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Abstract. This investigation presents an efficient method for identifying modal characteristics from the
measured displacement, velocity and acceleration signals of multiple channels on structural systems. A
Vector Backward Auto-Regressive model (VBAR) that describes the relationship between the output
information in different time steps is used to establish a backward state equation. Generally, the accuracy
of the identified dynamic characteristics can be improved by increasing the order of the Auto-Regressive
model (AR) in cases of measurement of data under noisy circumstances. However, a higher-order AR
model also induces more numerical modes, only some of which are the system modes. The proposed
VBAR model provides a clear characteristic boundary to separate the system modes from the spurious
modes. A numerical example of a lumped-mass model with three DOFs was established to verify the
applicability and effectiveness of the proposed method. Finally, an offshore platform model was
experimentally employed as an application case to confirm the proposed VBAR method can be applied to
real-world structures.

Key words: vector backward auto-regressive model (VBAR); modal identification; offshore platform
model; finite element method; experimental dynamics.

1. Introduction

Modal parameters, including natural frequencies, damping ratios and mode shapes, govern the
dynamic behavior of a structural system. Obtaining accurately the modal parameters from test data
is key in applying vibration control, and monitoring and detecting structural failures. Li and Ko
(1987) used the Auto-Regressive Moving Average (ARMA) model to estimate the system modes for
detecting and monitoring the structural failure of an offshore platform. Li et al. (1993) employed a
Vector Auto-Regressive (VAR) model to estimate the modal parameters of ship structures. Viero and
Roitman (1999) employed the structural parameter identification method to detect the damage of
offshore platforms. Bernitsas and Suryatama (1999) used the large admissible perturbations with
mode compensation to solve redesign problems to meet the requirements related to natural
frequencies and mode shapes of offshore structures. 
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Many methods for modal identification have been developed over the last three decades. The
modal identification methods can be categorized into time-domain and frequency-domain methods
according to the processing domain. Frequency-domain methods, such as the FFT-based method
(Cooley and Turkey 1965), are popular and predominant in engineering practice today. However, the
closely spaced modes may not be easily recognized if the resolution of the frequency is not
sufficiently high. 

The time-domain methods are particularly useful for many modes in a multi-channels
measurement system, or in the case of closely spaced and non-proportional modes. Ibrahim’s time-
domain method (Ibrahim and Mikulcik 1973), the complex exponential method (Ewins 1984), and
the Eigen-system Realization Algorithm (ERA) (Juang and Pappa 1985) are well-known time-
domain approaches developed from 1970s to the mid-1990s. The time series models, such as the
ARMA model and the AR model, are also useful approaches for identifying the modal parameters
of structures. The ARMA model is computationally complicated and the estimation of system
parameters may be unstable. A higher-order AR model in place of the ARMA model (Kay 1988)
can overcome this difficulty. Hung et al. (1998) developed a procedure based on the state equation
of the VAR model to identify the modal parameters and frequency response function of structures in
multiple output measurement system. Kumaresan and Tufts (1982) developed a backward prediction
model to identify the natural frequencies and damping ratios of a dynamical system with a single
channel measurement. In a common AR model, the output vector in the present step is predicted by
the linear superposition of output vectors in previous steps. On the contrary, the proposed backward
AR model can predict the present output vector from a linear combination of the future output
vectors. Hollkamp and Batill (1991) developed a single-input and single-output backward ARMA
model for parameter identification. Cooper (1992) employed the backward prediction error model to
identify the natural frequencies and damping ratios, and pointed out that the backward model has
the advantage of being able to distinguish system modes from spurious modes. The authors (Hung
and Ko 2002) have investigated the basic characteristics of the modal identification method that uses
the Vector Backward Auto-Regressive (VBAR) model, and the results reveal some advantages of the
VBAR model.

In this paper, the VBAR model is applied to establish the state equation from the responses
measured with multiple sensors on structures. The modal parameters of complex modes and normal
modes of structures can be extracted from the system matrix of the identified state-space system,
providing that the VBAR model is identified from the measured data.

2. Equations of motion

The motion of a structure with n DOFs under time-variant loading in configuration space can be
expressed by the second-order differential equation for viscous damping,

(1)

where  and  are the force vector and the state vector, respectively; M, ζ and
, represent the mass, damping and stiffness matrices, respectively; the notation (· )

indicates differentiation with respect to time;  is the input influence matrix that
characterizes the positions and types of inputs; r is the number of inputs.

