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Abstract. The plane contact problem for two infinite elastic layers whose elastic constants and heights
are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical
distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to
the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless
and that only compressive normal tractions can be transmitted through the interface. The contact along the
interface will be continuous if the value of the load factor, λ, is less than a critical value. However,
interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is
solved and the value of the critical load factor, λcr, is determined. Then, the discontinuous contact
problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress
distribution, the size of the separation areas, critical load factor and separation distance, and vertical
displacement in the separation zone are given for various dimensionless quantities and distributed loads. 

Key words: continuous contact; discontinuous contact; separation integral equation; elastic layer; Winkler
foundation; elasticity.

1. Introduction 

The contact problems for a frictionless elastic layer lying on an elastic half-plane, elastic
foundation or rigid foundation have attracted considerable attention in the past due to its
applicability to a variety of important structures of practical interest (see, e.g., Civelek and Erdogan
1974, Erdogan and Ratwani 1974, Civelek and Erdogan 1975, Civelek and Erdogan 1976, Civelek
et al. 1978, Gecit and Erdogan 1978, Gecit 1978, Gecit 1980, Gecit 1981, Gecit and Yapici 1986,
Gecit 1990, Dempsey et al. 1990, Cakiroglu and Cakiroglu 1991, Dempsey et al. 1991, Kahya et al.
2001). However, there are few studies about the contact between two or more elastic layers made of
different elastic materials and heights. Some of these are a frictionless contact problem between two
elastic-viscoplastik bodies considered by Rochdi and Sofonea (1997), contact problems for two
elastic layers resting on an elastic half-plane examined by Cakiroglu et al. (2001) and continuous
and discontinuous contact problem for a layered composite resting on simple supports studied by
Birinci and Erdol (2001). In such problems if the magnitude of the external load exceeds a certain
critical value a separation takes place between the layers or the layer and the foundation.
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In this paper, the plane elastostatic contact problem of two infinite elastic layers having different
elastic constants and heights lying on a Winkler foundation is considered according to theory of
Elasticity. The frictionless layer-layer interface is assumed to transmit compressive normal tractions
only. The upper elastic layer is subjected to a symmetrical distributed loads whose lengths are 2a on
its top surface and the layers have a uniform body force due to the gravity. If the value of the load
factor, λ, is less than a critical value, λcr, the normal stress along the entire interface is compressive
and the contact is continuous. A separation takes place between the elastic layers when the applied
load exceeds this critical value and the contact is discontinuous. Firstly, the continuous contact
problem is solved and the value of the critical load factor, the critical separation distance, and the
contact stress distribution are determined. Then, the discontinuous contact problem is formulated in
terms of a singular integral equation. Solving the integral equation numerically by using appropriate
Gauss-Chebyshev integration formula, the stress distribution along the interface, the initial and end
distances of the separation, and the vertical displacement in the separation area are investigated for
various dimensionless quantities. Finally, numerical results are analyzed and conclusions are drawn. 

2. Formulation of the problem 

Consider two infinite elastic layers of which thickness are h1 and h2 in smooth contact with each
other. The geometry and coordinate system are shown in Fig. 1. Let ρ1g and ρ2g be the body forces
acting vertically in the layers. Writing, 

(1a)

(1b)

the particular part of the displacement components corresponding to ρ1g and ρ2g for the layers may
be obtained as (Civelek and Erdogan 1974)

(2a)

ui x y,( ) uip x( ) uih x y,( ),+=

vi x y,( ) vip y( ) vih x y,( ) i 1 2,=( ),,+=

u1p x( )
3 κ1–
8µ1

--------------
ρ1gh1

2
--------------x,=

Fig. 1 Geometry of the frictionless contact problem with interface separation
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(2b)

(2c)

(2d)

where u and v are the x and y - components of the displacement vector, µ is shear modulus, ν is
Poisson’s ratio, and κ = (3 − ν)/(1 + ν) for plane stress and κ = 3 − 4ν for plane strain. The
subscripts 1 and 2 refer to the lower and upper elastic layers, respectively. The constants E and F
appearing in Eqs. (2b) and (2d) are the (yet unknown) rigid body displacement terms.

