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Effect of shear deformation on theGcritical 
buckling of multi-step bars

Q.S. Li†

Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue,
Kowloon, Hong Kong

(Received February 25, 2002, Accepted December 3, 2002)

Abstract. The governing differential equation for buckling of a one-step bar with the effect of shear
deformation is established and its exact solution is obtained. Then, the exact solution is used to derive the
eigenvalue equation of a multi-step bar. The new exact approach combining the transfer matrix method
and the closed form solution of one step bar is presented. The proposed methods is convenient for solving
the entire and partial buckling of one-step and multi-step bars with various end conditions, with or
without shear deformation effect, subjected to concentrated axial loads. A numerical example is given
explaining the proposed procedure and investigating the effect of shear deformation on the critical
buckling force of a multi-step bar.
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1. Introduction

It is well known that the analytical model for buckling analysis of various civil, aeronautical and
mechanical structures can be treated as a uniform or non-uniform bar subjected to concentrated and/
or variable distributed axial loads. However, it is difficult to determine the exact solution for the
buckling of a non-uniform bar subjected to complicated loads, especially for a multi-step bar.
Simple problems, such as a one-step non-uniform bar subjected to a concentrated axial load, a
uniform bar subjected to uniformly distributed axial loads or a uniform bar under its own weight,
were studied by Timoshenko (1936), Karman and Biot (1940), Dinnik (1950). More complicated
problems, such as buckling of columns under variably distributed axial loads, were investigated
numerically by Vaziri and Xie (1992). The exact buckling solutions of a one-step bar and a multi-
step bar with varying cross-section under concentrated and variably distributed axial loads were
investigated by Li et al. (1995) and Li (2000, 2001, 2002). It is noted that all the studies mentioned
above did not consider the effect of shear deformation on the critical buckling of bars or columns.

In deriving the governing differential equation for buckling of a bar, it is usually assumed that the
cross-sectional dimensions of the bar are small compared to its length, and thus the effect of shear
deformation on the buckling load can be neglected. However, Iyengar (1988), among others, reported
that as the depth of the bar increases, this effect has to be taken into account for the correct
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estimation of the critical load since shear deformation reduces the critical load. Ari-Gur and Elishkoff
(1990) discussed the influence of shear deformation on buckling of uniform columns with overhang.
Banerjee and Williams (1994) studied the effect of shear deformation on the critical buckling of a
one-step uniform column in detail. They indicated that fiber-reinforced composite beams are
generally more shear sensitive than metallic ones, because of their low shear modulus (G) to Young’s
modulus (E) ratio, so that the effect of shear deformation on the critical buckling can be significant. 

If the effect of shear deformation is taken into account, it is difficult to obtain the exact buckling
solution of a bar with varying cross-section subjected to concentrated and distributed axial loads,
especially, for a multi-step bar. As reported by Li et al. (1994), in buckling analysis, a one-step bar
with varying cross-section subjected to distributed axial load may be simplified as a multi-step
uniform bar under concentrated loads. Thus, this paper addresses the effect of shear deformation on
the critical buckling load of a multi-step bar, for which each step is assumed to have constant
parameters. In the paper published by Banerjee and Williams (1994), the eigenvalue equation of a
one-step uniform bar was established by using two differential equations. In this paper, however,
using one differential equation and the transfer matrix method the eigenvalue equation of a multi-
step bar is obtained, and the stability problem of a one-step bar is shown to be a special case of the
general problem.

2. Theory

A multi-step bar is shown in Fig. 1. The axial load in the i-th step bar, Ni, is given by

(1)

where the load ajP is directly acting on the j-th step bar.

Ni ajP
j 1=

i

∑=

Fig. 1 A multi-step bar
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In order to establish the differential equation for buckling of the i-th step bar with shear
deformation, an infinitesimal element of the i-th step bar is considered. For convenience, the
element is rotated through an angle of 90ο, as shown in Fig. 2. Now considering the equilibrium of
all the forces acting on the element leads to (Banerjee and Williams 1994)

(2)

(3a)

where V is the shear force due to bending, and the total shear force, Q, is as follows

(3b)

As is well known, the relationship between M and ψ is given by 

(4)

where ψ is the angle of rotation of the cross-section due to bending, EIi is the flexural rigidity of
the i-th step bar.

The total slope, dy/dx, equals the sum of bending slope and the slope due to shearing of the
element. Thus, the following equation can be established.

