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Abstract. In this study, circular plates subjected to general type of loads and supported on a two-
parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a
fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically
assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the
deflection of the soil surface outside the domain of the plate in order to establish the interaction between
the plate and the soil. According to Vallabhan and Das (1991) the elastic be@jingnd shear
parameters () of the foundation are expressed depending on the elastic condEgntg) (and the
thickness of compressible soil layéd and they are calculated with a suitable iterative procedure. Using

ring sector elements presented in this paper, permits the generalization of the loading and the boundary
conditions of the soil outside the plate.

Key words: ring sector compatible plate finite element; the coefficient of subgrade reactions; shear
parameter coefficient; mode shape parameter.

1. Introduction

As known, in order to perform a better model than the Winkler hypothesis Pasternak (1954),
Vlasov and Leontev (1966) developed a two-parameter model elastic foundation and analysed
beams and slabs on it. Vlasov, in his model, introduced a parayiteteharacterize the distribution
of the vertical displacement in the elastic foundation. Jones and Xenophontes (1977) using
variational principles, strengthened the Vlasov model by establishing a relationship between the
parametery and the displacements of the beam or slab on the foundation. Vallebhhr(1988,

1991) developed an iterative technique to determineytparameter numerically for beams and
rectangular plates on elastic foundations. Vallabhan andgDalo lu (1997) employed the finite element
method. Four-noded rectangular finite elements with 12 degrees-of-freedom are developed to model
the slab and the soil along with four degrees-of-freedom elements for the beams that stiffen the slab.
Brown (1969), Burmister (1956) studied circular rafts on a elastic foundation under uniformly
distributed load. Vallabhan and Das (1991) extended their model for the analysis of axial symmetric
circular tank foundation. Finite element solution given by Celik and Saygun (1999) used the similar
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iteration principle, given by Vallabhan, to determine yhgarameter and the deflections of the soll
around the plate was also considered.

In this study, using the full compatible ring sector finite element developed by Saygun (1974), this
method is extended to circular plates subjected to general loading.

2. Governing equation of circular plates on two parameter foundation

The governing equation of the deflection of the platg, 6) on a two- parameter elastic
foundations can be expressed as

DAAwW-2C;Aw + Cw = ¢ @

whereD is the flexural rigidity of the plat¢D = Ephﬁ/ 12(1- vﬁ)] g external load on the plat€,
the elastic bedding coefficient an@2the shear parameter coefficient. Laplacian opetatior the
polar coordinates is.

_ 9, 10,10
A= é’r2+ (o 2o

The governing equation for the deflection of the soil surface outside the domain of the plate
becomes,

)

—2C;AW+Cw = 0 A3)

The mode shape functiop(2) defining the variation of the vertical displacement in the vertical
direction inside the soil layer, has the boundary conditions:

¢z=0)=1, z=H)=0 4)

whereH is the thickness of the compressible soil layer supposed to be known.
By minimizing the total potential energy function 2 in the domain of the so{l0<z< H) ,
the functiong(z) can be expressed as

sinh[y(1—2z/H)]
sinhy

w2) = (5)

where y denotes the mode shape parameter. Furthermore, the elastic bedding co&ffasienthe
shear parameter coefficienC2can be obtained as follows depending on the mode shape pargpmeter

Es(l_vs) _Z[Sinh2y+ 2”

C= 6
(1+ Vs)(l_zvs) H 4sinh2y ( )
2C; = GSHM )

Y 4sinfy
whereEs, Vs andGs are the elastic constants of the soil. The mode shape pargsetitermined
in polar coordinates as follows:
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w 27 Lrpw(r, G)ﬁ ow(r, H)DZDd o
2(1—2\/)r'=[-09£oE|:| or U + O roe DH’ r

2(1-v) o 2m
J’ J’ w(r, 6)rdrd 0
r=00=0
As seen in Egs. (6)-(8) the elastic bedding coeffici€htahd the shear parameter coefficiedi)(
depend on the material properties, the thickness of compressible layer of the soil and the cpefficient
On the other handy depends on the deflection shape of the system, subjected to the external load.
It is obvious that the iterative method, suggested by Vallabhan and Das (1991), has to be used in the
numerical solution. By assuming an initial value jathe coefficientsC and Z; can be computed
and the system, combined with plate and soil finite elements, is analysed. Thenyacaevbe
computed by using Eqg. (8) and the procedure is repeated until the difference between the two
successive values gfwill be less than a prescribed value.