Observing that x = 0 is a plane symmetry, the homogenous part of the displacement components
for the upper and lower elastic layers may be written as (Civelek and Erdogan 1974, Cakiroglu et al.
2001, Birinci and Erdol 2001),

(3a)

(3b)

where Ai , Bi , Ci and Di( i = 1, 2) are the unknown functions which will be determined from
continuity and boundary conditions prescribed on y = 0, y = h1 and y = h.

The stress components needed for the application of the boundary conditions may be obtained
from Eqs. (1-3) using Hooke’s law as follows (Civelek and Erdogan 1975):

(4a)

(4b)

v1p y( )
κ1 1–
κ1 1+
--------------

ρ1gy
2µ1

----------- y h1–( )
1 κ1+
8µ1

--------------y ρ2gh2 ρ1gh1+ 2⁄( ) E,+–=

u2p x( )
3 κ2–
8µ2

--------------
ρ2gh2

2
--------------x,=

v2p y( )
ρ2gy
2µ2

-----------
1 κ2+

8
--------------h2

κ2 1–
κ2 1+
-------------- h1 h y–+( )–– F,+=

uih x y,( ) 2
π
--- Ai Biy+( )e αy– Ci Diy+( )eαy+[ ]

0

∞
∫ sin αx( )dα,=

vih x y,( ) 2
π
--- Ai

κ i

α
---- y+ 

  Bi+ e αy– Ci–
κ i

α
---- y– 

  Di+ eαy+
 
 
 

0

∞

∫ cos αx( )dα,=

1
2µ1

--------σy1 x y,( ) 2
π
--- α A1 B1y+( )

1 κ1+
2

--------------B1+–




e αy–

0

∞
∫=

+ α C1 D1y+( )–
1 κ1+

2
--------------D1+ eαy




cos αx( )dα

+
1

2µ1

-------- ρ2gh2– ρ1g y h1–( )+[ ], 0 y h1≤ ≤( ),

1
2µ2

--------σy2 x y,( ) 2
π
--- α A2 B2y+( )

1 κ2+
2

--------------B2+–




e αy–

0

∞
∫=

+ α C2 D2y+( )–
1 κ2+

2
--------------D2+ eαy




cos αx( )dα

+
1

2µ2

-------- ρ2g y h–( )[ ], h1 y h≤ ≤( ),
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(4c)

3. The case of continuous contact

Referring to Fig. 1, let the upper elastic layer be subjected to a symmetrical distributed load, p(x),
about y axis, along its boundary y = h. If the load factor, λ, is sufficiently small, the contact along
the interface y = h1 will be continuous and Ai, Bi , Ci and Di (i = 1,2) should be determined from the
following boundary and continuity conditions :

(5a)

(5b)

(5c)

(5d)

(5e)

, (5f)

(5g)

(5h)

where k0 is the stiffness of the foundation and Eq. (5h) is equivalent to v2(x,h1) = v1(x,h1). By
making use of conditions (5), Ai, Bi , Ci and Di( i = 1,2) functions may be calculated and by
substituting the values of the functions into Eqs. (4a) or (4b), the contact pressure along the
interface y = h1 becomes

, (6)

in which Pi and ∆(α) are defined as,

(7a)

1
2µi

--------τxyi x y,( ) 2
π
--- α Ai Biy+( )

κ i 1–
2

-------------Bi+–




e αy–

0

∞
∫=

+ α Ci Diy+( )
κi 1–

2
-------------Di– eαy




sin αx( )dα i 1 2,=( ),,

τxy2 x h,( ) 0,= 0 x ∞<≤( ),

τxy2 x h1,( ) 0,= 0 x ∞<≤( ),

τxy1 x h1,( ) 0,= 0 x ∞<≤( ),

σy2 x h1,( ) σy1 x h1,( ),= 0 x ∞<≤( ),

τxy1 x 0,( ) 0,= 0 x ∞<≤( ),

σy2 x h,( ) p x( )– , 0 x a≤ ≤
0, a x ∞< <




=

σy1 x 0,( ) k0v1 x 0,( ),= 0 x ∞<≤( ),

∂
∂x
----- v2 x h1,( ) v1 x h1,( )–[ ] 0,= 0 x ∞<≤( ),

σy x h1,( ) ρ2– gh2
4
π
---– 1 κ2+( ) Pi

∆ α( )
------------

0

∞

∫ e αh– e
αh1–

Y1 α( )[4αY2 α( )=

+ k 1 κ1+( )Y3 α( )]cos αx( )dα

Pi p
0

∞
∫ x( )cos αx( )dx i 1 2 3, ,=( ),,=
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, (7b)

where,

(7c)

and

. (7d)

