Structural Engineering and Mechanics, Vol. 15, No. 3 (2003) 331-344 331
DOI: http://dx.doi.org/10.12989/sem.2003.15.3.331

A frictionless contact problem for two elastic layers
supported by a Winkler foundation

Ahmet BirinciT and Ragip Erdol$

Karadeniz Technical University, Civil Engineering Department, 61080, Trabzon, Turkey

(Received September 19, 2002, Accepted February 6, 2003)

Abstract. The plane contact problem for two infinite elastic layers whose elastic constants and heights
are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical
distributed loads whose lengths ai@ @bplied to the upper layer and uniform vertical body forces due to
the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless
and that only compressive normal tractions can be transmitted through the interface. The contact along the
interface will be continuous if the value of the load factor,is less than a critical value. However,
interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is
solved and the value of the critical load factdg, is determined. Then, the discontinuous contact
problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress
distribution, the size of the separation areas, critical load factor and separation distance, and vertical
displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Key words:  continuous contact; discontinuous contact; separation integral equation; elastic layer; Winkler
foundation; elasticity.

1. Introduction

The contact problems for a frictionless elastic layer lying on an elastic half-plane, elastic
foundation or rigid foundation have attracted considerable attention in the past due to its
applicability to a variety of important structures of practical interest (see, e.g., Civelek and Erdogan
1974, Erdogan and Ratwani 1974, Civelek and Erdogan 1975, Civelek and Erdogan 1976, Civelek
et al 1978, Gecit and Erdogan 1978, Gecit 1978, Gecit 1980, Gecit 1981, Gecit and Yapici 1986,
Gecit 1990, Dempsest al 1990, Cakiroglu and Cakiroglu 1991, Dempeéwl 1991, Kahyaet al
2001). However, there are few studies about the contact between two or more elastic layers made of
different elastic materials and heights. Some of these are a frictionless contact problem between two
elastic-viscoplastik bodies considered by Rochdi and Sofonea (1997), contact problems for two
elastic layers resting on an elastic half-plane examined by Cakigogll (2001) and continuous
and discontinuous contact problem for a layered composite resting on simple supports studied by
Birinci and Erdol (2001). In such problems if the magnitude of the external load exceeds a certain
critical value a separation takes place between the layers or the layer and the foundation.
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In this paper, the plane elastostatic contact problem of two infinite elastic layers having different
elastic constants and heights lying on a Winkler foundation is considered according to theory of
Elasticity. The frictionless layer-layer interface is assumed to transmit compressive normal tractions
only. The upper elastic layer is subjected to a symmetrical distributed loads whose lengthsnare 2
its top surface and the layers have a uniform body force due to the gravity. If the value of the load
factor, A, is less than a critical valug,,, the normal stress along the entire interface is compressive
and the contact is continuous. A separation takes place between the elastic layers when the applied
load exceeds this critical value and the contact is discontinuous. Firstly, the continuous contact
problem is solved and the value of the critical load factor, the critical separation distance, and the
contact stress distribution are determined. Then, the discontinuous contact problem is formulated in
terms of a singular integral equation. Solving the integral equation numerically by using appropriate
Gauss-Chebyshev integration formula, the stress distribution along the interface, the initial and end
distances of the separation, and the vertical displacement in the separation area are investigated for
various dimensionless quantities. Finally, numerical results are analyzed and conclusions are drawn.

2. Formulation of the problem

Consider two infinite elastic layers of which thicknessarandh, in smooth contact with each
other. The geometry and coordinate system are shown in Fig. fxd-ahdp.g be the body forces
acting vertically in the layers. Writing,

Ui(X, y) = Upp(X) + Uin(x, y), (1a)
Vi(X, Y) = Vip(y) + Vin(X, ¥), (i=1,2), (1b)
the particular part of the displacement components correspondmg &nd p,g for the layers may

be obtained as (Civelek and Erdogan 1974)

3—K1019 hlx

8, 2 ° (2a)

ulp(x) =

: K2, V2, W2 ] a 7
h 7{4

h, K, Vi, J

ko

Fig. 1 Geometry of the frictionless contact problem with interface separation
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1p19y 1+k
VipY) = +121u (=) =5 =¥(P.0h, + pighy/2) +E, (2b)
3—K,p,0h
Upp(X) = —@?ﬁ—é—g—zx (20)
Pogy[1+K
Vi) = -5 S5 - Sh+h-y)|+F, (2d)

whereu andv are thex andy - components of the displacement vecjoris shear modulusy is
Poisson’s ratio, andc = (3 - v)/(1 +v) for plane stress and = 3-4v for plane strain. The
subscripts 1 and 2 refer to the lower and upper elastic layers, respectively. The c@natahEs
appearing in Eqgs. (2b) and (2d) are the (yet unknown) rigid body displacement terms.