V' = H

(8)

3. Fully compatible ring sector plate element

Consider a ring sector plate as shown in Fig. 1. As in the case of the rectangular plate element
developed by Bognest al. (1966), a deflection function that ensures both the deflection and slope
compatibility at the boundaries of ring sector element must be expressed at least with 16 nodal
degrees of freedom,

w = .iwi(r, 0)d, )

Fig. 1 Ring sector plate finite element
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or in matrix form

w = [Ad[d] (10)

where fl] is a column matrix of nodal displacements aAg s a line matrix which contains 6
corresponding displacement functions on the element.

The numbering and sign convention of nodal displacements, which are the vertical displacement,
two slopes in radial and circumferential directions and torsional curvaﬂfwe/sdr(r 00) at each
node, are shown in Fig. 1.

The functionsw;(r, 8), that determine the displacement shape on the element due to unit nodal
freedoms, are product of functions in radial and angular directions.

Choosing the origin of the variabkeat the middle radius, the radial coordinate at any point of the
element can be expressed as

r=x+(R,+R,)/2 (11)
and setting
a= Rj_ - Rz (12)

the variation in radial direction can be expressed with a simple third order polynomial of
The four polynomial expressions corresponding to unit deflection or slope at the ®Ris
(x=al2) andr =R, (x=-a/2) are given below:

Function Boundary Condition

1. 3x 2% f, =1 and df/dx=0 for x=a/2
fl(x) = §+2—a——3— %l (13a)

0 and df/dx=0 for x=-a/2

3 f, =0 and df,/dx=0 for x=a/2
fx) = 33X, 20 ? ? (13b)
272a &  H,=1 and dfy/dx=0 for x=-a/2
2 3 — — —
a X X X (g, = 0 and dgy/dx=-1 for x=a/2
9a(X) = 3+5-52-5 O _ _ ~ (13c)
8 4 2a g4 M: =0 and dg/dx=0 for =-a/2

2 3 — — —
a x X X (g, =0 and dg,/dx=0 for x=a/2
Oo(X) = —g+7+-—= o _ _ _ (13d)
8 4 2a g M, =1 and dgy/dx=-1 for x=-a/2

In angular direction the functions have to contain trigonometric functions such9amdirco$ to
satisfy rigid body motion. For this reason the shape functions dependii@renchosen as follows
instead of third order polynomial function:

w = a, + a,6+ a;cosf+ a,sinf (14)

The coefficientsy; can be found by using the corresponding boundary conditichs atr/2. The
functions and their corresponding boundary conditions are listed as follows:
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Function Boundary Condition

. a
sm(e)—ecosi p,=1 and 9¢,/30=0 for O=a/2
0:(6)= 3+ 0 (152)

2%.n___cos_ m.=0 and d¢,/0=0 for 6=-a/2
: sin(e)—ecosi p,=0 and d¢,/90=0 for O=a/2 a5
¢2( )_ Z%m———COS— E¢2=1 and d¢,/00=0 for 6=-a/2
a .0 O
cogf)—cosy 6siNZ-ISIN6) L —0 and dg/d0=-1 for O=as2
Yn(6) = - 0 (150)

. a = = -
23|n§ Z%ing—gcosgm =0 and dyy06=0 for 6=-a/2

a .a a_.
(e - cos()—cos; Osing—55I0) y,=0 and ay,/06=0 for 6=ar2 (154)
A0 =4 H0,=0 and dy,/06=—1 for B6=—a/2
2sind a_a A W, or a
sz Z%m cos—

The matrix B4 in Eg. (10) consists of combination of functions mentioned above.
[Ad = [02(0)f2(X)  02(6)32(X)  —(O)rfa(X)  Ya(O)rga(X)
$1(0)f2(x)  91(0)92(x)  —¢u(O)rfa(X)  Yr(O)rga(x)
$2(0)f1(X)  92(0)9:1(X)  —Y(O)rfi(X)  P(O)rga(x)
$1(0)f1(x)  ¢1(0)91(x) —yn(O)rfi(x) Y (6)rgi(x)] (16)
This deflection function satisfies rigid body motion conditions and the case of axial symmetry.