For each loading case, Pi(i = 1, 2, 3) is calculated as,
a) Loading case 1 : p(x) = p0 = constant

sin (α a), (8a)

b) Loading case 2 : p(x) = p0(1 − x2/a2)

(8b)

c) Loading case 3 : p(x) = p0(1 − x /a)

(8c)

By substituting the expressions in Eq. (8) into Eq. (6) and replacing ω = αh, r = h1/ h, the
normalized contact pressure along the interface is obtained as,

, (9)

∆ α( ) Y4 α( ) 4α 1 κ2+( )Y2 α( ) k 1 κ1 κ2 κ1κ2+ + +( )Y3 α( )––[ ]=

+
µ2

µ1

-----Y5 α( ) 4α 1 κ1+( )Y3 α( ) k 1 2κ1 κ1
2+ +( )Y6 α( )+[ ]

Y1 α( ) e
2αh1–

e
2αh– αh αh1–( ) e

2αh1–
e

2αh–+( )+–=

Y2 α( ) 1 e
2αh1 2 4α2h1

2 e
2αh1–+( )–=

Y3 α( ) 1– e
2αh1 4αh1 e

2αh1+( )+=

Y4 α( ) e 4αh– e
4αh1–

2e
2αh1–

e 2αh– 2αh 2αh1–( )––=

Y5 α( ) e 4αh– e
4αh1–

e
2αh1–

e 2αh– 2 4α2h2 4α2h1
2 8α2hh1–+ +( )–+=

Y6 α( ) 1 e
2αh1 2 e

2αh1–( )–=

k
k0

µ1

-----=

P1
p0

α
-----=

P2

2p0

α3
a

2
----------- sin αa( ) αacos αa( )–[ ],=

P3

p0

α2a
--------- 1 cos αa( )–[ ].=

σy x h1,( )
ρ2gh2

--------------------- 1– λ4
π
--- 1 κ2+( ) fi ω a h⁄,( )

∆ ω r,( )
---------------------------

0

∞
∫ e ω– e ωr– Y1 ω r,( ) 4

ω
h
---- Y2 ω r,( )–=

+ k 1 κ1+( )Y3 ω r,( ) cos ωx
h
--- 

  dω
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where λ being the load factor is defined as,

, (10)

and Y1(ω, r ), Y2 (ω, r ), Y3(ω, r ), and ∆(ω, r ) may be obtained by substituting ω = αh and r = h1/h
into Eqs. (7b) and (7c). Additionally, each fi(ω, a/h)(i = 1, 2, 3) function corresponding to a
loading case is defined as,

(11a)

(11b)

. (11c)

From Eq. (9), it is seen that σy(x, h1)/ρ2gh2 = −1 for λ = 0 and up to a certain value of λ, it
remains negative and the contact on y = h1 at which the interface separation starts at xcr can be
obtained from Eq. (9) by using the condition σy(x, h1)/ρ2gh2 = 0 as,

 (12)

After fi(ω, a/h) (i = 1, 2, 3) values corresponding to each loading case are substituting into Eq. (12)
and the integral is calculated numerically, xcr values, for which initial separation takes place, and
corresponding λcr values may be obtained for various proportions of material constants, a /h, the
stiffness of the foundation and the thickness of the layers.

