
Structural Engineering and Mechanics, Vol. 15, No. 3 (2003) 315-329 315

Behaviour of interfacial layer along granular
soil-structure interfaces

Wenxiong Huang†

Discipline of Civil, Surveying & Environmental Engineering, School of Engineering,
The University of Newcastle, NSW 2308, Australia

Erich Bauer‡

Institute of General Mechanics, Graz University of Technology, A-8010, Graz, Austria

Scott W. Sloan‡†

Discipline of Civil, Surveying & Environmental Engineering, School of Engineering,
The University of Newcastle, NSW 2308, Australia

(Received September 10, 2002, Accepted January 24, 2003)

Abstract. As shear occurs along a soil-structure interface, a localized zone with a thickness of several
grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the
behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular
layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a
micro-polar hypoplastic continuum model. Numerical results are presented to show the development of
shear localization along the interface for shearing under conditions of constant normal pressure and
constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is
considered with respect to the influences of grain rotation. 
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1. Introduction

Soil-structure interfaces are frequently met in geotechnical engineering. Shallow foundations, deep
foundations, tunnels and earth retaining structures are examples with soil-structure interfaces.
Compared with the interfaces between metals and rocks and other solid materials, the soil-structure
interface has a more sophisticated behaviour. When shear occurs along a soil-structure interface, soil
grains may rotate as well as slide along the structure wall. Intense shear deformation develops in a
narrow zone of several grain sizes in soil along the interface, forming an interfacial layer. A high
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gradient of heterogeneous deformation with pronounced shear dilatancy and grain rotations can be
observed within the interfacial layer (Roscoe 1970, Brummund and Leonards 1973, Kishida and
Uesugi 1987, Tejchman and Wu 1995). The mechanical properties of the granular material, the
density and the stress state, the dilatancy resistance of the bounding structure and the roughness of
the structure surface have a significant influence on the development of the interfacial layer, which
in turn will affect the resistance of the system. 

Soil-structure interface behaviour is mainly related to the phenomenon of shear localization in
soil, which cannot be modeled properly within the framework of a classical continuum. Using
classic continuum models, incipience of shear localization can be predicted via bifurcation analysis
(Rudnicki and Rice 1975, Rice 1976). Due to the lack of a characteristic length on micro-scale,
however, the post bifurcation behaviour is inaccurate and mesh sensitive (Needleman and Tvergaad
1984, de Borst et al. 1993, Huang 2000). To overcome this deficiency of the classic continuum
approach, enhanced continuum theories have been used in recent years, including the micro-polar or
Cosserat continuum approach (e.g., Mühlhaus and Vardoulakis 1987, de Borst 1991, Tejchman
1989), and the gradient-dependent continuum approach (e.g., Aifantis 1984, Vardoulakis and
Aifantis 1989, de Borst and Mühlhaus 1992). 

The present paper is focused on studying the behaviour of interfacial layers along granular soil-
structure interfaces with a micro-polar continuum approach. The mechanical behaviour of granular soil
is described using the framework of hypoplasticity (Kolymbas 2000). Micro-polar extensions of the
hypoplastic models for non-polar continuum have been proposed for investigations of the problems
related to shear localization (Tejchman 1994, 1997, Bauer and Tejchman 1995, Tejchman and Bauer
1996, Bauer and Huang 2001, Tejchman and Gudehus 2001, Huang et al. 2002). These models take
into account the influence of granular rotation, shear dilatancy and contractancy for a wide range of
pressure and density with a single set of constitutive constants, and offers the capability to capture the
essential phenomenon of shear localization in granular materials. In the present work, the micro-polar
hypoplastic model formulated by Huang et al. (2002) is used, which has the following advantages:

(1) Stationary states or the so-called critical states are consistently embedded in the constitutive
model for the evolution of the stress tensor, the couple stress tensor and the void ratio. Under
monotonic shearing the void ratio tends to the critical void ratio which is independent of the initial
state. In contrast to the earlier versions the distribution of the void ratio is smooth within the
localized zone and it does not exceed the critical void ratio;

(2) The limit stresses and the limit couple stresses are coupled in a rational manner, which allows
a physical interpretation for the polar parameter; 

(3) The thickness of the localized zone is scaled by a characteristic length which is proportional to
the mean grain diameter and also related to the inter-granular friction. 