Consequently the stiffness matrix derived from these functions successfully passes all the patch tests.
4. Stiffness matrix

Internal forces of the element can be obtained as follows depending on displacement shape in
polar coordinate.

O O
e
, l1v O 0 or 0
M, EN" _jv1 o| Hpdw, ow
- 12(1-V° _ 2 rort]

M, (1-Vv)|, 012\/ EDré'e2 0 (17)
M| ooooboooo za‘NDﬁN_D O
(0] orrogd U
AT

\:II:II:I\:I[\%]I\:II:II:I



254 Ahmet Saygun and Mecit Celik

As known the stiffness matrix of the plate element in bendihgwhich relates nodal forces to
nodal displacements as

[P] = [k][d] (18)

can be determined as follows by using the virtual work principle:
[kl = [[[Aq'[d] [D][][As]dA (19)

The coefficients of the matriX] in polar coordinates is given below.

R12Dc?zwdzw 0w, owDdw, é‘wD

DIJC

+
Rzamﬁr ot 0o TONTae rﬁrD

 OPw. N 5P N
o’ @%96° rorg o’ k%9 rorg
0w, ow, Mgw, w00

— — 1
+2(1 V)Em@ar rzaegjjdedr rz(mggdrde (20)

Specially if the thickness of the element is assumed variable, numerical integration using Gaussian
weighting coefficients is suitable to compute the stiffness matrix.

5. Stress-nodal displacement relation

When the system has been analysed for the nodal displacements, the curvatures at each nodes can
be obtained as follows:

[Xlp = [Bo]ld] (21)

where each column of the matriB,] denotes the curvatures at the nodes due to unit nodal
displacement. The bending and twisting moments can be computed as follows

[Mq] = [DI[By][d] (22)

By using the following abbreviation.

sin?
e = 2 e = lcotang + gel, e =— lcotang + 9(el (23)
2 2 2 2 2 2
Z%m— ——cos—

The matrix By] is given in Table 1 whergs, Xo and Z denote the bending curvatures in radial
and angular direction and the torsion curvatures, respectively.
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Table 1 Ring sector deformation matrix

[d] [d]. [d]s [d]4
Nod [\] d d» d3 dy ds ds d7 dg do o Oy dip iz iy dis dis
6 _4 _6 2
Xs 2 a 0 0 0 0 0 0 2 a 0 0 0 0 0 0
= 1 = €1 €3
1 = = = 0 = 0 = 0 0 0 0 0 0 0 0 0
Xe R R R R R.
2t O 0 o 2 O 0 0 0 0 0 0 0 0 0 0 0
5 4 6 2
Xs O 0 0 0 2 2 0 0 0 0 0 0 ? a 0 0
€, e e 1 e
2 —= 0 =2 0 2 = =2 0 0 0 0 0 0 0 0 0
Xe 24 2 R R 2
2t O 0 0 0 0 0 -2 O 0 0 0 0 0 0 0
6 2 6 4
Xs 7 a 0 0 0 0 0 0 2 a 0 0 0 0 0 0
€1 1 € €1 €3
3 0 0 0 0 0 0 0 o =5 = = 0 = o = 0
Xe RR R R RZ Ry
2t O 0 0 0 0 0 0 0 0 0 0 2 O 0 0 0
6 2 6 4
Xs O 0 0 0 7 a 0 0 0 0 0 0 2 a 0 0
S €, e 1 €,
4 0 0 0 0 0 0 0 0 L 0o = 0 2 = = 0
Xe R Ry R R R
2t O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2

