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Analysis of circular plates on two - parameter
elastic foundation

Ahmet Saygun† and Mecit Çelik‡

Faculty of Civil Engineering, Istanbul Technical University, Maslak 80626 Istanbul, Turkey

(Received October, 2001, Accepted October, 2002)

Abstract. In this study, circular plates subjected to general type of loads and supported on a two-
parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a
fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically
assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the
deflection of the soil surface outside the domain of the plate in order to establish the interaction between
the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear
parameters (CT) of the foundation are expressed depending on the elastic constants (Es, νs) and the
thickness of compressible soil layer (Hs) and they are calculated with a suitable iterative procedure. Using
ring sector elements presented in this paper, permits the generalization of the loading and the boundary
conditions of the soil outside the plate.

Key words:  ring sector compatible plate finite element; the coefficient of subgrade reactions; shear
parameter coefficient; mode shape parameter.

1. Introduction

As known, in order to perform a better model than the Winkler hypothesis Pasternak (1954),
Vlasov and Leontev (1966) developed a two-parameter model elastic foundation and analysed
beams and slabs on it. Vlasov, in his model, introduced a parameter γ to characterize the distribution
of the vertical displacement in the elastic foundation. Jones and Xenophontes (1977) using
variational principles, strengthened the Vlasov model by establishing a relationship between the
parameter γ and the displacements of the beam or slab on the foundation. Vallabhan et al. (1988,
1991) developed an iterative technique to determine the γ parameter numerically for beams and
rectangular plates on elastic foundations. Vallabhan and Dalo lu (1997) employed the finite element
method. Four-noded rectangular finite elements with 12 degrees-of-freedom are developed to model
the slab and the soil along with four degrees-of-freedom elements for the beams that stiffen the slab.
Brown (1969), Burmister (1956) studied circular rafts on a elastic foundation under uniformly
distributed load. Vallabhan and Das (1991) extended their model for the analysis of axial symmetric
circular tank foundation. Finite element solution given by Çelik and Saygun (1999) used the similar
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iteration principle, given by Vallabhan, to determine the γ parameter and the deflections of the soil
around the plate was also considered.

In this study, using the full compatible ring sector finite element developed by Saygun (1974), this
method is extended to circular plates subjected to general loading.

2. Governing equation of circular plates on two parameter foundation

The governing equation of the deflection of the plate w(r, θ ) on a two- parameter elastic
foundations can be expressed as

(1)

where D is the flexural rigidity of the plate , q external load on the plate, C
the elastic bedding coefficient and 2CT the shear parameter coefficient. Laplacian operator ∆ in the
polar coordinates is.

(2)

The governing equation for the deflection of the soil surface outside the domain of the plate
becomes,

(3)

The mode shape function φ (z) defining the variation of the vertical displacement in the vertical
direction inside the soil layer, has the boundary conditions:

(4)

where H is the thickness of the compressible soil layer supposed to be known.
By minimizing the total potential energy function by φ (z) in the domain of the soil ,

the function φ (z) can be expressed as

(5)

where γ denotes the mode shape parameter. Furthermore, the elastic bedding coefficient C and the
shear parameter coefficient 2CT can be obtained as follows depending on the mode shape parameter γ :

(6)

(7)

where Es, νs and Gs are the elastic constants of the soil. The mode shape parameter γ is determined
in polar coordinates as follows:
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(8)

As seen in Eqs. (6)-(8) the elastic bedding coefficient (C) and the shear parameter coefficient (CT)
depend on the material properties, the thickness of compressible layer of the soil and the coefficient γ .
On the other hand, γ depends on the deflection shape of the system, subjected to the external load.
It is obvious that the iterative method, suggested by Vallabhan and Das (1991), has to be used in the
numerical solution. By assuming an initial value for γ the coefficients C and 2CT can be computed
and the system, combined with plate and soil finite elements, is analysed. Then a new γ can be
computed by using Eq. (8) and the procedure is repeated until the difference between the two
successive values of γ will be less than a prescribed value. 