Mz·· t( ) ζz· t( ) Kz t( )+ + Fu t( )=

u t( ) Rr 1×∈ z t( ) Rn 1×∈
K Rn n×∈

F Rn r×∈
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For a measurement system that includes p sensors on a structure, the output equation that defines
the relationship between the measured response, , and the model response is,

(2)

where cd, cv and , are the output influence matrices of displacement, velocity and
acceleration, respectively. The elements in matrices cd, cv and ca are Boolean parameters that specify
the measured DOFs and the types of sensors.

A state vector that consists of displacement and velocity vectors is introduced:

(3)

Eqs. (1) and (2) can be transformed into the state equation of motion and the output equation,
respectively.

(4a)

(4b)

where  and  are the system matrix, the input matrix,
the output matrix and the transmission matrix in the state space, respectively.

(5a,b)

(5c,d)

A discrete-time state equation of motion and output equation can be obtained through the
sampling procedure with a sampling time interval ∆t.

(6a)

(6b)

where  and . The subscript k is the integer time index in time step
. 

3. Vector backward auto-regressive model

For a structure with p measured output channels and N data points in each channel, the output
vector in time step k can be expressed as a linear superposition of the output vectors in next q time
steps:
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(7)

where  and  are the parameter matrices and the error vector, respectively. Eq. (7)
is a q-order VBAR model that consists of p-channels, and is represented by VBAR (p, q). The
parameter matrices of the VBAR model specify the pivotal dynamical characteristics of the
structural systems. Eq. (7) can be expanded from time steps 1 to N − q and expressed in a compact
matrix form,

(8)

where  is the output matrix that consists of output vectors from time steps 1 to
N −q;  and  are the VBAR coefficient matrix, the output
data matrix and the error matrix, respectively.

(9a,b)

(9c,d)

The VBAR coefficient matrix can be computed by the least squares method and expressed as
follows.

(10)

where W† is the Moore-Penrose pseudo-inverse of W.
A state vector , consisting of q time steps of output vectors, is defined as,

(11)

Both sides of Eq. (7) also can be expanded from time steps k to k + q − 1 to establish a discrete
backward state equation and output equation as follows.

(12a)

(12b)
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where  and  are the discrete state system matrix,
the input matrix, the output matrix and the transmission matrix, respectively. These are expressed as
follows.

(13a,b)

(13c,d)

The eigenvalues of the backward state equation can be determined by the characteristic
polynomial of system matrix Ad (Gohberg 1982),

(14)

If all the eigenvalues of Eq. (14) are arranged in descending order, then,

(15a)

(15b)

The first 2n eigenvalues, which are n pairs of conjugate complex variables, are the system modes,
and the leftover eigenvalues are spurious modes.

A complex z-plane is defined by a real horizontal axis and an imaginary vertical axis. If the pq
eigenvalues determined from Eq. (14) are placed on the z-plane, then the eigenvalues located outside
or on the unit circle are the system modes, and those inside the unit circle are the spurious modes.
The unit circle of the z-plane plays a significant role as a characteristic boundary to separate the
system modes from the spurious modes.
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Fig. 1(a) Forward time series, (b) Backward time series
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Fig. 1(a) and 1(b) show the time history of a measured acceleration in the forms of forward and
backward time series, respectively. The forward time series of the system response is convergent,
and the backward time series is divergent. Noise is essentially random and is non-divergent for both
forward and backward time series. The magnitudes of all eigenvalues in the common forward AR
model are less than or equal to one. However, for the BAR model, the magnitudes of the
eigenvalues of system modes are greater than or equal to one, and for non-system modes are less
than one.

3.1 Reduction of discrete state space model

The number of DOFs of a continuous structure is theoretically infinite. In practice, the sampling
rate and the bandwidth of analysis are limited. The number of system modes of a dynamical
measurement system is assumed to be n. If the measurement system has p-channels, then the
number of eigenvalues of the VBAR (p, q) model is the product of p and q, pq. The order of the
VBAR model, q, should be selected such that pq greatly exceeds 2n to obtain the accuracy modal
parameters in noisy measurement circumstances. The surplus pq− 2n spurious eigenvalues must be
removed because of the overspecified order of the VBAR model. Therefore, Eq. (12) must be
reduced.