6. Elastic bedding and shear parameter matrices

The inclusion of elastic bedding and shear effect of the soil to the equilibrium equation of the
plate element can be made easily using the procedure adopted by Celik and Saygun (1999). The
final equation becomes

[P] = [KI[d] + [C][d] + [C;][d] (24)

where ] and [C;] are the elastic bedding and shear effect matrices. Their terms can be expressed

as follows:

a

R 2
C; = CJ'J'WiWJ-rdI’dQ (25)
Rz_g
a
12 Dow, dw ow, ow; O
. -
Cry = J J; raeraemdrde (26)

They will be computed numerically just as the stiffness matrix.
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7. Ring sector soil element

In the present study a finite element of ring sector shape is used also to determine the deflection
surface of the soil. The governing differential equation outside the domain of the plate Eq. (3)
denotes an analogy behaviour of shear plate which has a shear @fdity 2C; and layed on
elastic foundation having an elastic bedding coeffic@nfhe displacement shape can be defined
with four d.o.f. shown in Fig. 2, in the following form

ws = [Aglld]s 27)

The shape functions of the element consist of linear functions in radial direction and equivalent to
linear function in angular direction. These functions are listed below.

Function Boundary Conditions
[,(x) = (0.5+x/a) L(x=a/2)=1, I1(x=-a/2)=0 (28a)
[,(x) = (0.5-x/a) lL,(x=a/2) =0, l,(x=-as/2)=1 (28b)
2,(6) = %+ iiﬂ% M(O=a/2)=1, A(8=-a/2)=0 (28¢)
2sinz
2
_ 1 sin@ _ _ _ _
A,(0) = 5~ > A(B=0a/2)=0, A,(0=-0a/2)=1 (28d)
Zsinz

The matrix By]s depending on above functions is given as follows.

[Adls = [A2(0)12(x)  Au(O)12(X)  A(O)11(X)  AL(O)11(X)] (29)

Elastic bedding and shear parameter matrices in ring sector soil finite element can be computed as
follows in polar coordinates.

_—
\«/%
-«

Fig. 2 Ring sector soil finite element
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a

R 2
Ci=Cf[wwrdrdf
i F{ I W,
2
a
' 2 Dow, dw ow; ow; [
Crij = ﬁ[ f raerdeudrde
These matrices is given below.
Cll C12 Cl3 C14 CT:Ll CT12 CT13 CTl4
C,y Cy,, Cy C C C C C
[C] = 21 22 23 24 [Cq] = T21 722 723 “T24
Ca1 Gz Caz Cy Crar Craz Craz Cray
Ciu Cu Cus Cy Crar Craz Craz Cruy

The terms of elastic bedding and shear parameter matrices are found as follows.

a—sina DD
1- cosaD

(R, RZ)(R1+ 3R2)%7

Cy = C Cy

sina — aDD

Crz = CD 1-— cosaD

O(Ry RZ)(Rl + Rz)%

a—sina DD

1-— cosaD Cos

D(Rl R3)
Ciz =
B,

sina — aDD

1— cosaD Coa

- D(Rl 39)
Cu=C H a8 BT

a—sina DD
1- cosaD

c - CE( “RISR + R),

44

sina — aDD

Cas = CO 1- cosaD

O(Ry Rz)(3R1 + Ry)
0 e+

The terms of shear parameter matrix. (34a....34q)

a—sina 0, _a+ sing R qRi0, Re— SR%D

L R+R,
Cri1 = ZCTDD %1+ (1- coscr)DJr 2(1- COSG)B_I [R,H 2a DE

8a

257

(30)

(31)

(32)

(33a)

(33b)

(33¢)

(33d)

(33e)

(331)

(34a)
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Crz = ZCTEI&%P%” (iin?:osg)g 2(0{1+ i?scé)%&l ER.%D : 2a3 R@@ (340)
Sy “WLUN ML
o= 10 0o g, s SR BURE g