3. Fully compatible ring sector plate element

Consider a ring sector plate as shown in Fig. 1. As in the case of the rectangular plate element
developed by Bogner et al. (1966), a deflection function that ensures both the deflection and slope
compatibility at the boundaries of ring sector element must be expressed at least with 16 nodal
degrees of freedom,

(9)
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Fig. 1 Ring sector plate finite element
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or in matrix form

(10)

where [d] is a column matrix of nodal displacements and [Ad] is a line matrix which contains 6
corresponding displacement functions on the element.

The numbering and sign convention of nodal displacements, which are the vertical displacement,
two slopes in radial and circumferential directions and torsional curvatures  at each
node, are shown in Fig. 1.

The functions wi (r, θ ), that determine the displacement shape on the element due to unit nodal
freedoms, are product of functions in radial and angular directions. 

Choosing the origin of the variable x at the middle radius, the radial coordinate at any point of the
element can be expressed as

(11)

and setting

a = R1 − R2 (12)

the variation in radial direction can be expressed with a simple third order polynomial of x.
The four polynomial expressions corresponding to unit deflection or slope at the ends r = R1

(x = a/2) and r = R2 (x = −a/2) are given below:

       Function Boundary Condition

(13a)

(13b)

(13c)

(13d)

In angular direction the functions have to contain trigonometric functions such as sinθ and cosθ to
satisfy rigid body motion. For this reason the shape functions depending on θ are chosen as follows
instead of third order polynomial function:

(14)

The coefficients ai can be found by using the corresponding boundary conditions at θ = α/2. The
functions and their corresponding boundary conditions are listed as follows:
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        Function    Boundary Condition

(15a)

 (15b)

 (15c)

 (15d)

The matrix  [Ad] in Eq. (10) consists of combination of functions mentioned above. 

(16)

This deflection function satisfies rigid body motion conditions and the case of axial symmetry.
Consequently the stiffness matrix derived from these functions successfully passes all the patch tests.

4. Stiffness matrix

Internal forces of the element can be obtained as follows depending on displacement shape in
polar coordinate.
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As known the stiffness matrix of the plate element in bending [k], which relates nodal forces to
nodal displacements as

(18)

can be determined as follows by using the virtual work principle:

(19)

The coefficients of the matrix [k] in polar coordinates is given below.

     (20)

Specially if the thickness of the element is assumed variable, numerical integration using Gaussian
weighting coefficients is suitable to compute the stiffness matrix.

5. Stress-nodal displacement relation

When the system has been analysed for the nodal displacements, the curvatures at each nodes can
be obtained as follows:

(21)

where each column of the matrix [Bb] denotes the curvatures at the nodes due to unit nodal
displacement. The bending and twisting moments can be computed as follows

(22)

By using the following abbreviation. 

(23)

The matrix [Bb] is given in Table 1 where χs, χθ and 2τ denote the bending curvatures in radial
and angular direction and the torsion curvatures, respectively.
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6. Elastic bedding and shear parameter matrices

The inclusion of elastic bedding and shear effect of the soil to the equilibrium equation of the
plate element can be made easily using the procedure adopted by Çelik and Saygun (1999). The
final equation becomes

(24)

where [C] and [CT] are the elastic bedding and shear effect matrices. Their terms can be expressed
as follows:

(25)

(26)

They will be computed numerically just as the stiffness matrix.
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7. Ring sector soil element

In the present study a finite element of ring sector shape is used also to determine the deflection
surface of the soil. The governing differential equation outside the domain of the plate Eq. (3)
denotes an analogy behaviour of shear plate which has a shear rigidity  and layed on
elastic foundation having an elastic bedding coefficient C. The displacement shape can be defined
with four d.o.f. shown in Fig. 2, in the following form 

(27)
 
The shape functions of the element consist of linear functions in radial direction and equivalent to

linear function in angular direction. These functions are listed below.