4. The case of discontinuous contact

Since the interface cannot carry tensile tractions, for λ > λcr there will be separation in the
neighborhood of x = xcr on the contact plane y = h1 as shown in Fig. 1. Eqs. (1)-(4) and the
conditions (5a-g) are still valid. However, (5h) should be replaced by the following mixed boundary
conditions;

(13a)

(13b)

where  is described as the separation area where b and c are unknown, and are functions
of λ. Note that the unknown function ϕ (x) in Eq. (13b) may be replaced by 

λ
p0

ρ2gh2

--------------=

f1 ω a
h
---, 

  1
ω
----sin ωa

h
--- 

  ,=

f2 ω a
h
---, 

  2

ω3
------ h

a
--- 

 
2

sin ωa
h
--- 

  ωa
h
---cos ωa

h
--- 

 – ,=

f3 ω a
h
---, 

  1

ω2
------ h

a
--- 

  1 cos ωa
h
--- 

 –=

1
λcr

------- 4
π
--- 1 κ2+( ) fi ω a h⁄,( )

∆ ω r,( )
---------------------------

0

∞

∫ e ω– e ωr– Y1 ω r,( ) 4
ω
h
----Y2 ω r,( )–=

+ k 1 κ1+( )Y3 ω r,( ) ] ωx
h
--- 

  dω.cos

σy x h1,( ) 0, b x c< <( ),=

∂
∂x
----- v2 x h1,( ) v1 x h1,( )–[ ] ϕ x( ), b x c< <( ),=

b x c< <( )
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(14a)

and

(14b)

Utilizing the conditions (5a-g) and (13b), the new functions Ai , Bi , Ci and Di (i = 1, 2) which
appear in Eqs. (3) and (4) may be obtained in terms of the unknown function ϕ(x). Then, Eq. (13a)
gives the following singular integral equation which ϕ(x) is the unknown function;

(15)

where,

(16a)

(16b)

(16c)

One may notice that because of the smooth contact at the end points b and c, the function ϕ(x) is
zero at the ends and the index of the integral Eq. (15) is equal to −1 (Muskhelishvili 1953). In this
case the two relations which are needed to determine the unknown constants b and c are the single-
valuedness condition (14b) and the consistency condition of the integral Eq. (15) defined as follows:

(17)

Defining the following dimensionless quantities;

(18a)

(18b)

(18c)

ϕ x( ) 0, 0 x≤ b< c x ∞< <,( )=

ϕ x( )dx 0.=
b

c

∫

4µ1

1 κ1+( )ρ2gh2

---------------------------------- 1
1 m+( )

-------------------1
π
--- 1

t x+
---------- 1

t x–
---------- k1 x t,( )+ +

b

c

∫ ϕ t( )dt
4
π
---λk2 x( )– 1,=

k1 x t,( ) 1
∆ α( )
------------ 1

1
m
----+ 

  1 κ2+( ) 4αY2 α( ) k 1 κ1+( )Y3 α( )+[ ]Y5 α( ) 1–
 
 
 

0

∞

∫=

* α t x+( )[ ]sin α t x–( )[ ]sin+{ }dα,

k2 x( )
Pi

α( )∆
------------e αh– e

αh1–
1 κ2+( )Y1 α( ) 4αY2 α( ) k 1 κ1+( )Y3 α( )+[ ] αx( )dα,cos

0

∞

∫=

m
µ1

µ2

-----
1 κ2+
1 κ1+
---------------.=

4µ1

1 κ1+( )ρ2gh2

---------------------------------- 1
1 m+( )

-------------------1
π
--- 1

t x+
---------- k1 x t,( )+ ϕ t( ) td

b

c

∫




b

c

∫

1–
4
π
---λk2 x( )–



 dx

x b–( ) c x–( )[ ]1 2⁄
-------------------------------------------- 0.=

η 2t
c b–
----------- c b+

c b–
------------,–=

ξ 2x
c b–
----------- c b+

c b–
------------,–=

g η( ) ϕ t( )
4µ1

1 κ1+( )ρ2gh2

----------------------------------,=
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and substituting Eq. (18) into the integral Eq. (15), the single-valuedness condition (14b), and the
consistency condition (17), the following equations are obtained:

(19a)

(19b)

(19c)

where

(20a)

(20b)

and, in which

(21a)

(21b)

Y5(ω, r) in Eq. (21a) may be obtained by substituting ω = αh and r = h1/h into Eq. (7c).
To insure smooth contact at the end points of the separation area, let

(22)

where G(η) is a bounded function. Using the appropriate Gauss-Chebyshev integration formula
(Erdogan and Gupta 1972), Eqs. (19a) and (19b) become

1
1 m+( )