The system matrix in Eqs. (12a) and (13a) can be decomposed as,

(16)

where Ψ is the eigenvector matrix that consists of pq eigenvectors, and  is the diagonal eigenvalue
matrix of pq eigenvalues. The eigenvector and eigenvalue matrices can be partitioned according to
the system modes and spurious modes as,

(17a,b)

where the subscripts “s” and “n” indicate the “system” parts with regard to the 2n system modes
and the “non-system” parts with regard to the pq − 2n spurious modes, respectively. The matrices
Bd,  and Cd are also partitioned as,

(18a,b)

(19)

The reduced discrete backward state space model, corresponding to the system modes, is
expressed as,

(20a)

(20b)
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where  and  are the reduced state system matrix,
the input matrix, the output matrix and the transmission matrix, respectively. They are,

(21a,b)

(21c,d)

The reduced discrete backward model can be transformed into a forward state space model as,

(22a)

(22b)

where  and  are expressed as follows. 

(23a,b)

(23c,d)

Eq. (22) is the equivalent system of Eq. (6).

3.2 Extraction of the normal modes 

The matrix pair  described by Eqs. (23a) and (23c) can be converted into continuous
matrix pair , as follows,

(24a,b)

The identified matrix pair  and the matrix pair  in Eqs. (5a) and (5c) have the
same dynamic characteristics in the case of noise-free system. The identified system matrix  can
be partitioned as,

(25)

The sub-matrices  and  generally are not null matrix and identity matrix, respectively. The
complex modes can be calculated from the matrix pair . A nonsingular transformation
matrix can be used to extract the normal modes in the same form as the pair . The
transformation matrix is, (Hung et al. 2002)

(26)
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Then, the transformed matrix pair  can be expressed as follows.

(27a,b)

where,

(28)

The lower-left partition of A* is the equivalent of −M −1K in the system matrix of Eq. (5a), and can
be used to extract the normal modes.

3.3 Algorithm of modal identification by VBAR model

The procedures of the proposed method can be summarized as follows.
(1) A VBAR (p, q) model is established from measured data. The parameter matrices of the

VBAR model are calculated using the least square method. See Eqs. (8) to (10).
(2) A discrete backward state equation is established by expanding the q-time steps of output

vectors in the VBAR model. See Eqs. (11) to (13).
(3) The eigenvalues and eigenvectors of the discrete system matrix, Ad, are calculated by Eq. (16).

Then, the system modes are separated from spurious modes by Eq. (15).
(4) The discrete state space model is reduced to a lower order model that corresponds to the

system modes. See Eqs. (20) to (21).
(5) The reduced backward state space model is transformed into an equivalent forward discrete-

time state equation of motion, and an output equation. See Eqs. (22) to (23).
(6) The equivalent forward discrete-time state model is transformed into a continuous state space

model. See Eq. (24)
(7) The complex modes can be calculated from matrix . See Eq. (24a).
(8) The identified matrix pair  is transformed into the equivalent matrix pair .

See Eqs. (26) to (27).
(9) The normal modal parameters can be extracted from the equivalent . See Eq. (28).

4. Examples

A numerical example and an experimental example are considered to illustrate the feasibility of
the proposed method to identify the modal parameters of structures. The Modal Assurance Criteria
(MAC) (Allemang and Brown 1983) is used to check the correlation between the identified mode
shape φei and the analytical mode shape φai. It is defined as,

(29)

The value of the MAC is between zero and one. When the two mode shapes are consistent, the

A* C*,〈 〉

A* TAT 1– , C* C T 1–==

A* 0  I

M 1– K( )
*
  – M 1– ζ( )

*
=

A
A C,〈 〉 A* C*,〈 〉

M 1– K( )
*

MAC( )i

φai
T φei

2

φai
T φai( ) φei

T φei( )
------------------------------------ i 1 … n., ,=,=
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resultant value of MAC is close to unity. In contrast, when two mode shapes are uncorrelated, the
resultant MAC value is nearly zero.