Cras = ZCTéRls;aRZ% ((11 :cigg)g 2(0{1+ ilc?s(jx)%&l %E Rlszzéé (34e)

_ R+ R, sina—a o _a+ sina (RS DR_lg R; —3R,10
Cras = ZCTDD 8a iy (1-cosa) 0 2(1- (:osor)D_I RO~ 2a EE (349

Cr22=Cn1, Crz=Cra GCra=Criz GCra=Crss (349)

By using the stress-displacement relationship, the shear forces at the nodes of soil element can be
obtained as follows

9
T or
"l = 2C; W (35)
Te na
roé
Table 2 Soil ring sector deformation matrix
d d ds d,
1 or a a
ow _b b 0 0
I’d@ 2R2 2R2
2 or a a
oaw _b b 0 0
I’d@ 2R2 2R2
w 1 0 1 0
3 or a a
ow 0 0 _b b
roo 2R, 2R,
W 0 1 0 1
4 or a a
oaw b b

_,
)
D
N
Py

<
)
Y
Ky
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the matrix which relates the slopes at each nodes to nodal displacements is given in Table 2.
where the following abbreviations are used.

a=R-R, (36)
b= cotang (37)

8. Computation of the mode shape parameter

The new mode shape paramegdras to be obtained by Eq. (8), after determining the deformed
shapew(r, 6) of the system. The integral terms of Eq. (8) can be evaluated for every plate and soil
element separately. They are extended to the whole system by taking the summation of each
element’s contribution.

The deformed shape and its partial derivatives with respect to variaold 6 with an element
can be given as

w = iwidi (38)
ow Coow, w
or 106 rae = 2. 0ar " roe (39)

where the nodal freedoms of the element are known. Hence, the integral terms of an element

HWZdA = Hgn Widi% n W'dEUA =35 %IWiW'dA%jid- (40)
H; DJ; g i;j; : .

H[E%”;VEZ %—a—egjdA H{HZ ar'dmzla d% DZ aéderae JD}dA (41)

can be calculated using th&][and [Cy] matrices which are already found.

fjw'da = 2d1Clid] @2)
[+ 228 an = SLqap(caral (43)
Opr0 7 Thog0 2C; T

The effects of all the elements can be summed up for the whole system, as follows:

0 2m

[ [ wirdrd6 = Zé[d]T[C][d] (44)

r=06=0

}09']’0|:%%Ef S’%Ejrdrde_ Zag-—:;[d]T[CT][d] (45)
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As a result, the mode shape parameter can be obtained by using the above relations without
requiring any additional algorithm.

8.1 Numerical example 1

Axially symmetric plates having various boundary conditions are analysed for various types of
loading cases in order to check the convergence of the plate finite element developed by Saygun
(1974), and results are given in Table 3 along with the results given by Szilard (1974pwhéte
In the numerical solution Poisson’s ratio is taken 0.2 and the plate is divided six plate finite
elements in radial direction. The angular widthof the element has not any effect in axially
symmetric displacement case and can be taken any value.

2r,

F iy P 2r P
[ Po w
AN
L 2r, 2,

» |
[

\

-~

(a) (b) (b)
Fig. 3 Axial symmetric plates{/ro = 0.5)

Table 3 Vertical displacements and bending moments

Wgo%% ngr_gl mr%z My
Plates p=0.0 p=05 p=2/3 p=1 p=1

Szilard (1974) 2.098 1.418

a Saygun (1974) 2.098 1.418

b Szilard (1974) 0.361 0.238 -0.5625 -0.1125
Saygun (1974) 0.361 0.239 -0.5539 -0.1108
Szilard (1974) 1.941
Saygun (1974) 1.942

Szilard (1974) | Saygun (19747‘

(W) giflg 126 1.286 ‘

Fig. 4 Axial symmetric plate
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8.2 Numerical example 2

Axially symmetric plate, of variable thickness subjected uniformly distributed load is analysed.
Poisson’s ration is 0.25 and plate is divided to four elements in radial direction and deflection at the
center is given belowH/h = 1.5).