-------------------1
π
--- 1

η ξ–
------------ 1

η ξ 2
c b+
c b–
------------+ +

------------------------------------- c b–
2h

-----------k1
* ξ η,( )+ +

1–

1

∫ g η( )dη 4
π
---λk2

* ξ( ) 1,+=

g η( )dη
1–

1

∫ 0,=

dξ
1 ξ2–( )

1 2⁄
-----------------------

1–

1

∫ 1
4
π
---λk2

* ξ( ) 1
1 m+( )

------------------1
π
--- 1

η ξ 2
c b+
c b–
-----------+ +

---------------------------------- c b–
2h

----------k1
* ξ η,( )+

1–

1

∫ g η( )dη







0,=–+







k1
* ξ η,( ) k1

* x t,( ),=

k2
* ξ( ) k2

* x( ),=

k1
* x t,( ) 1

ω r,( )∆
----------------- 1

1
m
----+ 

  1 κ2+( ) 4
ω
h
----Y2 ω r,( ) k 1 κ1+( )Y3 ω r,( )+ Y5 ω r,( ) 1–

 
 
 

0

∞

∫=

*
ω
h
---- t x+( )sin

ω
h
---- t x–( )sin+

 
 
 

dω,

k2
* x( )

fi ω a h⁄,( )
ω r,( )∆

-------------------------e ω– e ωr– 1 κ2+( )Y1 ω r,( ) 4
ω
h
----Y2 ω r,( )

0

∞

∫=

+ k 1 κ1+( )Y3 ω r,( ) ωx
h
--- 

  dω.cos

g η( ) G η( ) 1 η2–( )
1 2⁄

= , 1– η 1< <( ),
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 (23a)

(23b)

where

(24a)

(24b)

Eq. (23) give (n + 2) equations to determine the (n + 2) unknowns G(ηk), (k = 1, ..., n), b and c.
Note that the consistency condition of the integral equation such as (19c) is automatically satisfied
since the Gauss-Chebyshev integration formula is used (Erdogan and Gupta 1972). The equations
are linear G(ηk) in but highly nonlinear in b and c. Therefore, an interpolation and iteration scheme
had to be used to obtain these two unknowns. 

It should be noted that Eq. (15) gives the stress σy(x, h1) outside as well as inside the separation
region (b, c). Thus, once the functions G(ηk), and the constants b and c are determined, the contact
stress may be easily evaluated for the discontinuous contact case.

Another quantity of some practical interest may be the displacement component in the separation
zone (b, c). The separation between two elastic layers may be expressed as Eq. (13b) or

 (25)

From Eq. (18), Eq. (25) may be written as,

(26)

Using appropriate Gauss-Chebyshev integration formula, the following expression may be written
for the separation:

(27)

where ηk is given by Eq. (24a).

1 ηk
2–

n 1+
-------------- 1

1 m+( )
------------------- 1

ηk ξj–
--------------- 1

ηk ξ j 2
c b+
c b–
------------+ +

---------------------------------------- c b–
2h

-----------k1
* ξ j ηk,( )+ + G ηk( )

 
 
 
 
 

k 1=

n

∑

4
π
---λk2

* ξ j( ) 1, j 1 … n 1+, ,=( ),+=

1 ηk
2–

n 1+
--------------G ηk( )

k 1=

n

∑ 0,=

ηk
kπ

n 1+
------------- 

  , k 1 … n, ,=( ),cos=

ξ j
π
2
--- 2j 1–

n 1+
-------------- 

  , j 1 … n 1+, ,=( ).cos=

v x h1,( ) v2 x h1,( ) v1 x h1,( ) ϕ t( )dt, b x c< <( ).
b

x

∫=–=

4µ1

ρ2gh2

--------------
v x h1,( )
1 κ1+( )

-------------------- c b–
2h

----------- g η( )dη, 1– ξ 1< <( ).
1–

ξ

∫=

4µ1

ρ2gh2

--------------
v xi h1,( )
1 κ1+( )π

----------------------- c b–
2h

----------- 1 ηk
2–

n 1+
--------------

k 1=

i 1–

∑ G ηk( ), i 2 … n 1+, ,=( )=
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5. Numerical results

Some of calculated results obtained from the solution of the continuous and discontinuous contact
problems described in the previous sections for various dimensionless quantities such as a/h, µ2/µ1,
h1/h, λ and k = k0/µ1 are shown in Figs. 2-8 and Tables 1-2. 