The development of an interfacial layer along a granular soil-structure interface is studied by
modelling the plane shear of an infinite granular layer located between two parallel rigid plates. In
particular, the effects of the confining condition on the granular layer, surface roughness of the
bounding plate and the influence of the polar parameter are investigated. Numerical results are
presented for shearing of the granular layer under both constant normal pressure and constant volume.

2. Description of the model for cohesionless granular soil

This section presents a brief description of the micro-polar hypoplastic constitutive model for
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cohesionless granular materials. The hypoplastic concept by Kolymbas (1985) was originally
proposed for a non-polar continuum and it is based on a non-linear tensor-valued function to model
an inelastic material behaviour. Hypoplasticity can be understood as a generalization of
hypoelasticity by Truesdell (1955). It differs from the concept of elastoplasticity in that neither a
decomposition of the strain rate into an elastic part and a plastic part, nor the existence of a plastic
potential, is assumed. A comparison between a hypoplastic model and an elastoplastic model can be
found in Niemunis (1993) and Wu and Niemunis (1996). For basic information about hypoplasticity,
readers can refer to Kolymbas (2000).

2.1 Outline of micro-polar continuum for plane strain problems 

A micro-polar continuum (Cosserat) is kinematically characterized by additional rotational degrees
of freedom associated with each material particle, which is independent of particle translation
(Schaefer 1967). For plane strain problems, each material particle has 3 degrees of freedom, that is,
two translational degrees of freedom represented by ui (i = 1, 2) and one rotational degree of
freedom denoted by . The displacement component ui describes the macro-motion of a material
particle and the Cosserat rotation  describes its micro-motion (Eringen 1973). In the description
of incremental mechanics, the deformation rate of such a micro-polar continuum is completely
determined by the components  of the strain rate tensor and the components  of the micro-
curvature rate tensor. These are defined as

(1)

Herein  are components of the strain rate tensor for a classical continuum,
 are components of the spin tensor which represents the rigid body rotation or

environmental rotation of a material element resulting from the macro-motion, and  are
components of the so-called Cosserat spin tensor, with eijk being the permutation symbol.
Corresponding to the spin tensor, an angular velocity for environmental rotation is determined by

. Generally, the strain rate tensor for the micro-polar continuum is non-symmetric.
In the special case when the Cosserat rotation coincides with the environmental rotation, the
symmetric strain rate for a classical continuum will be recovered.

Static quantities in work rate conjugation with the strain rates and the micro-curvature rates are
the components of stress tensor σij and the couple stress tensor µ3j. With the couple stresses, the
local equilibrium for a micro-polar continuum reads

(2)

Herein bi and c3 represent components of the body force and the body couple, respectively. Note
that due to the existence of couple stresses, the stress tensor is generally non-symmetric. 

The equilibrium of a micro-polar continuum body with a volume V can also be described in the
weak form:
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where the velocity components  and the Cosserat angular velocity  are independent of the
static quantities. By applying Gaussian integration, the following equation can be obtained:

(3)

where ti = σij nj and m3 = µ3j nj are the surface traction components and the surface couple,
respectively, and nj denotes the outward normal unit vector on the boundary surface S. With Eq. (3)
the boundary conditions can be better understood. On boundaries of a micro-polar (Cosserat)
continuum, either ti or ui, and m3 or , must be prescribed.

2.2 Micro-polar hypoplastic model

The proposed micro-polar hypoplastic model (Huang et al. 2002), which is an extension of the
hypoplastic model for a non-polar continuum developed by Gudehus (1996) and Bauer (1996),
includes the stress tensor, the couple stress tensor and the void ratio as state variables. The evolution
equations for the stress components, the couple stress components and the void ratio read:

(4)

(5)

(6)

Herein  and  are components of the normalized stress and
normalized couple stress,  are components of the deviator of the normalized stress,
d50 denotes the mean grain diameter (which enters the constitutive equations as an internal length)
and . The summation convention for dummy indices is employed here. Note that in the
special case of µ3j = 0 and  or d50 = 0, the original hypoplastic relation by Gudehus (1996)
and Bauer (1996), is recovered from Eq. (4). 