Observing thak = 0 is a plane symmetry, the homogenous part of the displacement components
for the upper and lower elastic layers may be written as (Civelek and Erdogan 1974, Cekiabglu
2001, Birinci and Erdol 2001),

Uin(X, y) = IgTI:[(Ai +Byy)e ™ +(C; + D;y)e™]sin(ax)da, (39)

ey = 2 A oo [0 P e Tostaoda, @)

where A, B, G and Di(i =1, 2) are the unknown functions which will be determined from
continuity and boundary conditions prescribedyenO, y = h; andy = h.

The stress components needed for the application of the boundary conditions may be obtained
from Egs. (1-3) using Hooke’s law as follows (Civelek and Erdogan 1975):

oo

1D1J e” Epos( ax)da
O

1
Z;lffyl(x, y) = = j D—[G(Aﬁ B.y) ~

'{— a(Cy+Dyy) + 1t

1

2u —[-p9h, + p;g(y—-h)], (0<y<hy), (4a)
KZBZJ e

1+«k av U
+[—a(C2+ Dy) + = 2DzJey%pos(ax)dor

1 2 [ 1+
2l1 (X y) = 7TI0 B‘[G(Az"‘BzW"‘

+2iuz[ng(y— N,  (hsysh), (4b)
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_1_ _ Z °°D Ki - 1 —ay
21 Ti(X y) = nIo E_[G(Ai +By) + > BiJe

K,—1

"‘[G(Ci +Dyy) - >

DiJeay Sin(ax)da, (=1 2), (4c)
O

3. The case of continuous contact

Referring to Fig. 1, let the upper elastic layer be subjected to a symmetrical distributqa{*pad,
abouty axis, along its boundary = h. If the load factorA, is sufficiently small, the contact along
the interfacey = h; will be continuous andy, B;, C; andD; (i = 1,2) should be determined from the
following boundary and continuity conditions :

T,,2(x, h) = 0, (0 x< ), (5a)
Ty2(X, hy) = 0, (0 x<m), (5b)
Txyl(xl hl) = O, (O X< oo), (5C)
Oyo(X, hy) = oy(x hy), (0sx<w), (5d)
T,,1(Xx,0) = 0, (0 x<m), (5e)
0,5(x h) = E—p(x), Osxs<a (5f)
0, a<s< x<ow
0y1(%, 0) = kovi(X, 0), (0sx< ), (59)
Zv,(x, h) ~va(x, h)] = 0, (0sx<w), (5h)

where kg is the stiffness of the foundation and Eq. (5h) is equivalent(tqh;) = vi(x,hy). By
making use of conditions (5%, B, Ci and D;(i = 1,2) functions may be calculated and by
substituting the values of the functions into Egs. (4a) or (4b), the contact pressure along the

interfacey =h; becomes
0, (X h ) = —p h —_(1 K ) Ioo_i e_ahe_alel(a)[4aY2(a)
y\Ay I 29 2 T 2 0 f( )

+ k(1 + k;)Y3(a)]cos(ax)da, (6)
in which P; andA(a) are defined as,

P, = J’:p(x)cos(ax)dx (i=1,2 3), (7a)
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Al(a) = Y4(a)[4a(l+ k) Y2(a) —Kk(1+ K, + Ky + K1Kp) Y3(a)]

+ Z—iYS(a)[4a(1 + k) Y3(a) +k(1+ 2k, + kK2)Y6(a)], (7b)
where,
Yi(a) = e ™ —e?™+ (ah—ah,)(e "™+ &2
Y2(a) = 1-e2““1(2 + 4a*h2— ™)
Y3(a) = —1+€ " (4ah, +& ™)
Y4(a) = e — "™ 27 MM (2gh —2ah,)
Y5(a) = e+ ™ g Mg M2 + 40°h? + 4a°hE —8a’hhy)
Y6(a) = 1-e ™ (2-€""™) (7c)
and
Ko
k = —. 7d
My (7e)
For each loading casB;(i = 1, 2, 3) is calculated as,
a) Loading casé : p(x) = po = constant
P, = IOE;’sm(ora), (8a)
b) Loading case : p(x) = po(1 — x*/a%)
2
P, = —-g%[sin(aa)—aacos(aa)], (8b)
a’a
c) Loading casé : p(x) = po(1 — x/a)
P; = %[1— coqaa)]. (8¢)
a‘a