8.3 Numerical example 3

Circular plate, which is shown in Fig. 5 under the concentrated load at the centre and supported at
three points, is analysed by using the symmetry conditions, i.e., only one third of the plate is
considered. In solution Poisson’s ratio is taken 0.25 and plate is divided to six element in radial
direction and four element in angular direction. Central displacement is given below.

1 Szilard (1974) Saygun (1974) i

0.0670 k 0.0666

Fig. 5 Circular plate suported at three points

o L

= COS >
PTPyPCOSP o I I ’

b, AT . A \\ //

(a) (b)
Fig. 6 Structural system and loading

o a
o \\ \ \

(a) (b)
Fig. 7 Fiuite element mesh
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Table 4 Vertical displacements and bending moments

Szilard (1974) Saygun (1974)
a=30 a=90

j w (cm) 0.14583 0.14564 0.14569
£; éj“ M, 0.40625 0.41921 0.41934
Ms 0.20625 0.20766 0.20764

j w (cm) 0.21333 0.21319 0.21323
g; éjz M, 0.65000 0.67583 0.67620
Ms 0.35000 0.35475 0.35431

j w (cm) 0.15750 0.15744 0.15746
bie M, 0.56875 0.60784 0.60764
Me 0.36880 0.37639 0.37501

8.4 Numerical example 4

In this example circular plate, shown in Fig. 6 subjected by oagyo cosp, is analysed. Using
symmetry and antisymmetry properties only one fourth of the plate is considered. Plate is divided to
four elements in radial direction and three element 80, Fig. 7a) then one element= 90, Fig. 7b)
in angular direction. In this example load matrices of elements are obtained numerically by using
the integral formulaP; = [[pwirdf8dr . Resultant vertical displacements and bending moments are
given in Table 4 where the following dimensions are used.20, andD = 468.75 tm.

The results obtained in this study and given by Szilard (1974) are quite in agreement. Since the
displacement function expressed at (16) satisfies the first harmonique deflection case, the number
of elements along the angular direction does not change the results and even one element is

sufficient.
8.5 Numerical example 5

Circular tank foundation investigated by Vallabhan and Das (1991) for various loading cases is
analysed to check the convergence of plate and soil element on the two-parameter foundation. Ring
sector finite elements are used for the plate as well as the for the soil. The mode shape parameter
calculated and given comparatively with the results of Vallabhan. As can be seen, the two results are
in good agreement. The numerical values of the parameter are assumed to be.

- Radius of the plat® = 10 ft (3.05 m).

- Modulus of elasticity of the plat,= 3 x 16 psi (22.7 GPa)
- Poisson’s ratio of the platg = 0.2.

- Thickness of the plate= 0.8 ft (0.24 m).

- Depth of the soil foundation H= 10 ft (3.05 m).

. Modulus of elasticity of the soil =3 x 4@si (22.7 MPa)

. Poisson’s ratio of the soik=0.2
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Loading case 1A uniformly distributed load = 500 psf (26.3 kNgm

€

: 500 pst
10 ft P

N
Radius g

mHmmmwﬁvwm* Vallabhan 0915

Present study | 0.915

Fig. 8 Uniformly load case

000 050 100 150 200 250 300 3.50
0.00 +———++— et —————t —_—t
0.50 E m

1.00 [
1.50 &

2.00 £
2.50 =
3.00

mm

Fig. 9 Vertical displacements of circular plate due to uniformly distributed load

Loading case 2An edge load) = 1000 p/ft (16 kN/m).

P=1000 Ib/it
] 1k ) B "ﬁi'""f
& Radius | _— ¥ J
I Vallabhan 149
I 1 Present study :  1.52
S LS LSS S 4 Vi [I— .