The influence of the mean pressure p = −σkk /3 and the void ratio e on the stress rate and the
couple stress rate are taken into account by a stiffness factor fs and a density factor fd:

(7)

where fb is a factor which can be derived from a consistency condition as shown by Gudehus
(1996), and ei, ec and ed represent the pressure-dependent maximum void ratio, critical void ratio
and minimum void ratio, respectively. The following pressure-dependent relations, proposed for ei

based on experiments by Bauer (1996) and assumed for ec and ed by Gudehus (1996), are adopted:

(8)

Herein α, β, hs, n, ei0, ec0, and ed0 together with the critical friction angle φc, are constitutive
constants which are also included in the non-polar hypopastic model of Gudehus and Bauer. The
calibration of these constants can be carried out as discussed in detail by Bauer (1996) and Herle
and Gudehus (1999). 

u·i w· 3
c

σi j ε· i j µ3jκ· 3j+( ) Vd
V

 ∫ biu
·

i c3w
·

3
c

+( ) Vd
V

 ∫ tiu
·

i m3w
·

3
c

+( ) S,d
S∫+=

w3
c

σ· i j fs aσ
2ε· i j

c σ̂klε·kl
c µ̂3lκ· 3l

*
+( )σ̂i j fd σ̂ i j σ̂ i j

d+( ) aσ
2ε·kl

c ε·kl
c

aµ
2κ· 3l

* κ· 3l
*

++ +[ ],=

µ· 3j d50 fs aµ
2κ· 3j

* σ̂klε· i j
c µ̂3lκ· 3l

*
+( )µ̂3j 2fdµ̂3j aσ

2ε·kl
c ε·kl

c
aµ

2κ· 3l
* κ· 3l

*
++ +[ ],=

e· 1 e+( )ε·kk
c

.=

σ̂ i j = σi j σkk⁄ µ̂3j µ3j d50σkk( )⁄=
σ̂i j

d σ̂ i j δ i j– 3⁄=

κ· 3j
*

d50κ· 3j=
κ· 3j 0=

fs

ei

e
--- 

 
β

fb, fd

e ed–
ed ed–
--------------- 

 
α

== ,

ec

ec0

------
ed

ed0

-------
ei

ei0

------ exp 3p hs⁄( )n–[ ].= = =



Behaviour of interfacial layer along granular soil-structure interfaces 319

The parameters aσ and aµ in Eqs. (4) and (5) are related to the limit stress and the limit couple
stress at stationary states. They are embedded in the current formulation in a different way to the
earlier models by Tejchman and Bauer (1996), Tejchman (1997) and Bauer and Huang (2001), so
that the void ratio does not exceed the critical void ratio at a stationary state. A stationary state is
defined as the simultaneous vanishing of changes in stress, couple stress and void ratio while
deformation is continuing. With the present model stationary states may be reached asymptotically
in a localized zone for continuing monotonic shearing. It has been shown (Huang et al. 2002) that
limit values of the state variables at a stationary state read

(9)

Consequently, the limit stress and the limit couple stress at stationary states satisfy the following
relation:

(10)

Eq. (10) represents a super-ellipsoid surface in  space, which indicates that a coupled limit
condition is embedded in the model. It also provides an interpretation for the parameters aσ and aµ ,
i.e., aσ represents the magnitude of the deviator of the normalized limit stress in the case where the
couple stress is zero (which is related to the internal inter-granular friction resistance against
sliding), and aµ represents the magnitude of the normalized limit couple stress at zero deviatoric
stress (which is related to the internal inter-granular friction resistance against rotation). Numerical
studies have shown (Huang et al. 2002) that the present constitutive model scales the thickness of
the shear localization zones by a characteristic length factor 

(11)

which is proportional to the mean grain diameter and to the ratio (aµ/aσ). Parameter aσ depends on
the critical friction angle of the granular material and the Lode angle in the deviatoric stress plane
as discussed in detail by Bauer (2000). In this work, constant values are assumed for both aσ and
aµ , with aσ being related to the critical friction angle φc according to

(12)

3. Plane shear of an infinite sand layer 

In this work, the shear behaviour along a soil-structure interface is studied numerically by
simulating an infinite sand layer under plane shear (Fig. 1). The sand layer is modelled as a micro-
polar hypoplastic continuum which is bounded by rigid plates. Due to the symmetry condition with
respect to any vertical section, the field variables defined in the sand layer are independent of the
horizontal coordinate x1. Consequently we have , and the non-vanishing
components of the strain rate and micro-curvature rate are:
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(13)

Herein  represents the environmental angular velocity from macro motion.

By neglecting the body force and body couple, the equilibrium equations become

(14)

This means that the stress components σ12 and σ22 are constant across the granular layer, and the
difference of the two shear stress components is related to the gradient of the couple stress on
horizontal planes. For the following discussion, the granular layer is assumed initially to be in a
homogeneous and isotropic state, i.e., 

(15)

Numerical calculations are performed for a medium dense granular layer with an initial void ratio
e0 = 0.6 and an initial pressure p0 = 100 kPa.