By substituting the expressions in Eqg. (8) into Eq. (6) and replawirgah, r = h;/h, the
normalized contact pressure along the interface is obtained as,

G h) _ ;4 (1+K2)I

p2gh,

f(&) a/h) e

) e Y1(w, r)[4 Y2(w, )

+ k(1 + Ky)Y3(w, 1) Jco%«%ﬁiw, 9)
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whereA being the load factor is defined as,

_ _Po
P.ghy’
andY1(w, r), Y2 (w,r), Y3(w, r), andA(w, r) may be obtained by substituting= ah andr = hy/h
into Egs. (7b) and (7c). Additionally, eadffw, a/h)(i =1, 2, 3) function corresponding to a
loading case is defined as,

(10)

fl%o,ﬁmz %)sin 2% (11a)
fz%o,% - Zsﬁg[sin%uﬁg—aﬁco%uﬁ%, (11b)

E Hl co%u J (11c)

From Eq. (9), it is seen that,(x, h;)/p.gh, = -1 for A =0 and up to a certain value af it
remains negative and the contact ynr h; at which the interface separation startxgtcan be
obtained from Eqg. (9) by using the conditigy(x, hi)/p.gh, = 0 as,

S

1l _ 4 = fi(w, a/h) o Ve w.
o CALON Ry v U Y1(w,r)[4hvz(w,r)
+ k(1+ K;)Y3(w, r)]cos%u)ﬁ%jw. (12)

After (e, a/h) (i =1, 2, 3) values corresponding to each loading case are substituting into Eq. (12)
and the integral is calculated numericalty, values, for which initial separation takes place, and
corresponding), values may be obtained for various proportions of material constdhisthe
stiffness of the foundation and the thickness of the layers.

4. The case of discontinuous contact
Since the interface cannot carry tensile tractions, AforA., there will be separation in the

neighborhood ofx=x, on the contact plang=h; as shown in Fig. 1. Egs. (1)-(4) and the
conditions (5a-g) are still valid. However, (5h) should be replaced by the following mixed boundary
conditions;

Uy(X, hl) = O! (b < X< C)! (13a)

0

oL V2(X ) =va(x, )] = (x), (b<x<o), (13b)

where (b< x< ¢) is described as the separation area viharelc are unknown, and are functions
of A. Note that the unknown functigh(x) in Eq. (13b) may be replaced by
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#(x) = 0, (0= x<b, c<x< ) (14a)
and

}qb(x)dx =0. (14b)
b

Utilizing the conditions (5a-g) and (13b), the new functidnsB;, C; andD; (i =1, 2) which
appear in Egs. (3) and (4) may be obtained in terms of the unknown fuagormhen, Eq. (13a)
gives the following singular integral equation whigfx) is the unknown function;

(1+i5;ghxljnﬂnILix T halx 0 [0 =72k00 = 1. (15)
where,
ky(x, 1) = “n%A- %1+Kg4avaay+u1+KgYaanvaa) 15
*{sin[a(t+x)] +sin[a(t—x)]}da, (16a)
Ko(x) = ]:A(—(‘X)e‘”he_ahl(l + K,)YL(a)[4aY2(a) + k(1 + k;)Y3(a)]cos(ax)da, (16b)
0
_ Hil+ K
= uz——-—-—l rapat (16¢)

One may notice that because of the smooth contact at the endbpaimts, the functiong(x) is
zero at the ends and the index of the integral Eq. (15) is equal @duskhelishvili 1953). In this
case the two relations which are needed to determine the unknown comstadtsare the single-
valuedness condition (14b) and the consistency condition of the integral Eq. (15) defined as follows:

0 4y 1
o+ x) o1+ m)nI

L+X ka(x ] p()ct

R T -
Defining the following dimensionless quantities;
9(n) = ¢(t)———‘-‘i‘i———, (180)

(1+ k1)pgh,
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and substituting Eq. (18) into the integral Eq. (15), the single-valuedness condition (14b), and the
consistency condition (17), the following equations are obtained:

