfer matrix of the section equals the one of an intact section. The rotation stiffness of the
notched section is then infinite and the effect of the bridging element  can be neglected (Eq. 47).
As expected, the natural frequencies of a beam with notches and bridging elements tend to these of
an intact beam when the length of the notches tends to zero (Table 4).
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4. Conclusions

An analytical model of a cracked Timoshenko beam based on an assembly of beam elements with
connecting conditions derived from linear fracture mechanics principle is formulated according to
the bibliography. The effect of an external strengthening is modeled. It consists in a negligible mass
linear stiffness applied in the vicinity of the crack. This model is able to predict with a good
accuracy the natural frequencies of a beam with open cracks observed at low excitation level. The
formulation proposed is validated by finite element simulation. As expected, strengthening enhances
the natural frequencies of the cracked beam and reduces the displacement discontinuity in the
vicinity of the crack. The contribution of the external stiffening increases with the crack length. 

Various applications of this model will be undertaken 
• Analysis of the influence of a carbon-epoxy composite external strengthening on the natural

frequencies of a cracked homogeneous beam.
• Natural frequencies prediction of a reinforced concrete beam with cracking induced by static

loading for both the unrepaired and repaired configuration. In that case, the reinforcement is
both due to the steel rebars within concrete and by epoxy-carbon composite plate.
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Notation

 A, Acompo : Beam cross sectional area, composite cross sectional area
: Coefficients associated to v(x)

a, ak : Notch length, notch length of the kth notch
: Coefficients associated to θ (x)

b : Beam width
Cij : Flexibility matrix term

: Coefficients associated to P
D : Differential operator with respect to x

: Coefficients associated to M
Det : Determinant operator
E, Ecompo : Young modulus, composite longitudinal Young modulus
fB, fC, fD : Function associated to 

fi : Natural frequency associated to the mode i
G : Shear modulus
h : Beam height
I : Beam inertia
KIM , KIP : Strain intensity factor associated to M and to P for the first opening mode
KIIP : Strain intensity factor associated to P for the second opening mode
k : Shear factor

: Rotation stiffness of the elastic hinge, external strengthening rotation stiffness
krepair : External strengthening longitudinal stiffness
Lactive : Composite active length
M : Bending moment
Mat : Global equation system associated to the assembly and boundary conditions
m : Mass
N : Number of notches
P : Shear force
Pi : Generalized force P1 = M and P2 = P
pj : Wave number
r : Gyration radius
t : Time
v (x, t), v (x) : Transverse displacement, transverse displacement amplitude
Wnotch : Strain energy associated to a notch
xk : Axial coordinate associated to the kth beam element
β : Shear rotation
ηrepair : Contribution of the external strengthening to the rotation stiffness of the section
θ (x, t), θ (x) : Global rotation, global rotation amplitude
ν : Poisson ratio
ω : Natural angular frequency
ζ : Nondimensional parameter associated to a
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