Fig. 2 shows the variations of the critical load factor λcr and the separation initiation distance xcr

with the stiffness of the Winkler foundation, k = k0/µ1. As it can be seen in the Fig., both the critical
load factor and the separation initiation distance goes to infinity as k approaches 0. That k
approaches 0 is that the stiffness of the foundation goes to zero, but this is impossible physically. As
k increases, that is the stiffness of the foundation increases, both the critical load factor and the
separation initiation distance decrease, and they approaches a constant value after the determined
value of k. These results can be also seen in Table 1 which shows the variations of the critical load
factor and the separation initiation distance with k for various values of µ2/µ1. Table 1 also shows
that the critical load factor decreases, but the separation initiation distance increases with increasing
µ2/µ1.

For fixed values of a/h, h1/h and k, the variation of the critical load factor λcr with µ2/µ1 is shown
in Fig. 3 for various loading cases. As it can be seen in the graphic, the critical load factor is the
biggest in the case of µ2/µ1 = 0.20 for each loading cases and it is always the smallest in the loading
case 1 independently µ2/µ1. Fig. 4 shows the variation of the contact stress distribution σy(x, h1)
with various loading cases along the interface for the case of the continuous contact (λ = λcr)
described in Section 3. It appears that both the critical load factor and the separation initiation
distance are different for each loading cases in spite of the same a/h. While the smallest value of λcr

Fig. 2 The critical load factor λcr and the separation
initiation distance xcr as functions of k(a/h =
1.00, µ2/µ1 = 1.740, h1/h= 0.70, ν1 = ν2 = 0.34,
p(x) = p0)

Fig. 3 Variation of the critical load factor with µ2/µ1

for various loading cases, p(x) (a/h = 2.00,
k = 0.50, h1/h = 0.50, ν1 = ν2 = 0.30)
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occurs in the loading case 1, p(x) = p0 = constant, the smallest value of xcr occurs in the loading case
3, p(x) = p0(1 − x/a).

In Figs. 5-6, the normalized contact stress distributions σy(x, h1) at the interface of two elastic
layers are given for the case of the continuous and discontinuous contact described in Sections 3

Table 1 Variations of the critical load factor λcr and the separation initiation distance xcr with k = k0/µ1 for
various values of µ2/µ1 (a/h = 1.00, p(x) = p0, h1/h = 0.50, ν1 = ν2 = 0.34)

k µ2/µ1 = 0.575 µ2/µ1 = 1.000 µ2/µ1 = 1.740

xcr /h λcr xcr /h λcr xcr /h λcr

0.01 6.7840 136.0002 7.1842 106.1545 7.7506 90.1967
0.05 4.6646 102.9774 4.9258 79.2366 5.2968 66.3644
0.10 4.0054 93.7405 4.2210 71.5691 4.5282 59.4143
0.50 2.9086 81.8042 3.0530 61.3516 3.2510 49.7341
1.00 2.5474 76.8183 2.7010 58.8175 2.8770 47.6897
2.00 2.2408 67.3158 2.4182 55.4055 2.5872 46.0245
5.00 2.0174 54.7155 2.1700 49.7007 2.3254 43.6516
10.00 1.9418 49.3543 2.0684 46.3911 2.2088 42.0911
50.00 1.8770 44.8567 1.9770 43.1235 2.0972 40.3418
100.00 1.8682 44.2993 1.9646 42.6894 2.0818 40.0948
çó 1.8594 43.7491 1.9520 42.2557 2.0658 39.8456

⇒

Fig. 4 Contact stress distribution between two elastic
layers for the case of continuous contact (a/
h = 2.00, k = 1.25, h1/h = 0.60, µ2/µ1 = 0.75,
ν1 = ν2 = 0.30)

Fig. 5 Contact stress distributions for the case of
continuous ( ) and discontinuous (λ >
λcr) contact along the interface (a/h = 1.00,
k = 1.00, h1/h = 0.40, µ2/µ1 = 0.575, p(x) = p0

(1 − x2/a2), ν1 = ν2 = 0.30)