1 1% 1 1 c—b, - 4 .
= ki(é, n) {9(mdn = Ak (§) +1,  (19a)
(1+m)nI[n—E+ c+ b 2h @ l s
1 n+ &+ 2_c—b
1
Ja9(mdn =0, (19b)
]

1

O

g . !
[ O 11[ :

O &+ 2

a
—b « [l
a
0

a2(1- ) (1+m)md, QET?
where
Ki(& ) = Ki(x, 1), (20a)
ka(&) = k() (20b)

and, in which

K (x 1) = gDA(w r)%L 1%(1+ KZ)[4 Y2(e, 1) + k(L + K,) Y3(w, r)JYS(w r) - 1%
*Esin[%)(t + x)J " sin[%)(t—x)JEdw, (21a)
Ky(x) = gf (A( a/)h) 8 (1 + K,) Y1( 0o, r)[4 Y2(w, 1)
+ k(1+ k) Y3(w, 1) Jcos%u)ﬁ%iw. (21b)

Y5(w, r) in EQ. (21a) may be obtained by substituting ah andr = hy/h into Eq. (7c).
To insure smooth contact at the end points of the separation area, let

g(n) =G(mMA-n)""  (-1<n<1), (22)

where G(n) is a bounded function. Using the appropriate Gauss-Chebyshev integration formula
(Erdogan and Gupta 1972), Egs. (19a) and (19b) become
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0 0
n1-nid 1 1 1 c—b, - O
O + + Ki(&5, M) |G(nW) O
kZln+1g(1+m) N — & ”Ik+fj+2Cts 2h E
_ 4 _
= %Akz(fj) +1, (j=1,...,n+1), (23a)
011 _
¥ hriCm) =0 (23b)
where
_ e KT O _
N = COSEh+ 10 (k=1,....,n), (24a)
2j—1 .
¢ = cos%[aj_'_—l% (G=1,..,n+1). (24b)

Eqg. (23) give f + 2) equations to determine the+2) unknownsG(n,), k=1, ...,n), b andc.
Note that the consistency condition of the integral equation such as (19c) is automatically satisfied
since the Gauss-Chebyshev integration formula is used (Erdogan and Gupta 1972). The equations
are linearG(n,) in but highly nonlinear irb andc. Therefore, an interpolation and iteration scheme
had to be used to obtain these two unknowns.

It should be noted that Eq. (15) gives the stig$s, hy) outside as well as inside the separation
region , ¢). Thus, once the functior@(r,), and the constants andc are determined, the contact
stress may be easily evaluated for the discontinuous contact case.

Another quantity of some practical interest may be the displacement component in the separation
zone b, ¢). The separation between two elastic layers may be expressed as Eq. (13b) or

V(% hy) = va(x ) =vi(x hy) = }«P(t)dt, (b<x<o). (25)
b
From Eqg. (18), Eq. (25) may be written as,

LV K¢
pjgllwz(vl(f:i; ) Czhbf gimdn,  (-1<¢&<1). (26)

Using appropriate Gauss-Chebyshev integration formula, the following expression may be written
for the separation:

4uy V(X hy) — C—bi_ll—ni
P9y (1 + k)T 2h £, n+1

G(n), (i=2,..,n+1) (27)

whereny is given by Eq. (24a).
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5. Numerical results

Some of calculated results obtained from the solution of the continuous and discontinuous contact
problems described in the previous sections for various dimensionless quantities alchuas;,
hy/h, A andk = ky/u; are shown in Figs. 2-8 and Tables 1-2.

Fig. 2 shows the variations of the critical load factgrand the separation initiation distance
with the stiffness of the Winkler foundatiok= ko/;. As it can be seen in the Fig., both the critical
load factor and the separation initiation distance goes to infinitk approaches 0. Thakt
approaches 0 is that the stiffness of the foundation goes to zero, but this is impossible physically. As
k increases, that is the stiffness of the foundation increases, both the critical load factor and the
separation initiation distance decrease, and they approaches a constant value after the determined
value ofk. These results can be also seen in Table 1 which shows the variations of the critical load
factor and the separation initiation distance viitfor various values ofi/y;. Table 1 also shows
that the critical load factor decreases, but the separation initiation distance increases with increasing
ol .