Shearing is applied by moving the top layer of the granular body horizontally while fixing the
bottom soil layer. Due to the additional degree of freedom on the boundary of the polar continuum
body, boundary conditions for either Cosserat rotation or surface couple must be prescribed. In this
study, Cosserat rotation on the top of the soil layer is prescribed following a modified form of the
empirical relation proposed by Tejchman (1989). The Cosserat rotation is assumed to be
proportional to the shear displacement normalized by the characteristic length δ, rather than the
mean grain diameter d50, since the thickness of the localized zone is scaled by δ (see also the
numerical results given in Fig. 7). Two special cases for shearing under different confining
conditions are simulated, namely, constant normal pressure shear (CPS) and constant volume shear
(CVS). The boundary conditions for CPS read:
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Fig. 1 Plane shear of a granular layer modelled as a micro-polar hypoplastic continuum
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while the boundary conditions for CVS are:

(18)

Herein h represents the thickness of the soil layer; δ is the characteristic length of the granular soil
as defined in Eq. (11),   is assumed so that the bottom boundary has little influence on the
formation of an interfacial layer; and ψ0 is a small value assigned for rotation to reduce the
influence of the bottom boundary (which is more pronounced in constant volume shear). 

The proportionality coefficient fw depends on the interaction between the grains and the bounding
plate. Tejchman (1989) related fw to the relative roughness of the bounding surface, which is the
roughness defined by Uesugi et al. (1988) divided by the mean grain diameter. In the authors
opinion, such a relation needs further experimental verification to quantify the contributions of grain
rotation and grain sliding to the relative displacement between the grains and the bounding plate
(Bauer and Huang 2001). In the following, it will be assumed that a relative smoother bounding
surface corresponds to a greater value for fw. In the numerical calculations presented in this paper,
different values are chosen for the coefficient fw to reflect the influence of the surface roughness of
the bounding-plate. As the characteristic length δ is used to normalize the numerical results, aµ /
aσ = 1 is assumed in most calculations. Two exceptions, where aµ /aσ is set to 2.0 and 0.5,
respectively, are used to show the influence of the polar parameter. 

Other material constants used for the present calculations are those calibrated for Karlsruhe sand
(Bauer 1996): 

hs = 190 MPa, n = 0.4, φc = 30o, ei0 = 1.02, ec0 = 0.82. ed0 = 0.51, α = 0.14, β = 1.05, d50 = 0.5 mm.

4. Development of interfacial layer

In the following the development of an interfacial layer will be numerically investigated using the
finite element method. The micro-polar hypoplastic model given in the previous section has been
implemented into the program ABAQUS using a 4-noded isoparametric element with additional
rotational degrees of freedom for plane strain problems (Hunag 2000, Huang and Bauer 2003). 

Fig. 2 shows a contour plot of the void ratio from modelling of a CPS test for a prescribed
horizontal shear displacement of u1T = h = 80δ and for fw = 0.05 at the top of the layer. The profile
of the displacement across the height of the layer indicates that the shear deformation is localized in
a zone close to the moving top boundary forming an interfacial layer. The brighter area means

x2 0: u1 u1T= , u2 0, w3
c fw
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δ
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x2 h: u1 0= , u2 0= , w3
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h δ»

Fig. 2 Contour plot of void ratio obtained from a CPS test for u1T = h = 80δ and  fw = 0.05
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higher void ratios as a result of dilation in the interfacial layer.
The development of the interfacial layer along the interface is shown in Fig. 3 for CPS and in Fig. 4

for CVS. During the first stage of shearing, deformation develops within the whole section of the
soil layer, as indicated by the horizontal displacement. Further increase of shear displacement u1T

causes localization. The additional horizontal displacement outside the interfacial layer is nearly
zero (Fig. 3a for CPS), or develops much slower than that inside the interfacial layer (Fig. 4a for
CVS). The thickness of the interfacial layer in this case is about 10 times the characteristic length δ.
Whether a shear test is conducted under constant normal pressure or constant volume condition has
a strong influence on the displacement field, but has little influence on the thickness of the
interfacial layer. Significant grain rotations, accompanied by dilatancy, are observed within the
interfacial layer for both CPS (Figs. 3b, 3c) and CVS (Figs. 4b, 4c). This matches the experimental
observations of Bogdanova-Bontcheva and Lippmann (1975), Löffelmann (1989) and Kashida and
Uesugi (1987). As deformation localizes, Cosserat rotation almost stops developing outside the
interfacial layer. For shearing under constant normal pressure, the volume of the soil body increases