4.1 Numerical simulation for a lumped-mass system with three DOFs

Fig. 2 shows a lumped-mass dynamic system with three DOFs. Table 1 shows the mass, damping
and stiffness matrices of this model. The damping matrix is assumed to be non-Rayleigh damping.
Modal parameters were identified in the free vibration case. The initial displacements of the three
DOFs are set to: [0, 0, 0.1]. The sampling frequency, 3 Hz, is selected to be approximately ten times
the maximum natural frequency of the system with three DOFs. The number of data points

Fig. 2 A lumped-mass dynamic system with three DOFs 

Table 1 Mass, damping, and stiffness matrices in the three DOFs model

Mass matrix [M] Damping matrix [ζ] Stiffness matrix [K]

3  0  0
0  2  0
0  0  1

0.1  0.1–   0
0.1–   0.3  0.2–
0  0.2–   0.2

6  2–   0
2–   3  1–
0  1–   1

Fig. 3 Time history responses of 3 DOFs model 
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associated with each DOF is 1024. The acceleration, velocity, and displacement responses at m1, m2

and m3 were simulated to elucidate the availability in the case of combined measurements. Fig. 3
shows time histories at various positions.

The VBAR (3,10) model is initially selected to illustrate the separation of system modes from
spurious modes, and thereby to demonstrate the advantage of the proposed method in the selection
of system modes. Fig. 4 shows the distribution of the 30 eigenvalues of the model. Symbols ‘o’ and
‘x’ indicate the system and spurious eigenvalues, respectively. The figure shows clearly that six
system eigenvalues are outside the unit circle.

The modal identifications under noise-free conditions for a system with 1-, 3-, 5- and 8-times the
damping matrix, ζ, in Table 1 were examined to show the effect of the damping level on the
identified results. Fig. 5 presents the magnitudes of all 30 eigenvalues at various damping levels.
The magnitudes of the first six eigenvalues of the system at various damping levels are greater than
one, so the number of vibration modes is easily identified as three. Clearly also, the magnitudes of
the system eigenvalues in a heavily damped system exceed those of a lightly damped system.
Hence, the eigenvalues are farther from the unit circle for a more heavily damped system.
Consequently, the extraction of the system modes of a heavily damped system is easier than that of
a lightly damped system.

The effect of various noise levels on the estimation of modal parameters is checked to show the
proposed approach can be applied to a real-world structure. The noise is assumed to be a white
noise with zero mean and various variances of 3%, 6% and 10% of the maximum responses. When
the noise level increases, the order of VBAR model must be increased to yield accurate results. The
VBAR model with orders 5, 20, 40 and 60 are selected for noise levels of 0%, 3%, 6% and 10%,
respectively. Table 2 lists the identified modal parameters at various noise levels. The results
indicate that the identified modal parameters are very consistent with the exact solution at various
noise levels.

4.2 Experimental modal identification of an offshore platform model

A 1:18.4 scale model of an offshore platform shown in Fig. 6 is considered as an experimental

Fig. 5 Magnitudes of eigenvalues at various damping
levels

Fig. 4 Distribution of eigenvalues for VBAR(3,10)
model
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Fig. 6 1:18.4 scale model of a fixed platform

Table 2 Identified eigenvalues, natural frequencies, damping ratios and MAC values at various noise levels

Mode Eigenvalues
Natural frequencies

(Hz)
Damping ratios

(%)
MAC

Exact
1
2
3

−0.0093 ± 0.5839i
−0.0953 ± 1.2040i
−0.0871 ± 1.6349i

0.0928
0.1911
0.2624

0.0159
0.0789
0.0532

0% noise 
VBAR
(3,5)

1
2
3

−0.0093 ± 0.5839i
−0.0953 ± 1.2040i
−0.0871 ± 1.6349i

0.0928
0.1911
0.2624

0.0159
0.0789
0.0532

1.0000
1.0000
1.0000

3% noise 
VBAR 
(3,20)

1
2
3

−0.0093 ± 0.5840i
−0.0937 ± 1.2043i
−0.0854 ± 1.6356i

0.0929
0.1913
0.2623

0.0159
0.0776
0.0522

1.0000
1.0000
0.9988

6% noise
VBAR
(3,40)

1
2
3

−0.0092 ± 0.5840i
−0.0926 ± 1.2046i
−0.0833 ± 1.6357i

0.0928
0.1910
0.2631

0.0159
0.0781
0.0522

1.0000
1.0000
0.9945

10% noise
VBAR
(3,60)

1
2
3

−0.0091 ± 0.5836i
−0.0939 ± 1.2057i
−0.0839 ± 1.6363i

0.0928
0.1916
0.2621

0.0157
0.0777
0.0512

1.0000
0.9997
0.9945

Fig. 7 Arrangement of the orientation and position
of accelerometers on the platform 
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case. The platform model is built of stainless steel tubes and a top-plate. Table 3 lists the geometric
and material properties of the structural members. Tubes 1, 2 and 3 are used as vertical columns,
horizontal beams and inclined braces, respectively. Fig. 7 depicts the arrangement of the orientation
and the positions of the accelerometers on the platform structure.