For fixed values of/h, hy/h andk, the variation of the critical load factag, with w,/u, is shown
in Fig. 3 for various loading cases. As it can be seen in the graphic, the critical load factor is the
biggest in the case @b/, = 0.20 for each loading cases and it is always the smallest in the loading
case 1 independently,/p. Fig. 4 shows the variation of the contact stress distributjgx hy)
with various loading cases along the interface for the case of the continuous céntag) (
described in Section 3. It appears that both the critical load factor and the separation initiation
distance are different for each loading cases in spite of theaam&hile the smallest value af,

Ay X

400.00 — 10.00

|

300.00 — 7.50 200.00

O px)=p,
(2) p(x) =py(l—x*/a?)
(3) px)=p,(1-x/a)

150.00 -
200.00

100.00

100.00 |-

50.00

0.00 : N SO R S L 0.00 ‘uz n,

0.00 2.00 4.00 6.00 8.00 10.00 0.00 — SN S —
K 0.00 1.00 2.00 3.00 4.00 5.00

Fig. 2 The critical load factoi;, and the separation Fig. 3 Variation of the critical load factor witj,/p,
initiation distancex,, as functions ok(a/h= for various loading cases(x) (a/h=2.00,
1.00, [.12/[.11 =1.740, h]_/h =0.70, Vi=Wwh= 0.34, k=0.50, h]_/h =0.50, Vi=V= 030)
P(X) = Po)
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occurs in the loading case {(x) = po = constant, the smallest value»gf occurs in the loading case
3, p(¥) = po(1 - ¥/a).
In Figs. 5-6, the normalized contact stress distributigyis, h,) at the interface of two elastic
layers are given for the case of the continuous and discontinuous contact described in Sections 3

Table 1 Variations of the critical load factdg, and the separation initiation distarkg with k=Kky/u; for
various values ofk/1; (a/h = 1.00,p(X) = po, hi/h =0.50,v; = v, = 0.34)

k Lo/, =0.575 L/ = 1.000 Lo/ = 1.740
H Xer/ Aer Xer/h Aer Xer/ Aer
0.01 6.7840 136.0002 7.1842 106.1545 7.7506 90.1967
0.05 4,6646 102.9774 4,9258 79.2366 5.2968 66.3644
0.10 4,0054 93.7405 4,2210 71.5691 45282 59.4143
0.50 2.9086 81.8042 3.0530 61.3516 3.2510 49.7341
1.00 2.5474 76.8183 2.7010 58.8175 2.8770 47.6897
2.00 2.2408 67.3158 2.4182 55.4055 2.5872 46.0245
5.00 2.0174 54,7155 2.1700 49.7007 2.3254 43.6516
10.00 1.9418 49.3543 2.0684 46.3911 2.2088 42.0911
50.00 1.8770 44.8567 1.9770 43.1235 2.0972 40.3418
100.00 1.8682 44,2993 1.9646 42.6894 2.0818 40.0948
—00 1.8594 43,7491 1.9520 42.2557 2.0658 39.8456
6, (x,h)/pyghs) o,(x.h,)/p,gh,
200.00 — 100.00 —

M px)=p,. (x,, =3.2928) -
@) p(x)=p,(1-x*/a%), (x. =2.8630)
(3) p(x)=p,(l-x/a), (x,, =2.7626)

1) A=40<A,
(2) A=h,, =62.1433 (x_, =2.4186)
(3) A=100>4,, (b/h=2.0549, ¢/h=29928)

160.00 80.00

120.00 60.00

80.00 40.00

2.00

1.00

" 100 -
x/h !

T T ‘ 0.00 ;
0.00 2.00 4.00 6.00 0.00 1.00 2.00 3.00 4.00

0.00

Fig. 4 Contact stress distribution between two elasti€ig. 5 Contact stress distributions for the cade o

layers for the case of continuous contaxt ( continuous A < A, ) and discontinuous X
h=2.00, k=1.25, hy/h=0.60, p/u =0.75, Ao) contact along the interfaca/b = 1.00,
Vi=W, = 030) k= 100, h]_/h = 040, /.12//.11 = 0575, p(X) = Po

(1-x%a%, v = v,=0.30)
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o,(x,h,)/p,gh, b/h.c/h 0 k=010
150.00 — '
(2) k=050
6.00 — () k=500
120.00 (1) k=050
(2) k=100 500
(3) k=2.00
%000 ) k=5.00

4.00 —

60.00
i 3.00 -

(4)

3)