(5)

in which Ki is the shear rigidity of the i-th step bar, it is given by

(6)

where k, G, Ai are the section shape factor, shear modulus and cross-sectional area, respectively.

dV
dx
------- 0=

V
dM
dx
-------- Ni

dy
dx
------–=

Q
dM
dx
-------- V Ni

dy
dx
------+= =

M EIi
dψ
dx
-------–=

ψ 1
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Ki

-----– 
  dy

dx
------ V

Ki

-----–=

Ki kGAi=

Fig. 2 Force acting on a typical element



74 Q.S. Li

Substituting Eq. (5) into Eq. (4) yields

(7)

Substituting Eq. (7) into Eq. (3a) leads to

(8)

Substituting Eq. (8) into Eq. (5) one obtains

(9)

Using Eqs. (4), (7) and (9) one obtains the governing differential equation for buckling of the i-th
step bar with shear deformation as follows

(10)

where

(11)

where ri is the radius of gyration of the cross-section, li  is the length of the i-th step bar.
The general solution of Eq. (10) is given by

(12)

Using Eqs. (7), (8), (9) and (12) one obtains

(13)

where

(14)
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It can be seen from Eq. (14) that the shear force due to bending of the i-th step is a constant. This
observation is consistent with Eq. (2).

The relationship between the parameters introduced above at the two ends of the i-th step bar can
be expressed as

(15)

where

(16)

[Ti] is called the transfer matrix because it transfers the parameter at the end xi0 to those at the end
xi1 of the i-th step bar.

Using Eq. (15) for the (i + 1)-th step bar one obtains

(17)

Considering the following relationship

(18)

and using Eq. (15) lead to

(19)

The equation for the top step bar can be established by using Eqs. (15), (18) and (19) repeatedly
as follows
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(20)

where

(21)

and [T] has the following form 

(22)

The element Tij of [T] can be found from Eq. (21).
The eigenvalue equation can be established by using Eq. (20) and the boundary conditions as

follows

(1) A multi-step bar with clamped-free (C - F) end conditions

For this case Eq. (20) becomes

(23)

From the above equation, we have

(24)

Because y(x10) ≠ 0, ψ(x10) ≠ 0, the eigenvalue equation is

(25)

(2) A multi-step bar with hinged-hinged (H - H) end conditions

Eq. (20) for this case becomes

(26)
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The eigenvalue equation can be established from the above equation as

(27)

(3) A multi-step bar with clamped-hinged (C - H) end conditions

Eq. (20) for this case becomes

(28)

The eigenvalue equation is

(29)

(4) A multi-step bar with clamped-clamped (C - C) end conditions

Eq. (20) for this case becomes

(30)

The eigenvalue equation is

 (31)

All the boundary conditions used above are listed in Table 1
It is evident that the method presented above can also be used to solve the problem of partial

buckling. For example, it is assumed that partial buckling occurs on steps from the 1st step to the i-
th step of a cantilever bar (Fig. 1), then the low end of the i-th step should be fixed. The eigenvalue
equation is also given by Eq. (24), but all Tjk in Eq. (24) must be determined from

(32)

Letting i = 1, 2, ..., n − 1, n, a set of critical forces can be determined from Eqs. (32) and (25). The
minimum one among the n critical forces is the critical force for partial buckling of the cantilever

T12T34 T14T32– 0=

0

0
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0

ϕ x10( )

0

V x10( )

=

T12T24 T14T22– 0=

0

0

M xn1( )

V xn1( )

T[ ]

0

0

M x10( )

V x10( )

=

T13T24 T14T23– 0=

T[ ] Ti[ ] Ti 1–[ ]… T1[ ]=

Table 1 Four common boundary conditions

Case   End conditions at x = x10 and            x = xn1

C - F M(x10) = 0, V(x10) = 0 y(xn1) = 0, ψ(xn1) = 0
H - H y(x10) = 0, M(x10) = 0 y(xn1) = 0, M(xn1) = 0
C - H y(x10) = 0, M(x10) = 0 y(xn1) = 0, ψ(xn1) = 0
C - C y(x10) = 0, ψ(x10) = 0 y(xn1) = 0, ψ(xn1) = 0
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bar considered.
Similarly, the problem of partial buckling of a bar with other end conditions can also be solved by

use of the same procedure presented above.
Clearly, two important special cases can be obtained from the procedure proposed above as

follows:
(1) Setting n = 1 obtaining the solutions of one-step bars
(2) Setting Ki → ∞ obtains the solutions of multi-step bars without the effect of shear deformation.