λ λcr≤
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and 4. As it can be seen in graphics, there are three regions in the discontinuous contact along the
interface. These are the continuous contact region, separation zone, and also the continuous contact
region where the effect of the external load decreases and disappears infinitely. In Figs. 4-6,
different scales have been used in order to include the entire pressure distribution and to give
sufficient details in compact forms. Based on the numerical values obtained, it can be observed that,
for each loading case and for the same a/h, the initial separation point occurs at the a longer
distance from the origin with decreasing k. Similarly, the longer value of a/h, the longer the
distance of initial separation point from the origin. These results are in agreement with the study in
(Cakiroglu and Cakiroglu 1991).

Fig. 7 and Table 2 show results giving the distances b and c which define the separation zone
along the interface (see Fig. 1). It appears in Fig. 7 that, as the stiffness of the foundation, k = k0/µ1,
increases, the separation zone, (c − b)/h, seems to decrease and b/h approaches a constant
asymptotic value with increasing load factor λ for each value of k. Sharp points in Fig. 7 are
corresponding to the initial separation loads and the initial separation points. In addition, it can be
seen in Table 2 that for fixed a/h, the separation zone decreases and the initial separation point
occurs at a shorter distance from the origin as h1/h increases. 

Some sample results calculated from Eq. (27) giving the displacement  in the separation
zone b < x < c, y = h1, are shown in Fig. 8 as a function of x for various values of λ. As expected,
the separation zone and the separation displacement  increase with increasing load factor λ.

6. Conclusions

Based on the numerical results obtained in the previous section, it is observed that the stiffness of

v x h1,( )

v x h1,( )

Fig. 6 Contact stress distribution between two elastic
layers for the case of discontinuous contact
(a/h = 1.00, p(x) = p0(1 − x/a), h1/h = 0.50,
µ2/µ1 = 0.575, λ = 175 >λcr, ν1 = ν2 = 0.30)

Fig. 7 Separation distances b and c along the interface
as a function of the load factor λ for various
values of k(a/h = 1.00, µ2/µ1 = 0.575, h1/h =
0.50, p(x) = p0, ν1 = ν2 = 0.34)
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the Winkler foundation, the elastic properties and thickness of the layers and the loading cases play
a very important role in the formation of the continuous and discontinuous contact area, the stress
distribution on the contact surface, the critical load factor, the separation initiation distance, the
separation zone and the separation displacement. From this study the following conclusions may be
written:
; Both the critical load factor and the separation initiation distance decrease as the stiffness of the

foundation increases and they approaches a constant value after the determined value of the
stiffness.

; The critical load factor decreases but the separation initiation distance increases with increasing
µ2 /µ1.

; There are three regions in the discontinuous contact between two elastic layers. These are the
continuous contact region, the separation zone and also the continuous contact region where the
effect of the external load decreases and disappears infinitely.

; For each loading cases and the same a/h, the initial separation point occurs a longer distance
from the origin with decreasing the stiffness of the foundation.

; The longer value of a/h, the longer the distance of the initial separation point from the origin. 

Table 2 Variations of the separation distances b and c with h1/h along the interface (a/h = 1.00,
 p(x) = p0(1 − x/a), k = 5.0, λ = 150 >λcr, µ2/µ1 = 0.575, ν1 = ν2 = 0.3) 

h1/h b/h c/h (c − b)/h

0.30 1.5525 2.6712 1.1187
0.40 1.4919 2.4794 0.9875
0.50 1.4366 2.2312 0.7946
0.60 1.3985 1.8460 0.4475

Fig. 8 Separation displacement  between two elastic layers as a function of x for various values of
the load factor λ (a/h = 1.00, p(x) = p0, k = 0.50, h1/h = 0.50, µ2/µ1 = 0.575, ν1 = ν2 = 0.34)

v x h1,( )
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; As the stiffness of the foundation increases, the separation zone decreases and the initial separation
point approaches a constant asymptotic value with increasing load factor for fixed stiffness of
the foundation.

; For fixed a /h, the separation zone decreases and the initial separation point occurs at a shorter
distance from the origin as h1/h increases.

; As the load factor increases, both the separation zone and the separation displacement increases.
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