Fig. 3 Development of (a) horizontal displacement, (b) Cosserat rotation and (c) void ratio across the soil
layer for constant normal pressure shear (fw = 0.05)

Fig. 4 Development of (a) horizontal displacement, (b) Cosserat rotation and (c) void ratio across the soil
layer for constant volume shear (fw = 0.05)
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as a result of pronounced dilation in the interfacial layer. However, for shearing under constant
volume, dilation in the interfacial layer causes compression in the rest part of the granular body (see
also Fig. 10b). Thus, the requirement for constant volume is globally fulfilled, i.e., the integral of
the void ratio across the height of the shear layer remains constant.

The distribution of stress and couple stress components are shown in Fig. 5 for CPS and in Fig. 6
for CVS at a shear displacement of u1T = 80δ. The stress components σ22 and σ12 are constant as
required by the equilibrium equations. The gradient of the couple stress µ32 is related to the
difference of the shear stresses (σ12 − σ21). The so called polar effect (Gudehus 1998) vanishes,
except inside the localized zone and at the bottom where a boundary influence exists.

The influence of the polar parameter is shown by the numerical results given in Fig. 7 for CPS
with aµ /aσ = 1.0, 2.0 and 0.5, respectively. In these numerical calculations, the characteristic length
δ is equal to 0.5 mm, 1.0 mm and 0.25 mm, correspondingly. The same finite element mesh is used
and the same coefficient fw = 0.15 is assumed. This indicates a different normalized thickness of the

Fig. 5 Distribution of (a) normal stress components, (b) shear stress components and (c) couple stress
components across the section corresponding to u1T = 80δ (CPS, fw = 0.05)

Fig. 6 Distribution of (a) normal stress components, (b) shear stress components and (c) couple stress
components across the section corresponding to u1T = 80δ (CVS, fw = 0.05)
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sand layer and a different Cosserat rotation applied at the top of the sand layer with 
, and , respectively. It can be seen from Figs. 7(a)

and 7(b) that the thickness of the localized interfacial layer for the three cases is different, with a
thicker interfacial layer arising for the smaller Cosserat rotation (aµ /aσ = 2.0) and a thinner
interfacial layer arising for a larger Cosserat rotation (aµ /aσ = 0.5). However, the normalized
thickness of the interfacial layer for these three cases is the same at large shear deformations (Figs.
7c and 7d).

5. Behaviour of the interfacial layer

The behaviour of the interfacial layer is explained with reference to Figs. 8-13. 
In the calculations, the influence of the surface roughness of the top bounding plate is investigated

by setting fw = 0.05, 0.15, and 0.40, respectively. Similar distributions of horizontal displacement,
Cosserat rotation and void ratio are obtained for both CPS (Fig. 8) and CVS (Fig. 9), but with

w3
c 0.15u1T d50⁄= , 

w3
c 0.15u1T 2d50( )⁄= w3

c 0.15u1T 0.5d50( )⁄=

Fig. 7 Influence of polar parameter in constant normal pressure shear: Distribution of (a) & (c) horizontal
displacement and (b) & (d) Cosserat rotation without and with normalization with the characteristic
length δ ( fw = 0.15)

Fig. 8 Influence of coefficient fw in constant normal pressure shear: Distribution of (a) horizontal
displacement, (b) Cosserat rotation and (c) void ratio across the soil layer
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different thicknesses for the interfacial layer where shear deformation localizes. With a greater value
for fw, which corresponds to a greater ratio of Cosserat rotation to normalized shear displacement
along the interface (indicating a relatively smooth surface condition), a more significant localization
with a thinner thickness occurs. Conversely, a smaller value for fw, which corresponds to a relative
rough surface condition, results in a less significant localization with a thicker thickness. However,
the localized zone has almost the same thickness for CPS and CVS with the same fw as discussed in
the foregoing section.

For shearing of a medium dense granular material shearing under constant pressure, the interfacial
layer shows a pronounced dilation after an initial densification. The void ratio increases and then
tends to a stationary value asymptotically under continued shearing (Fig. 10a). In contrast, the
density of the granular material outside the interfacial layer ceases to vary after an initial increase.
For shearing under constant volume, the void ratio inside the interfacial layer increases to a peak
followed by a steady decrease, while the void ratio outside the interfacial layer decreases steadily
from the earliest stage (Fig. 10b). The difference for the two cases may be attributed to the
continuous increasing pressure in CVS resulting from localized dilation (see Fig. 12). 