3. An illustrative example

The example will show how to determine the critical axial force of a two-step cantilever bar with
thin-walled rectangular section subjected to concentrated loads as shown in Fig. 3. The parameters
of the bar are selected as follows

(33)

The definition of the parameters presented above can be found in the last section and Fig. 3. The
procedure for determining the critical force is as follows

3.1 Determination of the flexural and shear rigidities

It can be found from Eq. (33) that

(34)

b 3d, k 0.153, F1 F, F2 1.2F1, r1 r , r 2 1.3r , E 2.6G=======

l1 l , l2 l , 
l1

r1

---- 25, 
l2

r2

---- 19.2308====






K1 kGF, K2 1.2kGF, EI1 EI, EI2 2.028EI====

Fig. 3 A two-step cantilever bar
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3.2 Determination of the transfer matrix

The transfer matrix for this example is given by

(35)

where

i = 1, 2

The expression of A(x) is the same as Eq. (14), the parameters in that equation are as follows

3.3 To establish the eigenvalue equation

The eigenvalue equation is the same as Eq. (25) while T11, T12, T21 and T22 are determined by
Eq. (35). It is evident that the unknown variable is P only.

Solving the eigenvalue equation obtains the critical axial force as

If the effect of shear deformation on the critical buckling of the bar is not taken into account, then
the eigenvalue equation of the bar can be established by using the static method as

(36)

where

(37)

Substituting Eq. (37) into Eq. (36) one obtains

(38)

Solving Eq. (38) obtains the critical axial force as

If setting Ki → ∞,   the present method gives the same value of Pc. It can be seen
that the error due to neglecting the effect of shear deformation is 3.6% for this case. When l1/r1 and
l2/r2 are variables, but r2/r1 = 1.3, the effect of shear deformation on the critical buckling load of the
two-step cantilever bar is shown in Fig. 4.

If F1 = F, F2 = 10F, r2 = 5r1, l1/r1 = 25, l2/r2 = 5, l1 = l2 = l, EI1 = EI, EI2 = 250EI1
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Then, it is found that the critical axial loads with and without shear deformation are

The effect of shear deformation causes the critical axial force, Pcr, to decrease by 8.4%. Clearly,
this case belong to partial buckling because the rigidity of the lower step bar is very large and
buckling of the two-step bar only occurs in the upper step bar. For this case, the critical force
without the effect of shear deformation can also be determined by

If the ratio of Young’s modulus to shear modulus (E/G) increases, then the effect of shear
deformation on the critical axial load becomes larger. The effect of E/G ratio on the critical buckling
load is also shown in Fig. 4. It can be seen from this figure that the effect of shear deformation and
E/G ratio on the critical load is less than 13% when λ, , is greater than 60 and
E/G is less than 10.4. But, when λ decreases, the effect is becoming more significant. For example,
if λ = 20, E/G = 2.6 and 10.4, the effect of shear deformation causes the critical buckling load to
decrease by 13.9% and 49.9%, respectively. This suggests that, for purposes of composite column
design, the effect of shear deformation on the buckling load should be taken into account. For a
steel column, the effect of shear deformation is not significant on the critical load. 

4. Conclusions

This paper presents the derivation of eigenvalue equation of a multi-step bar considering the effect
of shear deformation by combining the transfer matrix method and closed form solutions of one
step bar. The main advantage of the proposed method is that the eigenvalue equation of a multi-step
bar considering the effect of shear deformation can be conveniently determined from a second order
determinant. Therefore, the proposed method is convenient for solving the entire and partial
buckling of one-step and multi-step bars with various end conditions, with or without shear
deformation effect, subjected to concentrated axial loads. A numerical example describing the
proposed procedure is given. The calculated results show that the effect of shear deformation on the

Pcr 2.2577EI l
2⁄= , Pc 2.4641EI l

2⁄=

Pc π2EI1 4l1
2( )⁄ 2.4674EI l2⁄= =

λ l r 1 r 2+( ) r1r2⁄=( )

Fig. 4 Effect of shear deformation and E/G ratio on the critical buckling load of the two-step cantilever bar
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critical buckling force is significant for the cases of large Young’s modulus to shear modulus (E/G)
ratio, suggesting that, for purposes of composite column design, the effect of shear deformation on
the buckling load may have to be taken into account.
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