   Function  Boundary Conditions

(28a)

(28b)

(28c)

  (28d)

The matrix [Ad]s depending on above functions is given as follows.

(29)

Elastic bedding and shear parameter matrices in ring sector soil finite element can be computed as
follows in polar coordinates.
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Fig. 2 Ring sector soil finite element
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(30)

 (31)

These matrices is given below.

(32)

The terms of elastic bedding and shear parameter matrices are found as follows. 
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(34b)

   (34c)

  (34d)

(34e)

(34f)

CT22 = CT11, CT23 = CT14, CT24 = CT13, CT44 = CT33 (34g)

By using the stress-displacement relationship, the shear forces at the nodes of soil element can be
obtained as follows
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∂w
∂r
------- 1

a
---– 1

a
---

∂w
r∂θ--------- b

2R2
---------– b

2R2
---------

∂w
∂r
------- 1

a
---– 1

a
---

∂w
r∂θ--------- b

2R1
---------– b

2R1
---------

∂w
∂r
------- 1

a
---– 1

a
---

∂w
r∂θ--------- b

2R1
---------– b

2R1
---------
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the matrix which relates the slopes at each nodes to nodal displacements is given in Table 2.
where the following abbreviations are used.

(36)

(37)

8. Computation of the mode shape parameter

The new mode shape parameter γ has to be obtained by Eq. (8), after determining the deformed
shape w(r, θ) of the system. The integral terms of Eq. (8) can be evaluated for every plate and soil
element separately. They are extended to the whole system by taking the summation of each
element’s contribution.

The deformed shape and its partial derivatives with respect to variable r and θ with an element
can be given as

(38)

(39)

where the nodal freedoms of the element are known. Hence, the integral terms of an element

(40)

(41)

can be calculated using the [C] and [CT] matrices which are already found.

(42)

(43)

The effects of all the elements can be summed up for the whole system, as follows:

(44)

(45)

a R1 R2–=

b cotan
α
2
---=

w widi
i 1=

n

∑=

∂w
∂r
------- ∂w

r∂θ
---------+

∂wi

∂r
--------

∂wi

r∂θ
---------+ 

  di
i 1=

n

∑=

w2dA∫∫ widi
i 1=

n

∑ 
 
 

wjdj
j 1=

n

∑ 
 
 

Ad∫∫ wi∫∫ wjdA 
  didj

j 1=

n

∑
i 1=

n

∑= =

∂w
∂r
------- 

 
2 ∂w

r∂θ
--------- 

 
2

+ Ad∫∫
∂wi

∂r
--------di

i 1=

n

∑ 
 
  ∂wj

∂r
--------dj

j 1=

n

∑ 
 
  ∂wi

r∂θ
---------di

i 1=

n

∑ 
 
  ∂wj

r∂θ
---------dj

j 1=

n

∑ 
 
 

+ Ad∫∫=

w2 Ad∫∫ 1
C
---- d[ ]T C[ ] d[ ]=

∂w
∂r
------- 

 
2 ∂w

r∂θ
--------- 

 
2

+ Ad∫∫ 1
2CT

--------- d[ ]T CT[ ] d[ ]=

w
2
rdrdθ

θ 0=

2π

∫
r 0=

∞

∫ 1
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---- d[ ]T C[ ] d[ ]

el
∑=

∂w
∂r
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 
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 
2

+ rdrdθ
θ 0=

2π

∫
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∞
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As a result, the mode shape parameter can be obtained by using the above relations without
requiring any additional algorithm.

8.1 Numerical example 1

Axially symmetric plates having various boundary conditions are analysed for various types of
loading cases in order to check the convergence of the plate finite element developed by Saygun
(1974), and results are given in Table 3 along with the results given by Szilard (1974) where ρ = r/r0.
In the numerical solution Poisson’s ratio is taken 0.2 and the plate is divided six plate finite
elements in radial direction. The angular width α of the element has not any effect in axially
symmetric displacement case and can be taken any value.