A PCB impulse hammer was used to impact horizontally the top plate. The free response signals
were collected by a multi-channels data acquisition system at a sampling frequency 100 Hz. The
number of data per channel is 1024. Fig. 8 shows the time history and the Power Spectrum Density
(PSD) of acceleration measured by sensor 2X. Fig. 8(b) shows three large peaks with frequencies of
10.9, 20 and 29 Hz. These peak frequencies correspond to the natural frequencies of the platform
structure. The first two modes of the structure, at 10.869 and 11.204 Hz, cannot be identified only
from the PSD diagram because of the limited frequency resolution. 

A 3D-FEM modal analysis using the ANSYS package is carried out for comparison. Fig. 9

Table 3 Material and geometrical parameters of the platform model

Material
properties

Young’s modulus (MPa)
Density (kg/m3)
Poission’s ratio

2.07e5
7809
0.3

Geometric 
parameters

Top plate Thickness (mm) 3

Tube 1
Outer diameter (mm)

Thickness (mm)
19.1
0.9

Tube 2
Outer diameter (mm)

Thickness (mm)
15.9
1.2

Tube 3
Outer diameter (mm)

Thickness (mm)
12.7
1.2

Fig. 8 Time history and PSD of measured acceleration from sensor 2X 
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shows the relative mode shapes of the first four modes calculated by FEM. The VBAR model of
order 30 was used in this experimental case. Table 4 shows the modal parameters obtained by FEM
analysis and modal identification. The results of modal identification are similar to those of FEM,

Fig. 9 Mode shapes calculated by FEM

Table 4 Comparison of modal parameters obtained by FEM and VBAR model

Mode Vibration type FEM
Frequency (Hz)

VBAR(8,30)

Frequency (Hz) Damping ratio (%) MAC

1
2
3
4

Bending-1
Bending-2
Torsion-1
Axial-1

10.932
10.934
19.990
29.258

10.869
11.204
19.784
28.986

0.17
0.17
0.49
0.38

0.991
0.996
0.973
0.995
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and the MAC values of the first four modes are higher than 0.97. Fig. 10 shows the identified
relative mode shapes at measured DOFs. The results reveal that the identified natural frequencies
and mode shapes of the four modes agree with those obtained by FEM analysis. Additionally,
modal identification can approximately estimate the damping ratio, which cannot be estimated from
a FEM package.

The global modes of platform structure on lower frequencies were considered in this case. The
orientation, the position, the sampling rate, and the filtering bandwidth of the sensors were
arranged for these modes. Only four modes are identified from the experimental data on the
platform structure because of the restriction of the measurement bandwidth. The first four global
mode shapes of top storey are relatively larger than those of lower storeys below 1.920 m (See
Fig. 6), because the bottom of structure is constrained. However, the modes shapes of lower
storeys may be larger than those of top storey in local modes or some global modes on higher
frequencies.

Fig. 10 Relative mode shapes identified by VBAR model
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5. Conclusions

This investigation has developed a VBAR model and its associated state space system for the
identification of modal parameters from multi-channels response data. The proposed VBAR method
accurately identifies not only the natural frequencies and damping ratios, but also the mode shapes.
Under noisy measurement conditions, a higher-order VBAR model can improve the accuracy of the
identified modal parameters. The proposed method provides a clear characteristic boundary to
separate the system modes from the spurious modes. The extraction of system modes of a heavily
damped system is easier than that of a lightly damped system.

The proposed method can also be applied to forced vibration cases, if the frequency bandwidth of
the exciting force is sufficiently wide. The applications may be somewhat limited, if the exciting
forces have narrow frequency bandwidths. A further study to prevent the spurious modes from
exciting forces is under way. 
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