Fig. 11 and Fig. 12 show the evolution of the normal resistance Rn = σ22 and the shear resistance

Fig. 9 Influence of coefficient fw in constant volume shear. Distribution of (a) horizontal displacement, (b)
Cosserat rotation and (c) void ratio across the soil layer

Fig. 10 Evolution of void ratio inside and outside the interfacial layer: (a) for CPS and (b) for CVS
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Rs = σ12 normalized by the initial pressure p0. For shearing under constant normal pressure, the shear
resistance Rs first increases steeply to a peak value and then decreases gradually to a stationary
value while Rn stays constant (Fig. 11a). The variation of frictional resistance of the bounding plate
can be expressed by the stress ratio (σ12/σ22) or alternatively by the mobilized wall friction angle,
ϕw, defined as 

(19)

As Rn is constant in CPS, the evolution curves for the wall friction angle are similar to those for the
bounding plate shear resistance. Two stages, characterized by a steep increase and then a gradual
decrease can be distinguished (Fig. 11b). In response to a greater coefficient fw, which corresponds
to a greater grain rotation along the interface, a lower shear resistance (and a smaller mobilized
friction angle) at peak and stationary states is obtained. 

For shearing under the constant volume condition, both the normal and the shear resistance
increase nonlinearly with increasing shear displacement (Fig. 12a). Within the range of shear
displacement imposed, no limit value is reached for these resistances. It can be noted that the

ϕw tan 1– Rs Rn⁄( ) tan 1– σ12 σ22⁄( ).= =

Fig. 11 Evolution of (a) shear resistance and normal resistance per unit area and (b) the wall friction angle on
the interface for shearing under constant vertical pressure (CPS)

Fig. 12 Evolution of (a) shear resistance per unit area and (b) normal resistance per unit area on the interface
under constant volume (CVS)
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increase in normal resistance is due to dilation in the localized zone, which leads to an increase of
shear resistance as a result of surface friction. The limit resistance will be achieved once the
stationary state is reached in the localized zone. The coefficient fw has a strong influence on the
magnitude of the resistances of the bounding plate against shearing. Greater normal and shear
resistances are obtained for a smaller coefficient fw. The wall friction angle ϕw, also shows a steeply
increase phase, but followed by a very gradual decrease tending to a stationary value (Fig. 13,
dotted curves). Like in shearing under constant normal pressure, the peak value and the stationary
value of the wall friction angle decrease as fw is increased. Comparing the wall friction angles for
CPS and CVS (Fig. 13), we see that, while more pronounced peaks are shown for CPS, the same
stationary values are approached for the same coefficient fw. This means that the peak values of the
wall friction angle are influenced by the pressure developed in the granular layer, but the stationary
values are independent of the pressure level. These results therefore also suggest that the influence
of the surface roughness of the bounding plates can be pertinently reflected by the boundary
condition using the relation between the Cosserat rotation and the shear displacement with the
coefficient fw, as assumed in Eqs. (17) and (18).

6. Conclusions

The development of an interfacial layer with a finite thickness along a granular soil-structure
interface is caused by the formation of a zone in the granular soil where shear deformation
localizes. With the proposed micro-polar hypoplastic model and suitably prescribed boundary
conditions, the behaviour of a granular soil-structure interface is investigated by modelling plane
shear of an infinite granular layer located between two parallel rigid plates under the conditions of
constant normal pressure and constant volume.

When grain rotation develops along a bounding structure during shearing, deformation will be
localized in the granular material in a narrow zone along the interface with pronounced dilatancy.
An interfacial layer with the same thickness is obtained for shearing under either constant normal
pressure or constant volume. The thickness of the interfacial layer is scaled by the size of the grains
and it is strongly influenced by the interaction between the grains and the bounding structure. The
rougher the surface of the bounding structure is, the thicker the interfacial layer will develop. When
free dilation is allowed, as in the case of shearing under constant normal pressure, the shear

Fig. 13 Comparison of the wall friction angle for CPS and CVS
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resistance reaches a peak and then tends to a stationary value. When dilation in the granular
material is confined, as in the case of shearing under constant volume, the shear resistance and the
normal resistance increase continuously, without a recognizable peak. The evolution of the wall
friction angle, however, shows a peak and tends to a stationary value for continuous shearing. The
stationary value for the wall friction angle is influenced by the surface roughness of the bounding
structure, but it is independent of how the bounding structure confines the granular body.
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