Fig. 3 Axial symmetric plates (r1/r0 = 0.5)

Table 3 Vertical displacements and bending moments

 mϕ

Plates ρ = 0.0 ρ = 0.5 ρ = 2/3 ρ = 1 ρ = 1

a
Szilard (1974) 2.098 1.418 
Saygun (1974) 2.098 1.418

b
Szilard (1974) 0.361 0.238 −0.5625 −0.1125 
Saygun (1974) 0.361 0.239 −0.5539 −0.1108 

c
Szilard (1974) 1.941
Saygun (1974)  1.942 

w
p0r 0

4

64D
---------- w

Pr0
2r1

8D
------------- mr

p0r
2

8
---------

Fig. 4 Axial symmetric plate 
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8.2 Numerical example 2

Axially symmetric plate, of variable thickness subjected uniformly distributed load is analysed.
Poisson’s ration is 0.25 and plate is divided to four elements in radial direction and deflection at the
center is given below (H/h = 1.5).

8.3 Numerical example 3

Circular plate, which is shown in Fig. 5 under the concentrated load at the centre and supported at
three points, is analysed by using the symmetry conditions, i.e., only one third of the plate is
considered. In solution Poisson’s ratio is taken 0.25 and plate is divided to six element in radial
direction and four element in angular direction. Central displacement is given below.

Fig. 5 Circular plate suported at three points

Fig. 6 Structural system and loading

Fig. 7 Fiuite element mesh
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8.4 Numerical example 4

In this example circular plate, shown in Fig. 6 subjected by load p = p0ρ cosϕ, is analysed. Using
symmetry and antisymmetry properties only one fourth of the plate is considered. Plate is divided to
four elements in radial direction and three element (α = 30, Fig. 7a) then one element (α = 90, Fig. 7b)
in angular direction. In this example load matrices of elements are obtained numerically by using
the integral formula . Resultant vertical displacements and bending moments are
given in Table 4 where the following dimensions are used ν = 0.20, and D = 468.75 tm.

The results obtained in this study and given by Szilard (1974) are quite in agreement. Since the
displacement function expressed at (16) satisfies the first harmonique deflection case, the number
of elements along the angular direction does not change the results and even one element is
sufficient.

8.5 Numerical example 5

Circular tank foundation investigated by Vallabhan and Das (1991) for various loading cases is
analysed to check the convergence of plate and soil element on the two-parameter foundation. Ring
sector finite elements are used for the plate as well as the for the soil. The mode shape parameter γ
calculated and given comparatively with the results of Vallabhan. As can be seen, the two results are
in good agreement. The numerical values of the parameter are assumed to be.

· Radius of the plate R = 10 ft (3.05 m).
· Modulus of elasticity of the plate Ep = 3 × 106 psi (22.7 GPa)
· Poisson’s ratio of the plate νp = 0.2.
· Thickness of the plate h = 0.8 ft (0.24 m).
· Depth of the soil foundation H= 10 ft (3.05 m).
. Modulus of elasticity of the soil =3 x 103 psi (22.7 MPa)
. Poisson’s ratio of the soil νs = 0.2

Pi pwirdθdr∫∫=

Table 4 Vertical displacements and bending moments

 Szilard (1974) Saygun (1974)

α = 30 α = 90

  ρ = 1/4
ϕ = 0o

w (cm)  0.14583  0.14564 0.14569
Mr  0.40625  0.41921 0.41934
Mθ  0.20625  0.20766 0.20764

  ρ = 1/2
ϕ = 0o

w (cm)  0.21333  0.21319 0.21323
Mr  0.65000  0.67583 0.67620
Mθ  0.35000  0.35475 0.35431

  ρ = 3/4
ϕ = 0o

w (cm)  0.15750  0.15744 0.15746
Mr  0.56875  0.60784 0.60764
Mθ  0.36880  0.37639 0.37591
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Loading case 1. A uniformly distributed load = 500 psf (26.3 kN/m2)

Fig. 8 Uniformly load case

Fig. 9 Vertical displacements of circular plate due to uniformly distributed load

Fig. 10 Edge load

Loading case 2. An edge load Q = 1000 p/ft (16 kN/m).