Fig. 10 Edge load

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.00 :.‘H!HH'yyu‘yy.u!u..y‘.y”#.u.{
0.20 + m
0.40 £
0.60 +
0.80 +

1.00 fr:1m

Fig. 11 Vertical displacements of circular plates due to concentrated edge load
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Loading case 3 An edge moment M = 10,000 p-ft/ft (523.5 kN-m/m)

TE M=10.000 p ftft| 1 i I
Radius B . Vallabhan | 2.94
| Present study | 3.04

Fig. 12 Edge moment

0.00 050 1.00 1.50 2.00 250 3.00 3.50
-20 ¢
10 +

mm

Fig. 13 Vertical displacements of circular plate due to edge moment

8.6 Numerical example 6

Circular plate on two-parameter elastic foundation shown in Fig. 14 is analysed, where the
following parameters are used:

- Modulus of elasticity of the pla, = 2.10° kN/m?
- Poisson’s ratio of the platg =0.16

P=1000 kN

<
|
|
- !
l0.50 §
1 T0.30 i
VEZZaN
5; 0.6 0.3
L ! | Je A4
T2 712 T 12 T 2.7 1
R
| 6.30 L 6.30 ’{
ha e
(a) plane (b) cross section

Fig. 14 Structural system and cross section
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o=30°

ot 0=T7.50°

a=0°
L 3x0.90 L 4030 4"“-304.[‘ 4x0.30 | 10x1.0 |
T 0l ; O A "
Fig. 15 Finite element mesh
Table 5 Mode shape parameter and soil coefficients
CkNO CkNO
0.25 1.323 10081.85 43404.87

- Modulus of elasticity of the sdif; = 80.000 kN/m
- Poisson’s ratio of the sail, = 0.25
- Depth of the soil foundatiod = 10 m

The finite element mesh used in the analysis is given in Fig. 15 where the extension region of the
soil is taken equal to the thickness of the compressible layer. Concentrated loads are taken as 0.60 m
length line loads in radial direction. The interior radius is taken small vejue(Q.001 m) in order
to apply the finite element developed without requiring a three-node element. This way one can
avoid that some of the coefficients of the matrio€k gnd [Cy] become undetermined when the
interior radius is equal to zero.

The boundary conditions due to axial symmetry at dire0° anda = 3C° are will be as follows

W, w_, dpown,
oo r90 T orkroed

The value of mode shape parametgrand soil coefficients are shown in Table 5.

The variation of vertical displacements and bending monMnendM, are shown along the axis
a=0 anda =30 in Figs. 16-21.

The plate on the Winkler soil and on the two-parameter soil are analysed separately and vertical
displacements are plotted. The comparison of the vertical displacement demonstrates that by taking
into account the shear parameter in addition to the Winkler assumption, the vertical displacements
decrease and the shear forces on the boundaries take on larger values. The variation of bending

w; 0, 0
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Fig. 16 Variation of the deflection of the plate o= 0 Fig. 17 Variation of bending moment, for a =0 in
the case of the two-parameter foundation
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Fig. 18 Variation of bending moment, for =0 in Fig. 19 Variation of the deflection of the plate for
the case of two parameter foundation a =30
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Fig. 20 Variation of the bending momelit for a=30 Fig. 21 Variation of the bending moment, for

in the case of the two-parameter foundation a=30 in the case of the two parameter
foundation

momentMg in circular ring differs from rectilinear beams on two parameter foundation. It can be
seen that, negative bending moment decreases in the middle of the plate and positive moment
increases at the span support. The rotaflevi or of the ring causes an additional positive constant
Mg moment.

9. Conclusions

In the present study circular plates on a two-parameter elastic foundation are analysed by
inclusion of soil parameter effects to the sector plate finite element developed by Saygun (1974).
Sector soil finite elements are used in addition to plate finite element. The displacements for the
plate-soil system , the bending and twisting moments for the plate and soil stresses can be computed
and compared with the existing results. The elastic bedding and shear parameter coefficients of the
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soil are obtained by using the elastic constant, the thickness of the compressible layer and the mode
shape parameter. Due to the interaction between the plate and the soil, the mode shape parameter
also depends on the shape and the dimension of the plate and the elastic constant of the soil.
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