2.00 A\, ¢ 2, 200 -
100 |- =

\ 25 ?7 x/h N
0.00 T T | | |

I T I T I 1.00 L ! L
0.00 1.00 2.00 3.00 4.00 5.00 50.00 100.00 15000  200.00 25000  300.00

Fig. 6 Contact stress distribution between two elastid-ig. 7 Separation distancdsandc along the interface

layers for the case of discontinuous contact as a function of the load factdr for various
(@a/h=1.00, p(x) =po(1-x/a), h/h=0.50, values ofk(a/h=1.00, b/t =0.575, hhy/h =
Lol = 0.575,A =175 > A, v; = v, =0.30) 0.50,p(X) = po, V1 = v, =0.34)

and 4. As it can be seen in graphics, there are three regions in the discontinuous contact along the
interface. These are the continuous contact region, separation zone, and also the continuous contact
region where the effect of the external load decreases and disappears infinitely. In Figs. 4-6,
different scales have been used in order to include the entire pressure distribution and to give
sufficient details in compact forms. Based on the numerical values obtained, it can be observed that,
for each loading case and for the saaih, the initial separation point occurs at the a longer
distance from the origin with decreasifkg Similarly, the longer value of/h, the longer the
distance of initial separation point from the origin. These results are in agreement with the study in
(Cakiroglu and Cakiroglu 1991).

Fig. 7 and Table 2 show results giving the distarizesd c which define the separation zone
along the interface (see Fig. 1). It appears in Fig. 7 that, as the stiffness of the foukdakigm,,
increases, the separation zone—b)/h, seems to decrease afgh approaches a constant
asymptotic value with increasing load factdrfor each value ok. Sharp points in Fig. 7 are
corresponding to the initial separation loads and the initial separation points. In addition, it can be
seen in Table 2 that for fixed/h, the separation zone decreases and the initial separation point
occurs at a shorter distance from the origim#s increases.

Some sample results calculated from Eq. (27) giving the displacen{enty,) in the separation
zoneb<x<c, y=hy, are shown in Fig. 8 as a functionofor various values oA. As expected,
the separation zone and the separation displacemeqth,) increase with increasing load factor

6. Conclusions

Based on the numerical results obtained in the previous section, it is observed that the stiffness of
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Table 2 Variations of the separation distanzesdc with hy/h along the interfacea{h = 1.00,
p(X) = po(1 — X/a), k=5.0,A =150 >A,, W/t =0.575,v; = v, =0.3)

hy/h b/h h (c-by/h
0.30 1.5525 2.6712 1.1187
0.40 1.4919 2.4794 0.9875
0.50 1.4366 2.2312 0.7946
0.60 1.3985 1.8460 0.4475
44, V(x,h)
0.30 — p,gh, +x)T
1 A=100
2) A=125
r 3y A=150
(4) A =200
0.20 —
0.10 —
x/h
0.00 J
2.00 2.40 2.80 3.20 3.60 4.00

Fig. 8 Separation displacement(X, h,) between two elastic layers as a functioforofarious values fo
the load factoi (a/h=1.00,p(X) = po, k= 0.50,h/h=0.50, o/, = 0.575,v; = v, = 0.34)

the Winkler foundation, the elastic properties and thickness of the layers and the loading cases play
a very important role in the formation of the continuous and discontinuous contact area, the stress
distribution on the contact surface, the critical load factor, the separation initiation distance, the
separation zone and the separation displacement. From this study the following conclusions may be
written:
¢ Both the critical load factor and the separation initiation distance decrease as the stiffness of the
foundation increases and they approaches a constant value after the determined value of the
stiffness.
® The critical load factor decreases but the separation initiation distance increases with increasing
Mo/ s
* There are three regions in the discontinuous contact between two elastic layers. These are the
continuous contact region, the separation zone and also the continuous contact region where the
effect of the external load decreases and disappears infinitely.
® For each loading cases and the safie the initial separation point occurs a longer distance
from the origin with decreasing the stiffness of the foundation.
* The longer value oé/h, the longer the distance of the initial separation point from the origin.
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¢ As the stiffness of the foundation increases, the separation zone decreases and the initial separation
point approaches a constant asymptotic value with increasing load factor for fixed stiffness of
the foundation.

¢ For fixed a/h, the separation zone decreases and the initial separation point occurs at a shorter
distance from the origin ds/h increases.

* As the load factor increases, both the separation zone and the separation displacement increases.
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