Fig. 11 Vertical displacements of circular plates due to concentrated edge load
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8.6 Numerical example 6

Circular plate on two-parameter elastic foundation shown in Fig. 14 is analysed, where the
following parameters are used:

· Modulus of elasticity of the plate Ep = 2.107 kN/m2

· Poisson’s ratio of the plate νp = 0.16

Fig. 12 Edge moment

Loading case 3. An edge moment M = 10,000 p-ft/ft (523.5 kN-m/m)

Fig. 13 Vertical displacements of circular plate due to edge moment 

Fig. 14 Structural system and cross section
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· Modulus of elasticity of the soil Es = 80.000 kN/m2

· Poisson’s ratio of the soil νs = 0.25
· Depth of the soil foundation H = 10 m

The finite element mesh used in the analysis is given in Fig. 15 where the extension region of the
soil is taken equal to the thickness of the compressible layer. Concentrated loads are taken as 0.60 m
length line loads in radial direction. The interior radius is taken small value (R2 = 0.001 m) in order
to apply the finite element developed without requiring a three-node element. This way one can
avoid that some of the coefficients of the matrices [C] and [CT] become undetermined when the
interior radius is equal to zero. 

The boundary conditions due to axial symmetry at line α = 0o and α = 30o are will be as follows

The value of mode shape parameter (γ) and soil coefficients are shown in Table 5. 
The variation of vertical displacements and bending moments Mr and Mθ are shown along the axis

α = 0 and α = 30 in Figs. 16-21.
The plate on the Winkler soil and on the two-parameter soil are analysed separately and vertical

displacements are plotted. The comparison of the vertical displacement demonstrates that by taking
into account the shear parameter in addition to the Winkler assumption, the vertical displacements
decrease and the shear forces on the boundaries take on larger values. The variation of bending

wi 0
∂w
∂r
------- 0≠ ∂w

r∂θ
---------, 0

∂
∂r
----- ∂w

r∂θ
--------- 

  0=,=,≠

Fig. 15 Finite element mesh

Table 5 Mode shape parameter and soil coefficients

ν γ

0.25 1.323 10081.85 43404.87 

C kN
m3
------- 

  CT
kN
m
------- 

 
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moment Mθ in circular ring differs from rectilinear beams on two parameter foundation. It can be
seen that, negative bending moment decreases in the middle of the plate and positive moment
increases at the span support. The rotation  of the ring causes an additional positive constant
Mθ moment. 

9. Conclusions

In the present study circular plates on a two-parameter elastic foundation are analysed by
inclusion of soil parameter effects to the sector plate finite element developed by Saygun (1974).
Sector soil finite elements are used in addition to plate finite element. The displacements for the
plate-soil system , the bending and twisting moments for the plate and soil stresses can be computed
and compared with the existing results. The elastic bedding and shear parameter coefficients of the

w∂ r∂⁄

Fig. 16 Variation of the deflection of the plate for α = 0 Fig. 17 Variation of bending moment Mr for α = 0 in
the case of the two-parameter foundation

Fig. 18 Variation of bending moment Mθ for α = 0 in
the case of two parameter foundation

Fig. 19 Variation of the deflection of the plate for
α = 30

Fig. 20 Variation of the bending moment Mr for α = 30
in the case of the two-parameter foundation

Fig. 21 Variation of the bending moment Mθ for
α = 30 in the case of the two parameter
foundation
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soil are obtained by using the elastic constant, the thickness of the compressible layer and the mode
shape parameter. Due to the interaction between the plate and the soil, the mode shape parameter
also depends on the shape and the dimension of the plate and the elastic constant of the soil.
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